1
|
Ihara S, Miyamoto Y, Le CHY, Tran VN, Hanson EM, Fischer M, Hanevik K, Eckmann L. Conserved metabolic enzymes as vaccine antigens for giardiasis. PLoS Negl Trop Dis 2022; 16:e0010323. [PMID: 35468132 PMCID: PMC9037923 DOI: 10.1371/journal.pntd.0010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/12/2022] [Indexed: 11/20/2022] Open
Abstract
Giardia lamblia is a leading protozoal cause of diarrheal disease worldwide. Infection is associated with abdominal pain, malabsorption and weight loss, and protracted post-infectious syndromes. A human vaccine is not available against G. lamblia. Prior studies with human and murine immune sera have identified several parasite antigens, including surface proteins and metabolic enzymes with intracellular functions. While surface proteins have demonstrated vaccine potential, they can exhibit significant variation between G. lamblia strains. By comparison, metabolic enzymes show greater conservation but their vaccine potential has not been established. To determine whether such proteins can serve as vaccine candidates, we focused on two enzymes, α-enolase (ENO) and ornithine carbamoyl transferase (OCT), which are involved in glycolysis and arginine metabolism, respectively. We show in a cohort of patients with confirmed giardiasis that both enzymes are immunogenic. Intranasal immunization with either enzyme antigen in mice induced strong systemic IgG1 and IgG2b responses and modest mucosal IgA responses, and a marked 100- to 1,000-fold reduction in peak trophozoite load upon oral G. lamblia challenge. ENO immunization also reduced the extent and duration of cyst excretion. Examination of 44 cytokines showed only minimal intestinal changes in immunized mice, although a modest increase of CCL22 was observed in ENO-immunized mice. Spectral flow cytometry revealed increased numbers and activation state of CD4 T cells in the small intestine and an increase in α4β7-expressing CD4 T cells in mesenteric lymph nodes of ENO-immunized mice. Consistent with a key role of CD4 T cells, immunization of CD4-deficient and Rag-2 deficient mice failed to induce protection, whereas mice lacking IgA were fully protected by immunization, indicating that immunity was CD4 T cell-dependent but IgA-independent. These results demonstrate that conserved metabolic enzymes can be effective vaccine antigens for protection against G. lamblia infection, thereby expanding the repertoire of candidate antigens beyond primary surface proteins.
Collapse
Affiliation(s)
- Sozaburo Ihara
- Department of Medicine, University of California San Diego, La Jolla, California
- Division of Gastroenterology, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Christine H. Y. Le
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Vivien N. Tran
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Elaine M. Hanson
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Marvin Fischer
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
2
|
Abo-Zaid MA, Hamdi AA. Evaluation of Immune Response and Haematological Parameters in Infected Male Albino Rats by Giardiasis. Parasite Immunol 2022; 44:e12908. [PMID: 35104007 DOI: 10.1111/pim.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022]
Abstract
The present work aimed to study the effects of G. lamblia infection on immunological, haematological studies and to evaluate immunoglobulins and some cytokines. Fifty male albino rats were divided into six groups. The control group including 20 rats and the infected group includes 30 rats. All the estimations were checked all over five checkpoints (CP) (7, 14, 21, 28, and 35 days post-infection). Serum levels of IgA, IgG, IgM and IgE. Cytokines INF-γ, TNF-alpha, IL-4, IL-10, and haematological parameters were determined. Cyst and trophozoite were counted. A considerable increase in the level of immunoglobulins and cytokines in all infected groups compared to the control group was documented. Furthermore, a significant decrease in red blood corpuscles, haemoglobin, and mean corpuscular haemoglobin concentration levels, whereas substantial increases in mean corpuscular volume, mean corpuscular haemoglobin and platelets were observed. Moreover, infected rats had a substantial rise in WBCs, lymphocytes, and eosinophil counts compared to the control group, whereas neutrophils and monocytes had a significant decrease. Number of trophozoites and cysts were significantly increased in infected groups before diminishing after day 28. The current results showed that Th1 and Th2 immune responses, which are characterized by the production of TNF-α, IFN-γ, IL-4 and IL-10, are important for protection against Giardia infections and also verified the balance between these cytokines and the timing of their production was crucial in G. lamblia immune response. Giardia lamblia, Immunity, Antibodies, cytokines, eosinophil.
