1
|
Zheng G, Wu L, Bouamar H, Cserhati M, Chiu YC, Hinck CS, Wieteska Ł, Zeballos Torrez CR, Hu R, Easley A, Chen Y, Hinck AP, Cigarroa FG, Sun LZ. Ficolin-3 induces apoptosis and suppresses malignant property of hepatocellular carcinoma cells via the complement pathway. Life Sci 2024; 357:123103. [PMID: 39357793 DOI: 10.1016/j.lfs.2024.123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
AIMS Ficolin 3 (FCN3) has the highest complement-activating capacity through the lectin pathway and is synthesized mainly in the liver and lung. Yet, its potential molecular mechanism in hepatocarcinogenesis is not fully understood. MATERIALS AND METHODS The expression of FCN3 in hepatocellular carcinoma (HCC) tumor and non-tumor tissues was analyzed by RT-qPCR, Western blotting and immunofluorescence staining assays. Lentivector-mediated ectopic overexpression was performed to explore the role of FCN3 in vitro and in vivo. Whether FCN3 inhibited HCC cell growth and survival via complement pathway was determined with immunocytochemical staining for C3b, membrane attack complex (MAC) formation and complement killing assay using recombinant FCN3 (rFCN3) in combination with human serum with or without heat inactivation, and with C6 blocking antibody. KEY FINDINGS The transcript and protein of FCN3 were found to be remarkably down-regulated in HCC tumor tissues. FCN3 expression was found to be associated with better survival of HCC patients. Restoration of FCN3 expression significantly inhibited proliferation, migration and anchorage independent growth of HCC cell lines, and xenograft tumor growth. FCN3 expression induced apoptosis of HCC cells. C3 and MAC formation was stimulated by FCN3 overexpression or rFCN3 treatment. rFCN3 enhanced human serum-induced complement activation and cell death. C6 blocking antibody significantly attenuated complement-mediated cell death and restored the growth of FCN3-overexpressing HCC cells. SIGNIFICANCE FCN3 has a malignant suppressor role in HCC cells. Our study provides new insights into the molecular mechanisms that drive HCC progression and potential therapeutic targets for treating HCC.
Collapse
Affiliation(s)
- Guixi Zheng
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America; Department of Clinical Laboratory, Qilu Hospital of Shandong University, China
| | - Lianqiu Wu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Hakim Bouamar
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Matyas Cserhati
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Yu-Chiao Chiu
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Cinthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, PA, United States of America
| | - Łukasz Wieteska
- Department of Structural Biology, University of Pittsburgh School of Medicine, PA, United States of America
| | - Carla R Zeballos Torrez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Ruolei Hu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Acarizia Easley
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Yidong Chen
- Department of Structural Biology, University of Pittsburgh School of Medicine, PA, United States of America; Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, PA, United States of America
| | - Francisco G Cigarroa
- Transplant Center, University of Texas Health Science Center at San Antonio, TX, United States of America.
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America.
| |
Collapse
|
2
|
Wang H, Chen G, Gong Q, Wu J, Chen P. Primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome: a Mendelian randomization study. Front Immunol 2024; 15:1403429. [PMID: 39253091 PMCID: PMC11381235 DOI: 10.3389/fimmu.2024.1403429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Background Currently, evidence regarding the causal relationship between primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome is limited and inconsistent. Therefore, this study employs Mendelian randomization (MR) methodology to investigate the causal relationship between the two. Methods This study selected 110 single-nucleotide polymorphisms (SNPs) of primary immunodeficiency-related genes as instrumental variables (IVs). Genetic associations of primary immunodeficiency-related genes were derived from recent genome-wide association studies (GWAS) data on human plasma protein levels and circulating immune cells. Data on genes associated with varicella-zoster virus reactivation syndrome were obtained from the GWAS Catalog and FINNGEN database, primarily analyzed using inverse variance weighting (IVW) and sensitivity analysis. Results Through MR analysis, we identified 9 primary immunodeficiency-related genes causally associated with herpes zoster and its subsequent neuralgia; determined causal associations of 20 primary immunodeficiency-related genes with three vascular lesions (stroke, cerebral aneurysm, giant cell arteritis); revealed causal associations of 10 primary immunodeficiency-related genes with two ocular diseases (retinopathy, keratitis); additionally, three primary immunodeficiency-related genes each were associated with encephalitis, cranial nerve palsy, and gastrointestinal infections. Conclusions This study discovers a certain association between primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome, yet further investigations are warranted to explore the specific mechanisms underlying these connections.
