1
|
Niu Y, Zhang R, Yang C, He J, Wang T. Dietary supplementation with dihydroartemisinin improves intestinal barrier function in weaned piglets with intrauterine growth retardation by modulating the gut microbiota. J Anim Sci 2024; 102:skae140. [PMID: 38813622 PMCID: PMC11222986 DOI: 10.1093/jas/skae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
The aim of this study was to investigate whether dietary dihydroartemisinin (DHA) supplementation could improve intestinal barrier function and microbiota composition in intrauterine growth restriction (IUGR) weaned piglets. Twelve normal birth weight (NBW) piglets and 24 IUGR piglets at 21 d of age were divided into three groups, which were fed a basal diet (NBW-CON and IUCR-CON groups) and an 80 mg/kg DHA diet (IUGR-DHA group). At 49 d of age, eight piglets of each group with similar body weights within groups were slaughtered, and serum and small intestine samples were collected. The results showed that IUGR piglets reduced growth performance, impaired the markers of intestinal permeability, induced intestinal inflammation, decreased intestinal immunity, and disturbed the intestinal microflora. Dietary DHA supplementation increased average daily gain, average daily feed intake, and body weight at 49 d of age in IUGR-weaned piglets (P < 0.05). DHA treatment decreased serum diamine oxidase activity and increased the numbers of intestinal goblet cells and intraepithelial lymphocytes, concentrations of jejunal mucin-2 and ileal trefoil factor 3, and intestinal secretory immunoglobin A and immunoglobin G (IgG) concentrations of IUGR piglets (P < 0.05). Diet supplemented with DHA also upregulated mRNA abundances of jejunal IgG, the cluster of differentiation 8 (CD8), major histocompatibility complex-I (MHC-I), and interleukin 6 (IL-6) and ileal IgG, Fc receptor for IgG (FcRn), cluster of differentiation 8 (CD4), CD8, MHC-I, IL-6 and tumor necrosis factor α (TNF-α), and enhanced mRNA abundance and protein expression of intestinal occludin and ileal claudin-1 in IUGR piglets (P < 0.05). In addition, DHA supplementation in the diet improved the microbial diversity of the small intestine of IUGR piglets and significantly increased the relative abundance of Actinobacteriota, Streptococcus, Blautia and Streptococcus in the jejunum, and Clostridium sensu_ stricto_in the ileum (P < 0.05). The intestinal microbiota was correlated with the mRNA abundance of tight junction proteins and inflammatory response-related genes. These data suggested that DHA could improve the markers of intestinal barrier function in IUGR-weaned piglets by modulating gut microbiota. DHA may be a novel nutritional candidate for preventing intestinal dysfunction in IUGR pigs.
Collapse
Affiliation(s)
- Yu Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Caimei Yang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
White MR, Yates DT. Dousing the flame: reviewing the mechanisms of inflammatory programming during stress-induced intrauterine growth restriction and the potential for ω-3 polyunsaturated fatty acid intervention. Front Physiol 2023; 14:1250134. [PMID: 37727657 PMCID: PMC10505810 DOI: 10.3389/fphys.2023.1250134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) arises when maternal stressors coincide with peak placental development, leading to placental insufficiency. When the expanding nutrient demands of the growing fetus subsequently exceed the capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result. Poor fetal nutrient status stimulates greater release of inflammatory cytokines and catecholamines, which in turn lead to thrifty growth and metabolic programming that benefits fetal survival but is maladaptive after birth. Specifically, some IUGR fetal tissues develop enriched expression of inflammatory cytokine receptors and other signaling cascade components, which increases inflammatory sensitivity even when circulating inflammatory cytokines are no longer elevated after birth. Recent evidence indicates that greater inflammatory tone contributes to deficits in skeletal muscle growth and metabolism that are characteristic of IUGR offspring. These deficits underlie the metabolic dysfunction that markedly increases risk for metabolic diseases in IUGR-born individuals. The same programming mechanisms yield reduced metabolic efficiency, poor body composition, and inferior carcass quality in IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-derived nutraceuticals with anti-inflammatory effects that have been used to improve conditions of chronic systemic inflammation, including intrauterine stress. In this review, we highlight the role of sustained systemic inflammation in the development of IUGR pathologies. We then discuss the potential for ω-3 PUFA supplementation to improve inflammation-mediated growth and metabolic deficits in IUGR offspring, along with potential barriers that must be considered when developing a supplementation strategy.