Collapse
Affiliation(s)
- Mabrouk A Abo-Zaid
- Biology department faculty of science, Jazan University, Jazan, Saudi Arabia
| | - Aishah Ali Hamdi
- Biology department faculty of science, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Garzon T, Ortega-Tirado D, Lopez-Romero G, Alday E, Robles-Zepeda RE, Garibay-Escobar A, Velazquez C. "Immunoinformatic Identification of T-Cell and B-Cell Epitopes From Giardia lamblia Immunogenic Proteins as Candidates to Develop Peptide-Based Vaccines Against Giardiasis". Front Cell Infect Microbiol 2021; 11:769446. [PMID: 34778111 PMCID: PMC8579046 DOI: 10.3389/fcimb.2021.769446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Giardiasis is one of the most common gastrointestinal infections worldwide, mainly in developing countries. The etiological agent is the Giardia lamblia parasite. Giardiasis mainly affects children and immunocompromised people, causing symptoms such as diarrhea, dehydration, abdominal cramps, nausea, and malnutrition. In order to develop an effective vaccine against giardiasis, it is necessary to understand the host-Giardia interactions, the immunological mechanisms involved in protection against infection, and to characterize the parasite antigens that activate the host immune system. In this study, we identify and characterize potential T-cell and B-cell epitopes of Giardia immunogenic proteins by immunoinformatic approaches, and we discuss the potential role of those epitopes to stimulate the host´s immune system. We selected the main immunogenic and protective proteins of Giardia experimentally investigated. We predicted T-cell and B-cell epitopes using immunoinformatic tools (NetMHCII and BCPREDS). Variable surface proteins (VSPs), structural (giardins), metabolic, and cyst wall proteins were identified as the more relevant immunogens of G. lamblia. We described the protein sequences with the highest affinity to bind MHC class II molecules from mouse (I-Ak and I-Ad) and human (DRB1*03:01 and DRB1*13:01) alleles, as well as we selected promiscuous epitopes, which bind to the most common range of MHC class II molecules in human population. In addition, we identified the presence of conserved epitopes within the main protein families (giardins, VSP, CWP) of Giardia. To our knowledge, this is the first in silico study that analyze immunogenic proteins of G. lamblia by combining bioinformatics strategies to identify potential T-cell and B-cell epitopes, which can be potential candidates in the development of peptide-based vaccines. The bioinformatics analysis demonstrated in this study provides a deeper understanding of the Giardia immunogens that bind to critical molecules of the host immune system, such as MHC class II and antibodies, as well as strategies to rational design of peptide-based vaccine against giardiasis.
Collapse
Affiliation(s)
- Thania Garzon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | | | | | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | | | | | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
4
|
Garzon T, Valencia L, Dominguez V, Rascon L, Quintero J, Garibay-Escobar A, Enrique Robles-Zepeda R, Velazquez C. Differential antibody responses to Giardia lamblia strain variants expressing dissimilar levels of an immunogenic protein. Parasite Immunol 2020; 42:e12767. [PMID: 32594543 DOI: 10.1111/pim.12767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
AIMS Giardia lamblia is a protozoan parasite that causes giardiasis, one of the most common worldwide gastrointestinal diseases. For rational development of a Giardia vaccine, increasing our understanding of the host-Giardia interaction is crucial. In this study, we analysed the immunogenicity and antigenicity of two G lamblia strain variants [GS and GS-5G8 (+)], which express different levels of the variant-specific surface protein (VSP) 5G8 and also analysed the intestinal histological changes associated with Giardia infection. METHODS AND RESULTS We evaluated the antibody responses induced by G lamblia strains in infected, reinfected and immunized C3H/HeJ mice using ELISA, flow cytometry, Western blotting and histological analysis. Our results showed that G lamblia GS-5G8 (+) was more immunogenic and antigenic than the GS strain. The antibody response against the GS-5G8 (+) strain primarily recognized 5G8 protein. Serum antibody from infected and reinfected mice exhibited specific agglutination of trophozoites in vitro. GS-5G8 (+)-infected mice showed higher CD19+ infiltrating cell levels compared to GS-infected animals. CONCLUSION G lamblia strains with different expression levels of an immunogenic antigen (VSP 5G8) induce differential antibody responses. A better understanding of the immunogenic proteins of G lamblia will contribute to the rational development of an effective vaccine against this parasitic disease.