Collapse
Affiliation(s)
- Hao Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qian Gong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Peng Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Sun L, Yu S, Dong C, Wu Z, Huang H, Chen Z, Wu Z, Yin X. Comprehensive Analysis of Prognostic Value and Immune Infiltration of Ficolin Family Members in Hepatocellular Carcinoma. Front Genet 2022; 13:913398. [PMID: 35928441 PMCID: PMC9343789 DOI: 10.3389/fgene.2022.913398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Objective: Ficolin (FCN) family proteins are part of the innate immune system, play a role as recognition molecules in the complement system, and are associated with tumor development. The mechanism of its role in immunotherapy of hepatocellular carcinoma (HCC) is unclear. Methods: In this study, we used the TCGA database, HPA database, Gene Expression Profile Interaction Analysis (GEPIA), Kaplan-Meier plotter, TCGAportal, cBioPortal, GeneMANIA, TIMER, and TISIDB to analyze Ficolin family proteins (FCN1, FCN2 and FCN3, FCNs) in patients with hepatocellular carcinoma for differential expression, prognostic value, genetic alterations, functional enrichment, and immune factor correlation analysis. Results: The expression levels of FCN1/2/3 were significantly reduced in patients with HCC. Among them, FCN3 showed significant correlation with Overall Survival (OS), Progressive Free Survival (PFS) and Relapse Free Survival (RFS) in HCC. FCN1 and FCN3 may be potential prognostic markers for survival in patients with HCC. In addition, the functions of differentially expressed FCNs were mainly related to complement activation, immune response, apoptotic cell clearance and phagocytosis. FCNs were found to be significantly correlated with multiple immune cells and immune factors. Expression of FCN1 and FCN3 differed significantly in the immune and stromal cell component scores of HCC. analysis of the tumor mutation burden (TMB) and microsatellite instability (MSI) of FCNs with pan-cancer showed that FCN3 was significantly correlated with both. Conclusions: Our study provides new insights into the link between the FCN family and immunotherapy for HCC, and FCN3 may serve as a prognostic biomarker for HCC.
Collapse
|
4
|
Ficolin-3 may act as a tumour suppressor by recognising O-GlcNAcylation site in hepatocellular carcinoma. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
A Novel Gene Signature Based on CDC20 and FCN3 for Prediction of Prognosis and Immune Features in Patients with Hepatocellular Carcinoma. J Immunol Res 2022; 2022:9117205. [PMID: 35402624 PMCID: PMC8986430 DOI: 10.1155/2022/9117205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022] Open
Abstract
Long-term survivals of patients with hepatocellular carcinoma (HCC) remain unfavorable, which is largely attributed to active carcinogenesis. Growing studies have suggested that the reliable gene signature could act as an independent prognosis factor for HCC patients. We tried to screen the survival-related genes and develop a prognostic prediction model for HCC patients based on the expression profiles of the critical survival-related genes. In this study, we analyzed TCGA datasets and identified 280 genes with differential expressions (125 increased genes and 155 reduced genes). We analyzed the prognosis value of the top 10 dysregulated genes in HCC patients and identified three critical genes, including FCN3, CDC20, and E2F1, which were confirmed to be associated with long-term survival in both TCGA and ICGC datasets. The results of the LASSO model screened CDC20 and FCN3 for the development of the prognostic model. The CDC20 expression was distinctly increased in HCC specimens, while the FCN3 expression was distinctly decreased in HCC. At a suitable cutoff, patients were divided into low-risk and high-risk groups. Survival assays revealed that patients in high-risk groups exhibited a shorter overall survival than those in low-risk groups. Finally, we examine the relationships between risk score and immune infiltration abundance in HCC and observed that risk score was positively correlated with infiltration degree of B cells, T cell CD4+ cells, neutrophil, macrophage, and myeloid dendritic cells. Overall, we identified three critical survival-related genes and used CDC20 and FCN3 to develop a novel model for predicting outcomes and immune landscapes for patients with HCC. The above three genes also have a high potential for targeted cancer therapy of patients with HCC.
