1
|
Nardin M, Verdoia M, Laera N, Cao D, De Luca G. New Insights into Pathophysiology and New Risk Factors for ACS. J Clin Med 2023; 12:jcm12082883. [PMID: 37109221 PMCID: PMC10146393 DOI: 10.3390/jcm12082883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiovascular disease still represents the main cause of mortality worldwide. Despite huge improvements, atherosclerosis persists as the principal pathological condition, both in stable and acute presentation. Specifically, acute coronary syndromes have received substantial research and clinical attention in recent years, contributing to improve overall patients' outcome. The identification of different evolution patterns of the atherosclerotic plaque and coronary artery disease has suggested the potential need of different treatment approaches, according to the mechanisms and molecular elements involved. In addition to traditional risk factors, the finer portrayal of other metabolic and lipid-related mediators has led to higher and deep knowledge of atherosclerosis, providing potential new targets for clinical management of the patients. Finally, the impressive advances in genetics and non-coding RNAs have opened a wide field of research both on pathophysiology and the therapeutic side that are extensively under investigation.
Collapse
Affiliation(s)
- Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Third Medicine Division, Department of Medicine, ASST Spedali Civili, 25123 Brescia, Italy
| | - Monica Verdoia
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, 13900 Biella, Italy
- Department of Translational Medicine, Eastern Piedmont University, 13100 Novara, Italy
| | - Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU "Policlinico G. Martino", Department of Clinical and Experimental Medicine, University of Messina, 98166 Messina, Italy
- Division of Cardiology, IRCCS Hospital Galeazzi-Sant'Ambrogio, 20161 Milan, Italy
| |
Collapse
|
2
|
CoCl2-Mimicked Endothelial Cell Hypoxia Induces Nucleotide Depletion and Functional Impairment That Is Reversed by Nucleotide Precursors. Biomedicines 2022; 10:biomedicines10071540. [PMID: 35884844 PMCID: PMC9313011 DOI: 10.3390/biomedicines10071540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic hypoxia drives vascular dysfunction by various mechanisms, including changes in mitochondrial respiration. Although endothelial cells (ECs) rely predominantly on glycolysis, hypoxia is known to alter oxidative phosphorylation, promote oxidative stress and induce dysfunction in ECs. Our work aimed to analyze the effects of prolonged treatment with hypoxia-mimetic agent CoCl2 on intracellular nucleotide concentration, extracellular nucleotide breakdown, mitochondrial function, and nitric oxide (NO) production in microvascular ECs. Moreover, we investigated how nucleotide precursor supplementation and adenosine deaminase inhibition protected against CoCl2-mediated disturbances. Mouse (H5V) and human (HMEC-1) microvascular ECs were exposed to CoCl2-mimicked hypoxia for 24 h in the presence of nucleotide precursors: adenine and ribose, and adenosine deaminase inhibitor, 2′deoxycoformycin. CoCl2 treatment decreased NO production by ECs, depleted intracellular ATP concentration, and increased extracellular nucleotide and adenosine catabolism in both H5V and HMEC-1 cell lines. Diminished intracellular ATP level was the effect of disturbed mitochondrial phosphorylation, while nucleotide precursors effectively restored the ATP pool via the salvage pathway and improved endothelial function under CoCl2 treatment. Endothelial protective effects of adenine and ribose were further enhanced by adenosine deaminase inhibition, that increased adenosine concentration. This work points to a novel strategy for protection of hypoxic ECs by replenishing the adenine nucleotide pool and promoting adenosine signaling.
Collapse
|
3
|
Edmunds GL, Wong CCW, Ambler R, Milodowski EJ, Alamir H, Cross SJ, Galea G, Wülfing C, Morgan DJ. Adenosine 2A receptor and TIM3 suppress cytolytic killing of tumor cells via cytoskeletal polarization. Commun Biol 2022; 5:9. [PMID: 35013519 PMCID: PMC8748690 DOI: 10.1038/s42003-021-02972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022] Open
Abstract
Tumors generate an immune-suppressive environment that prevents effective killing of tumor cells by CD8+ cytotoxic T cells (CTL). It remains largely unclear upon which cell type and at which stage of the anti-tumor response mediators of suppression act. We have combined an in vivo tumor model with a matching in vitro reconstruction of the tumor microenvironment based on tumor spheroids to identify suppressors of anti-tumor immunity that directly act on interaction between CTL and tumor cells and to determine mechanisms of action. An adenosine 2A receptor antagonist, as enhanced by blockade of TIM3, slowed tumor growth in vivo. Engagement of the adenosine 2A receptor and TIM3 reduced tumor cell killing in spheroids, impaired CTL cytoskeletal polarization ex vivo and in vitro and inhibited CTL infiltration into tumors and spheroids. With this role in CTL killing, blocking A2AR and TIM3 may complement therapies that enhance T cell priming, e.g. anti-PD-1 and anti-CTLA-4.