Collapse
Affiliation(s)
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
3
|
Chen Y, Zhang H, Li Y, Ji S, Jia P, Wang T. Pterostilbene attenuates intrauterine growth retardation-induced colon inflammation in piglets by modulating endoplasmic reticulum stress and autophagy. J Anim Sci Biotechnol 2022; 13:125. [PMID: 36329539 PMCID: PMC9635184 DOI: 10.1186/s40104-022-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022] Open
Abstract
Background Endoplasmic reticulum (ER) stress and autophagy are implicated in the pathophysiology of intestinal inflammation; however, their roles in intrauterine growth retardation (IUGR)-induced colon inflammation are unclear. This study explored the protective effects of natural stilbene pterostilbene on colon inflammation using the IUGR piglets and the tumor necrosis factor alpha (TNF-α)-treated human colonic epithelial cells (Caco-2) by targeting ER stress and autophagy. Results Both the IUGR colon and the TNF-α-treated Caco-2 cells exhibited inflammatory responses, ER stress, and impaired autophagic flux (P < 0.05). The ER stress inducer tunicamycin and the autophagy inhibitor 3-methyladenine further augmented inflammatory responses and apoptosis in the TNF-α-treated Caco-2 cells (P < 0.05). Conversely, pterostilbene inhibited ER stress and restored autophagic flux in the IUGR colon and the TNF-α-treated cells (P < 0.05). Pterostilbene also prevented the release of inflammatory cytokines and nuclear translocation of nuclear factor kappa B p65, reduced intestinal permeability and cell apoptosis, and facilitated the expression of intestinal tight junction proteins in the IUGR colon and the TNF-α-treated cells (P < 0.05). Importantly, treatment with tunicamycin or autophagosome-lysosome binding inhibitor chloroquine blocked the positive effects of pterostilbene on inflammatory response, cell apoptosis, and intestinal barrier function in the TNF-α-exposed Caco-2 cells (P < 0.05). Conclusion Pterostilbene mitigates ER stress and promotes autophagic flux, thereby improving colon inflammation and barrier dysfunction in the IUGR piglets and the TNF-α-treated Caco-2 cells. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00780-6.
Collapse
|
4
|
Dong L, Peng Z, Liu J, Li H, Wang T, Wang S, Wang H, Huo Y, Yu L. Extra arginine supplementation during the suckling period alleviates weaning stress through the regulation of dendritic cells and Notch2 signaling in piglets. Food Funct 2022; 13:8652-8661. [PMID: 35899814 DOI: 10.1039/d1fo03720j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aims to study the effects of extra arginine (Arg) supplementation during the suckling period on the weaning stress and intestinal barrier function of breastfed piglets. Forty 7-day-old breastfed piglets divided into the control group (CON) and Arg group (Arg) were fed with extra saline or Arg (250 mg per kg per d body weight), respectively. All piglets were weaned when they were 21 days old. Eight piglets from each group were sacrificed before weaning and on the 3rd-day after weaning, respectively. The results showed that Arg improved the average daily weight gain of piglets before weaning (P < 0.01) and decreased the average daily weight loss after weaning (P < 0.05). Weaning decreased the ratio of the villus length versus crypt depth (V/C) in the SI (P < 0.001), while Arg increased the V/C of the jejunum (P < 0.05). Arg increased the levels of immunoglobulins in the serum and SI (P < 0.05), decreased pro-inflammatory cytokines and increased anti-inflammatory cytokines in the SI (P < 0.05). In addition, Arg supplementation increased the numbers of SWC3a+CD40+ (P < 0.01) and SWC3a+SLAII+ DCs (P < 0.05), down-regulated Notch2 expression and up-regulated Jagged1 expression in the ilea of weaning piglets (P < 0.05). In conclusion, Arg supplementation during the suckling period decreased the LDH leakage in the SI, improved the intestinal morphology, down-regulated the contents of pro-inflammatory cytokines, accelerated the accumulation of DC precursors before weaning and increased the number of mature DCs after weaning, and thus improved the growth performance and reduced the weaning stress of piglets, and this might be associated with the regulation of Notch2 signaling.