Collapse
|
6
|
Li H, Zhang F, Zhang D, Tian X. Changes of Serum Ficolin-3 and C5b-9 in Patients with Heart Failure. Pak J Med Sci 2021; 37:1860-1864. [PMID: 34912408 PMCID: PMC8613035 DOI: 10.12669/pjms.37.7.4151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023] Open
Abstract
Objectives: To investigate the correlation of serum ficolin-3 and C5b-9 with cardiac function and NT-proBNP in patients with heart failure. Methods: Sixty patients with heart failure admitted to the Baoding First Central Hospital from May 2019 to May 2020 were selected and divided into three groups according to the classification of New York Heart Association (NYHA). Patients with NYHA grade II, III, and IV were included into group A, B, and C, respectively. Among the population undergoing physical examination at the same time, 20 cases with no significant difference in age and gender from the experimental group were selected as the control group (Group-N), and their clinical data were recorded. The serum levels of ficolin-3, C5b-9 and NT-proBNP in each group were detected and compared. Results: The serum concentrations of ficolin-3 and C5b-9 in Group N were significantly different from those in Group A, B and C (p<0.05), the difference between Group C and Group A and B was statistically significant (p<0.05), there was no significant difference between group A and B (p>0.05). The correlation analysis between serum ficolin-3 and NT-proBNP showed that serum ficolin-3 was negatively correlated with NT-proBNP (r=-0.606, p<0.0001), while the correlation analysis between serum C5b-9 and NT-proBNP showed that serum C5b-9 was positively correlated with NT-proBNP (r=0.499, p<0.0001). According to the etiology of heart failure, patients with heart failure were divided into coronary heart disease (25 cases), dilated cardiomyopathy (15 cases) and others (20 cases). The differences of ficolin-3 and C5b-9 among patients were compared, and there was no statistical difference (p<0.05). Conclusion: Ficolin-3 was inversely associated with the severity of heart failure, while C5b-9 was positively associated with the severity of cardiac impairment. Both of them have nothing to do with the etiology of heart failure.
Collapse
Affiliation(s)
- Hongli Li
- Hongli Li, Department of Cardiology, Baoding First Central Hospital, Baoding, Hebei 071000, China
| | - Fangfang Zhang
- Fangfang Zhang, Department of Cardiology, Baoding First Central Hospital, Baoding, Hebei 071000, China
| | - Dan Zhang
- Dan Zhang, Department of Cardiology, Baoding First Central Hospital, Baoding, Hebei 071000, China
| | - Xiang Tian
- Xiang Tian, Department of Cardiology, Baoding First Central Hospital, Baoding, Hebei 071000, China
| |
Collapse
|
7
|
Senent Y, Ajona D, González-Martín A, Pio R, Tavira B. The Complement System in Ovarian Cancer: An Underexplored Old Path. Cancers (Basel) 2021; 13:3806. [PMID: 34359708 PMCID: PMC8345190 DOI: 10.3390/cancers13153806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers. Current therapeutic strategies allow temporary control of the disease, but most patients develop resistance to treatment. Moreover, although successful in a range of solid tumors, immunotherapy has yielded only modest results in ovarian cancer. Emerging evidence underscores the relevance of the components of innate and adaptive immunity in ovarian cancer progression and response to treatment. Particularly, over the last decade, the complement system, a pillar of innate immunity, has emerged as a major regulator of the tumor microenvironment in cancer immunity. Tumor-associated complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. Recent insights suggest an important role of complement effectors, such as C1q or anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1 in ovarian cancer progression. Nevertheless, the implication of these factors in different clinical contexts is still poorly understood. Detailed knowledge of the interplay between ovarian cancer cells and complement is required to develop new immunotherapy combinations and biomarkers. In this context, we discuss the possibility of targeting complement to overcome some of the hurdles encountered in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yaiza Senent
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
| | - Daniel Ajona
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Antonio González-Martín
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Oncology, Clinica Universidad de Navarra, 28027 Madrid, Spain
| | - Ruben Pio
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Beatriz Tavira
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
8
|
Wang S, Song Z, Tan B, Zhang J, Zhang J, Liu S. Identification and Validation of Hub Genes Associated With Hepatocellular Carcinoma Via Integrated Bioinformatics Analysis. Front Oncol 2021; 11:614531. [PMID: 34277395 PMCID: PMC8278315 DOI: 10.3389/fonc.2021.614531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver, with high morbidity and mortality, yet its molecular mechanisms of tumorigenesis are still unclear. In this study, gene expression profile of GSE62232 was downloaded from the Gene Expression Omnibus (GEO). The RNA-seq expression data and relative clinical information were retrieved from the Cancer Genome Atlas (TCGA) database. The datasets were analyzed by differential gene expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA) to obtain the overlapping genes. Then, we performed a functional enrichment analysis to understand the potential biological functions of these co-expression genes. Finally, we constructed the protein-protein interaction (PPI) analysis combined with survival analysis. MARCO, CLEC4M, FCGR2B, LYVE1, TIMD4, STAB2, CFP, CLEC4G, CLEC1B, FCN2, FCN3 and FOXO1 were identified as the candidate hub genes using the CytoHubba plugin of Cytoscape. Based on survival analysis, the lower expression of FCN3 and FOXO1 were associated with worse overall survival (OS) in HCC patients. Furthermore, the expression levels of FCN3 and FOXO1 were validated by the Human Protein Atlas (HPA) database and the qRT-PCR. In summary, our findings contribute new ideas for the precise early diagnosis, clinical treatment and prognosis of HCC in the future.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Zuoli Song
