1
|
Kowalski JP, Rettie AE. There and Back Again: A Perspective on 20 Years of CYP4Z1. Drug Metab Dispos 2024; 52:498-507. [PMID: 38604728 DOI: 10.1124/dmd.124.001670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Cytochrome P450 (CYP)4Z1, a highly expressed CYP gene in breast cancer, was one of the last CYPs to be identified in the human genome, some 20 years ago. CYP4 enzymes typically catalyze ω-hydroxylation and metabolize ω3 and ω6 polyunsaturated fatty acids to bioactive lipid metabolites that can influence tumor growth and metastasis. These attributes of CYP4Z1 make it an attractive target for new chemotherapeutic drug design, as a potential biomarker for selection of patients that might respond favorably to drugs and for developing enzyme inhibitors as potential therapeutic agents. This review summarizes the current state of knowledge regarding the advancing biochemistry of CYP4Z1, its role in breast cancer, and the recent synthesis of selective chemical inhibitors of the enzyme. We identify gaps that need to be filled to further advance this field and present new experimental data on recombinant CYP4Z1 expression and purification of the active catalytic form. SIGNIFICANCE STATEMENT: In breast cancer, an unmet need is the availability of highly effective therapeutic agents, especially for triple negative breast cancer. The relevance of the work summarized in this mini-review is that it identifies a new potential drug target, CYP4Z1, and discusses ways in which the gene product's catalytic activity might be modulated in order to combat this malignancy and limit its spread.
Collapse
Affiliation(s)
- John P Kowalski
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| |
Collapse
|
2
|
Qin H, Zhou Y, Liu H, Yuan Y, Guo Q, Yuan M, Xi T, Zhang Y. 1-Benzylimidazole attenuates the stemness of breast cancer cells through partially targeting CYP4Z1. ENVIRONMENTAL TOXICOLOGY 2024; 39:1505-1520. [PMID: 37994574 DOI: 10.1002/tox.24050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Cytochrome P450 (CYP) 4Z1 (CYP4Z1) has recently garnered much interest as its expression predicts a poor prognosis and as a oncogene in breast cancer, and overexpressed in other many cancers. We previously showed that CYP4Z1 acts as a promoter of cancer stem cells (CSCs) to facilitate the occurrence and development of breast cancer. Here, RNA sequencing found that 1-benzylimidazole (1-Benzy) held a preferable correlation with breast cancer and suppressed the expression of CSC makers. Further functional experiments, including mammary spheroid formation, wound-healing, transwell-invasion, detection of tumor initiation, and metastatic ability, showed that 1-Benzy suppressed the stemness and metastasis of breast cancer cells. Additionally, we further demonstrated that CYP4Z1 is necessary for 1-Benzy-mediated suppression on breast cancer stemness and 1-Benzy exerted a weaker effect in breast cancer cells with CYP4Z1 knockdown. Taken together, our data suggest that 1-Benzy might be a potential drug suppressing breast cancer stemness via targeting CYP4Z1.
Collapse
Affiliation(s)
- Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang City, Guizhou, China
| | - Yi Zhou
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hai Liu
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yaqin Yuan
- Microbiological Laboratory, Guizhou Center For Medical Device Testing, Guiyang, Guizhou, China
| | - Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Manqin Yuan
- Department of Clinical Laboratory Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tao Xi
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yujie Zhang
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang City, Guizhou, China
| |
Collapse
|
3
|
Samare-Najaf M, Kouchaki H, Moein Mahini S, Saberi Rounkian M, Tavakoli Y, Samareh A, Karim Azadbakht M, Jamali N. Prostate cancer: Novel genetic and immunologic biomarkers. Clin Chim Acta 2024; 555:117824. [PMID: 38316287 DOI: 10.1016/j.cca.2024.117824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Prostate cancer (PCa) is considered one of the most prevalent male malignancies worldwide with a global burden estimated to increase over the next two decades. Due to significant mortality and debilitation of survival, early diagnosis has been described as key. Unfortunately, current diagnostic serum-based strategies have low specificity and sensitivity. Histologic examination is invasive and not useful for treatment and monitoring purposes. Hence, a plethora of studies have been conducted to identify and validate an efficient noninvasive approach in the diagnosis, staging, and prognosis of PCa. These investigations may be categorized as genetic (non-coding biomarkers and gene markers), immunologic (immune cells, interleukins, cytokines, antibodies, and auto-antibodies), and heterogenous (PSA-related markers, PHI-related indices, and urinary biomarkers) subgroups. This review examines current approaches and potential strategies using biomarker panels in PCa.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hosein Kouchaki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Moein Mahini
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Yasaman Tavakoli
- Department of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
4
|
Al-saraireh YM, Alshammari FOFO, Abu-azzam OH, Al-dalain SM, Al-sarayra YM, Haddad M, Makeen H, Al-Qtaitat A, Almermesh M, Al-sarayreh SA. Targeting Cytochrome P450 Enzymes in Ovarian Cancers: New Approaches to Tumor-Selective Intervention. Biomedicines 2023; 11:2898. [PMID: 38001897 PMCID: PMC10669316 DOI: 10.3390/biomedicines11112898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Over the past decade, there have been significant developments in treatment for ovarian cancer, yet the lack of targeted therapy with few side effects still represents a major issue. The cytochrome P450 (CYP) enzyme family plays a vital role in the tumorigenesis process and metabolism of drugs and has a negative impact on therapy outcomes. Gaining more insight into CYP expression is crucial to understanding the pathophysiology of ovarian cancer since many isoforms are essential to the metabolism of xenobiotics and steroid hormones, which drive the disease's development. To the best of our knowledge, no review articles have documented the intratumoral expression of CYPs and their implications in ovarian cancer. Therefore, the purpose of this review is to provide a clear understanding of differential CYP expression in ovarian cancer and its implications for the prognosis of ovarian cancer patients, together with the effects of CYP polymorphisms on chemotherapy metabolism. Finally, we discuss opportunities to exploit metabolic CYP expression for the development of novel therapeutic methods to treat ovarian cancer.
