1
|
Bhaumik U, Halder P, Howlader DR, Banerjee S, Maiti S, Dutta S, Koley H. A tetravalent Shigella Outer Membrane Vesicles based candidate vaccine offered cross-protection against all the serogroups of Shigella in adult mice. Microbes Infect 2023; 25:105100. [PMID: 36696935 DOI: 10.1016/j.micinf.2023.105100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/23/2023]
Abstract
In today's world and mostly in low and middle income countries, S. flexneri and S. sonnei remains the major causative agent of clinical bacillary dysentery. Based on contemporary epidemiology, a tetravalent Outer Membrane Vesicle (OMVs) based immunogen was formulated using the most commonly circulating Shigella strains, namely, S. flexneri 2a, S. flexneri 3a, S. flexneri 6 and S. sonnei I, in a 1:1:1:1 ratio. Adult BALB/c mice were orally immunized in a prime-boost-boost manner. Tetravalent Shigella OMVs immunogen induced significant and persistent serum and mucosal antibodies against OMVs, Outer Membrane Proteins (OMPs) and lipopolysaccharides (LPS). Tetravalent OMVs also primed cell mediated immune response effectively. Protective efficacy against six heterologous Shigella strains was checked in an intra-peritoneal mouse model. Immunized mice survived lethal infection better than the non-immunized mice cohort with fewer replicating bacteria isolated from their gut. This study establishes the possibilities of tetravalent OMVs immunogen to become a potent vaccine candidate against human shigellosis, overcoming the limitations of sero-specific cross-protection of Shigella species.
Collapse
Affiliation(s)
- Ushasi Bhaumik
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases. P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata-700 010, India; Center for Vaccine Development and Global Health, School of Medicine, University of Maryland, Baltimore, MD 2120, United States
| | - Prolay Halder
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases. P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata-700 010, India
| | - Debaki Ranjan Howlader
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases. P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata-700 010, India; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, United States
| | - Soumalya Banerjee
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases. P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata-700 010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases. P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata-700 010, India; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, United States
| | - Shanta Dutta
- ICMR- National Institute of Cholera and Enteric Diseases. . P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700 010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases. P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata-700 010, India. http://www.niced.org.in/
| |
Collapse
|
2
|
An Experimental Adult Zebrafish Model for Shigella Pathogenesis, Transmission, and Vaccine Efficacy Studies. Microbiol Spectr 2022; 10:e0034722. [PMID: 35604149 PMCID: PMC9241715 DOI: 10.1128/spectrum.00347-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigellosis has been a menace to society for ages. The absence of an effective vaccine against Shigella, improper sanitation, and unhygienic use of food and water allow the disease to flourish. Shigella can also be transmitted via natural water bodies. In the absence of a good animal model, the actual nature of pathogenesis and transmission remains unclear. Zebrafish larvae have previously been described as a model for Shigella pathogenesis. However, larval fish lack a mature intestinal microbiota and immune system. Here, the adult zebrafish was assessed as a potential model for Shigella pathogenesis. Their well-developed innate and adaptive immune responses mimic the mammalian immune system. Shigella showed a clear dose-, time-, and temperature-dependent colonization of the adult zebrafish gut. Efficacy of a three-dose immunization regime was tested using bath immunization with heat-killed trivalent Shigella immunogen. The present study demonstrates the efficacy of an adult zebrafish model for pathogenesis, transmission, and vaccine efficacy studies. IMPORTANCE Shigellosis is a diarrheal disease that is prevalent in developing countries and especially dangerous in young children. Currently, animal models for shigellosis are unable to model some aspects of the infectious cycle. Here, we describe a new shigellosis model in adult zebrafish, an increasingly common model organism for studying bacterial pathogens. The zebrafish model can be used to study Shigella colonization, transmission, and immune responses, as well as test vaccine efficacy.
Collapse
|
3
|
Studies on formulation of a combination heat killed immunogen from diarrheagenic Escherichia coli and Vibrio cholerae in RITARD model. Microbes Infect 2019; 21:368-376. [DOI: 10.1016/j.micinf.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/30/2023]
|
4
|
Development of a novel S. Typhi and Paratyphi A outer membrane vesicles based bivalent vaccine against enteric fever. PLoS One 2018; 13:e0203631. [PMID: 30216367 PMCID: PMC6138408 DOI: 10.1371/journal.pone.0203631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/23/2018] [Indexed: 01/07/2023] Open
Abstract
Salmonella Typhi and Salmonella Paratyphi A are the leading causative agents of enteric fever which cause morbidity and mortality worldwide. Currently, there is no combination vaccine which could protect infection from both the strains. In this paper, we are focusing on the development of a novel bivalent typhoidal Outer Membrane Vesicles (OMVs) based immunogen against enteric fever. We have isolated Salmonella Typhi and Paratyphi A OMVs and also characterized OMVs associated antigens. Then we immunized adult mice with three doses of our newly formulated bivalent immunogen orally (25 μg/200 μl). After three doses of oral immunization, we found our immunogen could significantly induce humoral response. We have also found serum IgG against LPS, Vi-polysaccharide etc. OMV immunization induces CD4, CD8 and CD19 population in immunized mice spleen. It also induces Th1 and Th17-cell mediated immunity. We also found bivalent OMVs immunization can prevent more than lethal dose of heterologous Salmonella strains mediated systemic infection in adult mice model. We determined that, the protective immune responses depend on the humoral and cell-mediated immune response. Furthermore, we have evaluated the mode of protective immune response carried out by anti-OMVs antibody by significantly inhibiting bacterial motility and mucin penetration ability. Taken together, these findings suggest that our bivalent immunogen could be used as a novel candidate vaccine against enteric fever.
Collapse
|