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Bing Tan
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Jinjuan Zhang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Department of Surgery, Third Central Hospital of Tianjin, Tianjin, China
| | - Jiandong Zhang
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Shuye Liu
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
9
|
FCN3 functions as a tumor suppressor of lung adenocarcinoma through induction of endoplasmic reticulum stress. Cell Death Dis 2021; 12:407. [PMID: 33859174 PMCID: PMC8050313 DOI: 10.1038/s41419-021-03675-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
In this study, we report a novel function of FCN3 (Ficolin 3), a secreted lectin capable of activating the complement pathway, as a tumor suppressor of lung adenocarcinoma (LUAD). First, the expression of FCN3 was strongly down-regulated in cancer tissues compared to matched normal lung tissues, and down-regulation of FCN3 was shown to be significantly correlated with increased mortality among LUAD patients. Interestingly, while ectopic expression of FCN3 led to cell cycle arrest and apoptosis in A549 and H23 cells derived from LUAD, the secreted form of the protein had no effect on the cells. Rather, we found evidence indicating that activation of the unfolded protein response from endoplasmic reticulum (ER) stress is induced by ectopic expression of FCN3. Consistently, inhibition of ER stress response led to enhanced survival of the LUAD cells. Of note, the fibrinogen domain, which is not secreted, turned out to be both necessary and sufficient for induction of apoptosis when localized to ER, consistent with our proposed mechanism. Collectively, our data indicate that FCN3 is a tumor suppressor gene functioning through induction of ER stress.
Collapse
|
10
|
Cedzyński M, Świerzko AS. Components of the Lectin Pathway of Complement in Haematologic Malignancies. Cancers (Basel) 2020; 12:E1792. [PMID: 32635486 PMCID: PMC7408476 DOI: 10.3390/cancers12071792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is activated cascadically via three distinct major routes: classical pathway (CP), alternative pathway (AP) or lectin pathway (LP). The unique factors associated with the latter are collectins (mannose-binding lectin, collectin-10, collectin-11), ficolins (ficolin-1, ficolin-2, ficolin-3) and proteins of the mannose-binding lectin-associated serine protease (MASP) family (MASP-1, MASP-2, MASP-3, MAp19, MAp44). Collectins and ficolins are both pattern-recognising molecules (PRM), reactive against pathogen-associated molecular patterns (PAMP) or danger-associated molecular patterns (DAMP). The MASP family proteins were first discovered as complexes with mannose-binding lectin (MBL) and therefore named MBL-associated serine proteases, but later, they were found to interact with ficolins, and later still, collectin-10 and collectin-11. As well as proteolytic enzymes (MASP-1, MASP-2, MASP-3), the group includes non-enzymatic factors (MAp19, MAp44). In this review, the association-specific factors of the lectin pathway with haematologic malignancies and related infections are discussed.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Łódź, Poland;
| | | |
Collapse
|
11
|
Sokołowska A, Świerzko AS, Gajek G, Gołos A, Michalski M, Nowicki M, Szala-Poździej A, Wolska-Washer A, Brzezińska O, Wierzbowska A, Jamroziak K, Kowalski ML, Thiel S, Matsushita M, Jensenius JC, Cedzyński M. Associations of ficolins and mannose-binding lectin with acute myeloid leukaemia in adults. Sci Rep 2020; 10:10561. [PMID: 32601370 PMCID: PMC7324623 DOI: 10.1038/s41598-020-67516-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
We investigated clinical associations of ficolins and mannose-binding lectin (MBL) in 157 patients suffering from acute myeloid leukaemia (AML). Concentrations of ficolin-1, ficolin-2, ficolin-3 and MBL (before chemotherapy) in serum were determined as were selected polymorphisms of the corresponding genes (FCN1, FCN2, FCN3 and MBL2). The control group (C) consisted of 267 healthy unrelated individuals. Median level of ficolin-1 in patients was lower (p < 0.000001) while median levels of ficolin-2, ficolin-3 and MBL were higher (p < 0.000001, p < 0.000001 and p = 0.0016, respectively) compared with controls. These findings were generally associated with AML itself, however the highest MBL levels predicted higher risk of severe hospital infections (accompanied with bacteremia and/or fungaemia) (p = 0.012) while the lowest ficolin-1 concentrations tended to be associated with prolonged (> 7 days) fever (p = 0.026). Genotyping indicated an association of G/G homozygosity (corresponding to FCN1 gene - 542 G > A polymorphism) with malignancy [p = 0.004, OR = 2.95, 95% CI (1.41-6.16)]. Based on ROC analysis, ficolin-1, -2 and -3 may be considered candidate supplementary biomarkers of AML. Their high potential to differentiate between patients from non-malignant controls but also from persons suffering from other haematological cancers (multiple myeloma and lymphoma) was demonstrated.