Collapse
Affiliation(s)
- Thania Garzon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Lourdes Valencia
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Victor Dominguez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Lucila Rascon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Jael Quintero
- Health Science Department, University of Sonora, Obregon, Mexico
| | | | | | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
5
|
Singer SM, Fink MY, Angelova VV. Recent insights into innate and adaptive immune responses to Giardia. ADVANCES IN PARASITOLOGY 2019; 106:171-208. [PMID: 31630758 DOI: 10.1016/bs.apar.2019.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infection with Giardia produces a wide range of clinical outcomes. Acutely infected patients may have no overt symptoms or suffer from severe cramps, diarrhea, nausea and even urticaria. Recently, post-infectious irritable bowel syndrome and chronic fatigue syndrome have been identified as long-term sequelae of giardiasis. Frequently, recurrent and chronic Giardia infection is considered a major contributor to stunting in children from low and middle income countries. Perhaps the most unusual outcome of infection with Giardia is the apparent reduced risk of developing moderate-to-severe diarrhea due to other enteric infections which has been noted in several recent studies. The goal of understanding immune responses against Giardia is therefore to identify protective mechanisms which could become targets for vaccine development, but also to identify mechanisms whereby infections lead to these other diverse outcomes. Giardia induces a robust adaptive immune response in both humans and animals. It has been known for many years that there is production of large amounts of parasite-specific IgA following infection and that CD4+ T cell responses contribute to this IgA production and control of the infection. In the past decade, there have been advances in our understanding of the non-antibody effector mechanisms used by the host to fight Giardia infections, in particular the importance of the cytokine interleukin (IL)-17 in orchestrating these responses. There have also been major advances in understanding how the innate response to Giardia infection is initiated and how it contributes to the development of adaptive immunity. Finally, there here have been significant increases in our knowledge of how the resident microbial community influences the immune response and how these responses contribute to the development of some of the symptoms of giardiasis. In this article, we will focus on data generated in the last 10 years and how it has advanced our knowledge about this important parasitic disease.
Collapse
Affiliation(s)
- Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, United States.
| | - Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC, United States
| | - Vanessa V Angelova
- Department of Biology, Georgetown University, Washington, DC, United States
| |
Collapse
|
6
|
Nehete PN, Wilkerson G, Nehete BP, Chitta S, Ruiz JC, Scholtzova H, Williams LE, Abee CR, Vanchiere JA. Cellular immune responses in peripheral blood lymphocytes of Giardia infected squirrel monkey (Saimiri boliviensis boliviensis) treated with Fenbendazole. PLoS One 2018; 13:e0198497. [PMID: 30412580 PMCID: PMC6226157 DOI: 10.1371/journal.pone.0198497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular immune responses were tested to determine the effect of fenbendazole on the function of lymphocytes from Bolivian squirrel monkeys (Samiri boliviensis boliviensis). Giardia-infected squirrel monkeys were treated with commercially available fenbendazole (FBZ)-medicated monkey chow. Immune responses were compared between historical controls (Giardia naïve, untreated with FBZ (control animals)) and Giardia-infected, FBZ-treated squirrel monkeys (study animals). Peripheral blood lymphocytes from study monkeys had significantly lower stimulation indices compared to control animals when cultured in vitro with concanavalin A (Con A) (p<0.0001), phytohaemagglutinin (PHA) (p<0.0001) and lipopolysaccharide (LPS) (p<0.0001). PBMCs were also analyzed for IFN-γ producing cells in response to stimulation with Con A, PHA, PWM, and LPS by the cytokine ELISPOT assay. Significantly higher responses to Con A- (p<0.0001), and PHA- (p<0.001) stimulated cultures from Giardia-infected and fenbendazole treated compared to controls. Flow cytometric analysis for expression of cell surface markers revealed a significant increase in B- and NKT-lymphocytes and significant decrease in CD14+CD16+ monocytes after FBZ treatment. Also, circulating plasma cytokines IFN-γ, TNF-α, IL-12p40, IL-1β, IL-10, IL-13, IL-1ra, IL-6 and IL-4 were significantly decreased after FBZ treatment. Comparison of hematologic parameters between controls and FBZ-treated squirrel monkeys revealed significantly lower numbers of total leukocytes, neutrophils, monocytes, and eosinophils compared to controls. However, erythrocyte indices (red cell count, hemoglobin and hematocrit were significantly higher in FBZ-treated monkeys. Our findings suggest that fenbendazole treatment may alter sensitive immune and molecular measures of inflammation. Postponing the experimental use of squirrel monkeys until at least 6 weeks after FBZ treatment should be considered.
Collapse
Affiliation(s)
- Pramod N. Nehete
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Gregory Wilkerson
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Bharti P. Nehete
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Sriram Chitta
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Julio C. Ruiz
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Henrieta Scholtzova
- New York University School of Medicine, Department of Neurology, New York,NY, United States of America
| | - Lawrence E. Williams
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Christian R. Abee
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - John A. Vanchiere
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
- Louisiana State University, Health Science Center, Section of Pediatric Infectious Diseases, Shreveport, Louisiana, United States of America
| |
Collapse
|