Collapse
Affiliation(s)
- Li Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Zhong Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Jun Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Hongmin Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Tianlong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Shunan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Hongrong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Yongjiu Huo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| | - Lihuai Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 215009, People's Republic of China.
| |
Collapse
|
5
|
Cheng Y, Song M, Zhu Q, Azad MAK, Gao Q, Kong X. Impacts of Betaine Addition in Sow and Piglet's Diets on Growth Performance, Plasma Hormone, and Lipid Metabolism of Bama Mini-Pigs. Front Nutr 2022; 8:779171. [PMID: 35004811 PMCID: PMC8733558 DOI: 10.3389/fnut.2021.779171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
The present study evaluated the effects of betaine addition in sow and piglet's diets on growth performance, plasma hormone, and lipid metabolism of Bama mini-pigs. A total of 26 pregnant Bama mini-pigs and 104 weaned piglets were selected and divided into different dietary treatment groups (details in “Materials and Methods”). Blood and muscle samples were collected at 65-, 95-, and 125-day-old, respectively. The results showed that betaine addition in sow-offspring diets increased (P < 0.05) the body weight at 125-day-old, average daily gain from 35- to 65-day-old, and average daily feed intake at 35–65 and 35–95 days old of pigs compared with the control group. Betaine addition in sow-offspring diets increased (P < 0.05) the plasma gastrin level at 95-day-old, while betaine addition in sow diets decreased (P < 0.05) the plasma peptide YY and leptin levels at 65-day-old pigs. In the longissimus dorsi muscle of pigs, betaine addition in sow and sow-offspring diets increased (P < 0.05) the C12:0 content at 65-day-old while decreased at 95-day-old. Moreover, betaine addition in sow-offspring diets increased the C24:0 content and decreased the C18:1n9t content at 125-day-old (P < 0.05). In the biceps femoris muscle, the contents of C12:0 at 65-day-old and C20:4n6 at 125-day-old were decreased (P < 0.05) after the betaine addition in both sow and piglet's diets. In addition, betaine addition in sow diets decreased (P < 0.05) the C20:0 content at 125-day-old, while betaine addition in sow-offspring diets increased the C18:3n6 and decreased C24:0 contents at 65-day-old pigs (P < 0.05). In the psoas major muscle, betaine addition in sow and sow-offspring diets decreased (P < 0.05) the contents of C18:1n9t at 65-day-old and C20:1 at 95-day-old, while betaine addition in sow diets decreased (P < 0.05) the intramuscular fat content at 125-day-old. Moreover, betaine addition in sow-offspring diets was also associated with muscle lipid deposition and metabolisms by regulating the gene expressions related to fatty acid metabolism. These findings suggested that betaine addition in sow-offspring diets could improve the growth performance, whereas betaine addition in both sow and sow-offspring diets could enhance lipid quality by altering plasma hormone level and fatty acid composition and regulating the gene expressions related to fatty acid metabolism.
Collapse
Affiliation(s)
- Yating Cheng
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingtong Song
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Md Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiankun Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China.,Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, China
| |
Collapse
|
6
|
Yun Y, Ji S, Yu G, Jia P, Niu Y, Zhang H, Zhang X, Wang T, Zhang L. Effects of Bacillus subtilis on jejunal integrity, redox status, and microbial composition of intrauterine growth restriction suckling piglets. J Anim Sci 2021; 99:6362641. [PMID: 34473279 DOI: 10.1093/jas/skab255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The present study used intrauterine growth restriction (IUGR) piglets as an animal model to determine the effect of Bacillus subtilis on intestinal integrity, antioxidant capacity, and microbiota in the jejunum of suckling piglets. In total, 8 normal birth weight (NBW) newborn piglets (1.62 ± 0.10 kg) and 16 newborn IUGR piglets (0.90 ± 0.08 kg) were selected and assigned to three groups. Piglets were orally gavaged with 10-mL sterile saline (NBW and IUGR groups), and IUGR piglets were orally gavaged with 10-mL/d bacterial fluid (B. subtilis diluted in sterile saline, gavage in the dose of 2 × 109 colony-forming units per kg of body weight; IBS group; n = 8). IUGR induced jejunal barrier dysfunction and redox status imbalance of piglets, and changed the abundances of bacteria in the jejunum. Treatment with B. subtilis increased (P < 0.05) the ratio of villus height to crypt depth (VH/CD) in the jejunum, decreased (P < 0.05) the plasma diamine oxidase (DAO) activity, and enhanced (P < 0.05) the gene expressions of zonula occludens-1 (ZO-1), occludin, and claudin-1 in the jejunum of IUGR piglets. Treatment with B. subtilis decreased (P < 0.05) the concentration of protein carbonyl (PC) and increased (P < 0.05) the activities of catalase (CAT) and total superoxide dismutase (T-SOD) in the jejunum of IUGR piglets. Treatment with B. subtilis also increased (P < 0.05) gene expressions of superoxide dismutase 1 (SOD1), CAT, and nuclear factor erythroid 2-related factor (Nrf2), as well as the protein expressions of heme oxygenase-1 (HO-1), SOD1, and Nrf2 in the jejunum of IUGR piglets. Treatment with B. subtilis also improved the abundances and the community structure of bacteria in the jejunum of IUGR piglets. These results suggested that IUGR damaged the jejunal barrier function and antioxidant capacity of suckling piglets, and altered the abundances of bacteria in the jejunum. Treatment with B. subtilis improved the intestinal integrity and antioxidant capacity while also improved the abundances and structure of bacteria in the jejunum of suckling piglets.