Collapse
Affiliation(s)
- Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Aleksandra Gołos
- Department of Hematology, Institute of Hematology and Transfusion Medicine, I. Gandhi 14, 02-776, Warsaw, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Copernicus Memorial Hospital in Łódź Comprehensive Cancer Center and Traumatology, Pabianicka 62, 93-513, Lodz, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Anna Wolska-Washer
- Department of Hematology, Medical University of Łódź, Ciołkowskiego 2, 93-510, Lodz, Poland
| | - Olga Brzezińska
- Department of Immunology and Allergy, Medical University of Łódź, Pomorska 251, 92-213, Lodz, Poland
- Department of Rheumatology, Medical University of Łódź, Pieniny 30, 92-003, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Łódź, Ciołkowskiego 2, 93-510, Lodz, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, I. Gandhi 14, 02-776, Warsaw, Poland
| | - Marek L Kowalski
- Department of Immunology and Allergy, Medical University of Łódź, Pomorska 251, 92-213, Lodz, Poland
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Jens C Jensenius
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland.
| |
Collapse
|
12
|
Świerzko AS, Michalski M, Sokołowska A, Nowicki M, Szala-Poździej A, Eppa Ł, Mitrus I, Szmigielska-Kapłon A, Sobczyk-Kruszelnicka M, Michalak K, Gołos A, Wierzbowska A, Giebel S, Jamroziak K, Kowalski ML, Brzezińska O, Thiel S, Matsushita M, Jensenius JC, Gajek G, Cedzyński M. Associations of Ficolins With Hematological Malignancies in Patients Receiving High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantations. Front Immunol 2020; 10:3097. [PMID: 32047495 PMCID: PMC6997528 DOI: 10.3389/fimmu.2019.03097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023] Open
Abstract
A prospective study of 312 patients [194 with multiple myeloma (MM) and 118 with lymphomas (LYMPH)] receiving high-dose chemotherapy and autologous hematopoietic stem cell transplantation (auto-HSCT) was conducted. Ficolins are innate immune defense factors, able to distinguish between "self" "abnormal self," and "non-self" and contribute to the elimination of the last two by direct opsonization and/or initiation of complement activation via the lectin pathway. Concentrations of ficolin-1, ficolin-2, and ficolin-3 in serially taken serum samples were determined as were the polymorphisms of the corresponding (FCN1, FCN2, and FCN3) genes. Serum samples were collected before conditioning chemotherapy, before HSCT, and once weekly post-HSCT (four to five samples in total); some patients were also sampled at 1 and/or 3 months post-transplantation. The control group (C) consisted of 267 healthy unrelated individuals. Median ficolin-1 and ficolin-2 (but not ficolin-3) levels in MM patients' sera taken before chemotherapy were lower (and correspondingly frequencies of the lowest concentrations were higher) compared with controls. That appeared to be associated with the malignant disease itself rather than with post-HSCT complications (febrile neutropenia, infections accompanied, or not with bacteremia). Higher frequencies of the FCN1 genotype G/A-C/C-G/G (corresponding to polymorphisms at positions -542, -144, and +6658, respectively) and FCN2 gene heterozygosity for the -857 C>A polymorphism were found among patients diagnosed with MM compared with the C group. Furthermore, FCN2 G/G homozygosity (-557 A>G) was found more frequently and heterozygosity G/T at +6424 less frequently among LYMPH patients than among the healthy subjects. Heterozygosity for +1637delC mutation of the FCN3 gene was more common among patients diagnosed with lymphomas who experienced hospital infections. Although no evidence for an association of low ficolin-1 or ficolin-2 with infections during neutropenia following chemotherapy before HSCT was found, we observed a possible protective effect of ficolins during follow-up.
Collapse
Affiliation(s)
- Anna S. Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital, Łódz, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Łukasz Eppa
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Iwona Mitrus
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Katarzyna Michalak
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Aleksandra Gołos
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marek L. Kowalski
- Department of Immunology and Allergy, Medical University of Łódz, Łódz, Poland
| | - Olga Brzezińska
- Department of Immunology and Allergy, Medical University of Łódz, Łódz, Poland
- Department of Rheumatology, Medical University of Łódz, Łódz, Poland
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | | | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| |
Collapse
|