Collapse
Affiliation(s)
- Yousef M. Al-saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Fatemah O. F. O. Alshammari
- Department of Medical Lab Technology, Faculty of Health Sciences, The Public Authority for Applied Education and Training, Shuwaikh 15432, Kuwait;
| | - Omar H. Abu-azzam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Sa’ed M. Al-dalain
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Yahya M. Al-sarayra
- Al-Karak Governmental Hospital, Ministry of Health, P.O. Box 86, Al-Karak 11118, Jordan;
| | - Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Hafiz Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan P.O. Box 114, Saudi Arabia;
| | - Aiman Al-Qtaitat
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
- Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Mohammad Almermesh
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail 2440, Saudi Arabia;
| | - Sameeh A. Al-sarayreh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| |
Collapse
|
5
|
Al-saraireh YM, Alshammari FOFO, Satari AO, Al-mahdy YS, Almuhaisen GH, Abu-azzam OH, Uwais AN, Abufraijeh SM, Al-Kharabsheh AM, Al-dalain SM, Al-Qtaitat A, Al-Tarawneh F, Al Shuneigat JM, Al-Sarayreh SA. Cytochrome 4Z1 Expression Connotes Unfavorable Prognosis in Ovarian Cancers. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091263. [PMID: 36143940 PMCID: PMC9502355 DOI: 10.3390/medicina58091263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023]
Abstract
Background and Objective: Ovarian cancer is a leading cause of death in females. Since its treatment is challenging and causes severe side effects, novel therapies are urgently needed. One of the potential enzymes implicated in the progression of cancers is Cytochrome 4Z1 (CYP4Z1). Its expression in ovarian cancer remains unknown. Therefore, the current study aims to assess CYP4Z1 expression in different subtypes of ovarian cancers. Materials and Methods: Immunohistochemistry was used to characterize CYP4Z1 expression in 192 cases of ovarian cancers along with eight normal ovarian tissues. The enzyme’s association with various clinicopathological characteristics and survival was determined. Results: CYP4Z1 was strongly expressed in 79% of ovarian cancers, compared to negative expression in normal ovarian samples. Importantly, significantly high CYP4Z1 expres-sion was determined in patients with advanced-stage cancer and a high depth of invasion (p < 0.05). Surprisingly, CYP4Z1 expression was significantly associated with a low patient survival rate. Univariate analysis revealed that patient survival was strongly associated with CYP4Z1 expression, tumor stage, depth of invasion, and lymph node metastasis (p < 0.05). Multivariate analysis showed that only CYP4Z1 expression was significantly associated with patient survival (p < 0.05). Conclusions: CYP4Z1 expression is correlated with shorter patient survival and has been identified as an independent indicator of a poor prognosis for ovarian cancer patients.
Collapse
Affiliation(s)
- Yousef M. Al-saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
- Correspondence:
| | - Fatemah O. F. O. Alshammari
- Department of Medical Lab Technology, Faculty of Health Sciences, The Public Authority for Applied Education and Training, Shuwaikh 15432, Kuwait
| | - Anas O. Satari
- Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Yanal S. Al-mahdy
- Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Ghadeer H. Almuhaisen
- Department of Microbiology and Pathology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Omar H. Abu-azzam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Ala N. Uwais
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Seham M. Abufraijeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Ahlam M. Al-Kharabsheh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Sa’ed M. Al-dalain
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Aiman Al-Qtaitat
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
- Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Fatima Al-Tarawneh
- Department of Allied Medical Sciences, Faculty of Al-Karak, Al-Balqa Applied University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Jehad M. Al Shuneigat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Sameeh A. Al-Sarayreh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| |
Collapse
|