Collapse
Affiliation(s)
- Yang Yun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ge Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Peilu Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yu Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
7
|
Cheng Y, Song M, Zhu Q, Azad MAK, Gao Q, Kong X. Dietary Betaine Addition Alters Carcass Traits, Meat Quality, and Nitrogen Metabolism of Bama Mini-Pigs. Front Nutr 2021; 8:728477. [PMID: 34513907 PMCID: PMC8429818 DOI: 10.3389/fnut.2021.728477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Betaine is widely used as feed additives in animal husbandry as it can cause many benefits such as improving antioxidant ability, growth performance, and carcass traits. However, there are limited studies about the effects of betaine on the Bama mini-pigs. The present study was conducted to evaluate the effects of dietary betaine on carcass traits, meat quality, and nitrogen metabolism of pigs. Twenty-six pregnant Bama mini-pigs and then 104 weaned piglets were assigned for experimental treatments. The plasma and muscle samples were collected at 65-, 95-, and 125-d-old pigs, respectively. The results showed that betaine addition in the sow-offspring diets increased the lean meat rate in the 65-d-old pigs, whereas carcass weight, carcass yield, and loin-eye area were increased in the 95-d-old pigs, and carcass weight and backfat thickness in the 125-d-old pigs. Dietary betaine addition in the sow-offspring diets increased the contents of plasma Asp of 65-d-old, Met of 95- and 125-d-old, and Sar of 125-d-old pigs. Moreover, betaine addition increased the contents of Met, His, Ile, and Phe in Longissimus thoracis et lumborum, whereas those contents were decreased in biceps femoris and psoas major muscles at different stages. Betaine addition in the sow and piglets' diets regulated the muscle fiber-type and myogenic regulatory gene expressions. In summary, betaine addition in the sow and sow-offspring diets could improve the carcass traits and meat quality by altering the plasma biochemical parameters, amino acid composition, and gene expressions of skeletal muscle.
Collapse
Affiliation(s)
- Yating Cheng
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijng, China
| | - Mingtong Song
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijng, China
| | - Md Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijng, China
| | - Qiankun Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijng, China.,Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Jiang W, Wan L, Chen P, Lu W. Docosahexaenoic acid activates the Nrf2 signaling pathway to alleviate impairment of spleen cellular immunity in intrauterine growth restricted rat pups. Saudi J Biol Sci 2021; 28:4987-4993. [PMID: 34466073 PMCID: PMC8381073 DOI: 10.1016/j.sjbs.2021.05.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022] Open
Abstract
Intrauterine growth retardation (IUGR) impairs immune function in children. IUGR is associated with an imbalance of oxidative stress and abnormal apoptosis. Therefore, an IUGR rats model was established to determine the antioxidant capacity and apoptosis in newborn IUGR rats and explored whether these effects were regulated after Docosahexaenoic acid (DHA) supplementation to rat pups. First, eight normal-birth-weight (NBW) and eight IUGR neonatal rats (a 10% low-protein diet) were used to obtain the antioxidant capacity and apoptosis in IUGR rat pups. Then, 32 newborn rats were randomly assigned to the normal birth weight (NBW), DHA supplementation for NBW (ND), IUGR, and DHA supplementation for IUGR (ID) groups. Starting from the 7th day after birth, DHA was given to the experimental group and the same volume of distilled water was given to the control group for 21 days. (1) DHA improved the serum and spleen CD4/CD8 ratios and IL-4 and IFN-γ mRNA expression. (2) DHA decreased the level of MDA, but increased T-AOC in serum and spleen. (3) DHA increased the protein expression of Bcl-2 while decreased Bax. (4) DHA increased protein expression of the Nrf2 signaling pathway and the downstream antioxidant genes GSH-PX and CAT. DHA may alleviate the impairment of spleen cellular immunity in IUGR rat pups by inhibiting oxidative stress and apoptosis related to the activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Weiming Jiang
- Children's Institute of Three Gorges University, Yichang Central People's Hospital, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443003, PR China
| | - Lijia Wan
- Department of Neonatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Pingyang Chen
- Department of Neonatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Wei Lu
- Children's Institute of Three Gorges University, Yichang Central People's Hospital, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443003, PR China
| |
Collapse
|
9
|
Dong L, Jin Y, Cui H, Yu L, Luo Y, Wang S, Wang H. Effects of diet supplementation with rumen-protected betaine on carcass characteristics and fat deposition in growing lambs. Meat Sci 2020; 166:108154. [PMID: 32330830 DOI: 10.1016/j.meatsci.2020.108154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
This study evaluated the effects of dietary rumen-protected betaine (RPB) supplementation on the fat deposition of lambs. Sixty Hu sheep were randomly divided into 5 groups. The lambs were fed a control diet (CON) or diets supplemented with 1.1 g/d unprotected betaine (UPB), 1.1 g/d RPB, 2.2 g/d RPB or 3.3 g/d RPB for 70 days. Compared with UPB, the abdominal fat in 2.2 g/d RPB supplemented group was decreased (P < .05). Compared with CON and UPB, the fat contents in longissimus dorsi (LD) of RPB treatments were increased (P < .01). With increasing of RPB levels, the fat content in the LD was quadratically increased (P < .05). Compared with CON, genes expression of PI3K, mTOR and S6K1 in the LD of RPB treatments were up-regulated (P < .05). In conclusion, RPB supplementation decreased the abdominal fat in lambs but increased the fat content in lamb meat, and this effect might be regulated by mTOR signaling.
Collapse
Affiliation(s)
- Li Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yaqian Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huihui Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lihuai Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yang Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shunan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hongrong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
10
|
Niu Y, He J, Zhao Y, Shen M, Zhang L, Zhong X, Wang C, Wang T. Effect of Curcumin on Growth Performance, Inflammation, Insulin level, and Lipid Metabolism in Weaned Piglets with IUGR. Animals (Basel) 2019; 9:ani9121098. [PMID: 31818040 PMCID: PMC6940831 DOI: 10.3390/ani9121098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/06/2019] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Intrauterine growth retardation (IUGR) has adverse influences on the growth performance and body metabolism of animals. Curcumin, a naturally occurring phenolic compound, has been proven to improve the growth of pigs. However, the studies related to the role of curcumin in treating IUGR piglets are not clear. Therefore, the purpose of our study was to investigate the role of curcumin on the growth, secretion of serum cytokines and hepatic metabolism of IUGR piglets. We found that IUGR piglets are accompanied by impaired growth, inflammation, and insulin resistance, as well as increased hepatic lipid concentrations. Curcumin supplementation improved growth and reduced hepatic inflammatory levels, thereby attenuating insulin resistance and decreasing the hepatic lipid concentration of IUGR piglets. Abstract The possible causes of intrauterine growth retardation (IUGR) might stem from placental insufficiency, maternal malnutrition, inflammation in utero, and other causes. IUGR has had an adverse influence on human health and animal production. Forty weaned piglets with normal birth weights (NBWs) or IUGR were randomly divided into four treatments groups: NBW, NC (NBW with curcumin supplementation), IUGR, and IC (IUGR with curcumin supplementation) from 26 to 50 d. Levels of cytokines, glucose, and lipid metabolism were evaluated. IUGR piglets showed slow growth during the experiment. Piglets with IUGR showed higher levels of serum pro-inflammatory cytokines, insulin resistance, and hepatic lipid accumulation. Curcumin supplementation reduced the production of serum pro-inflammatory cytokines, attenuated insulin resistance and hepatic triglyceride, and enhanced the hepatic glycogen concentrations and lipase activities of IUGR piglets. The hepatic mRNA expressions of the insulin-signaling pathway and lipogenic pathway were influenced by IUGR and were positively attenuated by diets supplemented with curcumin. In conclusion, IUGR caused slow growth, insulin resistance, and increased hepatic lipid levels. Diets supplemented with curcumin improved growth, attenuated insulin resistance, and reduced lipid levels in the liver by regulating the hepatic gene expressions of the related signaling pathway in IUGR piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tian Wang
- Correspondence: ; Tel.: +86-025-8439-6195
| |
Collapse
|