Collapse
Affiliation(s)
- Grace L Edmunds
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Carissa C W Wong
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Rachel Ambler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Hanin Alamir
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Stephen J Cross
- Wolfson BioImaging Facility, University of Bristol, Bristol, BS8 1TD, UK
| | - Gabriella Galea
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| | - David J Morgan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
4
|
Paganelli F, Gaudry M, Ruf J, Guieu R. Recent advances in the role of the adenosinergic system in coronary artery disease. Cardiovasc Res 2020; 117:1284-1294. [PMID: 32991685 DOI: 10.1093/cvr/cvaa275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine is an endogenous nucleoside that plays a major role in the physiology and physiopathology of the coronary artery system, mainly by activating its A2A receptors (A2AR). Adenosine is released by myocardial, endothelial, and immune cells during hypoxia, ischaemia, or inflammation, each condition being present in coronary artery disease (CAD). While activation of A2AR improves coronary blood circulation and leads to anti-inflammatory effects, down-regulation of A2AR has many deleterious effects during CAD. A decrease in the level and/or activity of A2AR leads to: (i) lack of vasodilation, which decreases blood flow, leading to a decrease in myocardial oxygenation and tissue hypoxia; (ii) an increase in the immune response, favouring inflammation; and (iii) platelet aggregation, which therefore participates, in part, in the formation of a fibrin-platelet thrombus after the rupture or erosion of the plaque, leading to the occurrence of acute coronary syndrome. Inflammation contributes to the development of atherosclerosis, leading to myocardial ischaemia, which in turn leads to tissue hypoxia. Therefore, a vicious circle is created that maintains and aggravates CAD. In some cases, studying the adenosinergic profile can help assess the severity of CAD. In fact, inducible ischaemia in CAD patients, as assessed by exercise stress test or fractional flow reserve, is associated with the presence of a reserve of A2AR called spare receptors. The purpose of this review is to present emerging experimental evidence supporting the existence of this adaptive adenosinergic response to ischaemia or inflammation in CAD. We believe that we have achieved a breakthrough in the understanding and modelling of spare A2AR, based upon a new concept allowing for a new and non-invasive CAD management.
Collapse
Affiliation(s)
- Franck Paganelli
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France.,Department of Cardiology, North Hospital, Chemin des Bourrely, F-13015 Marseille, France
| | - Marine Gaudry
- Department of Vascular Surgery, Timone Hospital, 278 Rue Saint Pierre, F-13005 Marseille, France
| | - Jean Ruf
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France
| | - Régis Guieu
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France.,Laboratory of Biochemistry, Timone Hospital, 278 Rue Saint Pierre, F-13005 Marseille, France
| |
Collapse
|
5
|
Angioni R, Liboni C, Herkenne S, Sánchez-Rodríguez R, Borile G, Marcuzzi E, Calì B, Muraca M, Viola A. CD73 + extracellular vesicles inhibit angiogenesis through adenosine A 2B receptor signalling. J Extracell Vesicles 2020; 9:1757900. [PMID: 32489531 PMCID: PMC7241475 DOI: 10.1080/20013078.2020.1757900] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/04/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
Pathological angiogenesis is a hallmark of several conditions including eye diseases, inflammatory diseases, and cancer. Stromal cells play a crucial role in regulating angiogenesis through the release of soluble factors or direct contact with endothelial cells. Here, we analysed the properties of the extracellular vesicles (EVs) released by bone marrow mesenchymal stromal cells (MSCs) and explored the possibility of using them to therapeutically target angiogenesis. We demonstrated that in response to pro-inflammatory cytokines, MSCs produce EVs that are enriched in TIMP-1, CD39 and CD73 and inhibit angiogenesis targeting both extracellular matrix remodelling and endothelial cell migration. We identified a novel anti-angiogenic mechanism based on adenosine production, triggering of A2B adenosine receptors, and induction of NOX2-dependent oxidative stress within endothelial cells. Finally, in pilot experiments, we exploited the anti-angiogenic EVs to inhibit tumour progression in vivo. Our results identify novel pathways involved in the crosstalk between endothelial and stromal cell and suggest new therapeutic strategies to target pathological angiogenesis.
Collapse
Affiliation(s)
- Roberta Angioni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
- Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Cristina Liboni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | | | - Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Giulia Borile
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Elisabetta Marcuzzi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Bianca Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Maurizio Muraca
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
- Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| |
Collapse
|
6
|
Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, DeLeon J. Adenosine and the Cardiovascular System. Am J Cardiovasc Drugs 2019; 19:449-464. [PMID: 30972618 PMCID: PMC6773474 DOI: 10.1007/s40256-019-00345-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous nucleoside with a short half-life that regulates many physiological functions involving the heart and cardiovascular system. Among the cardioprotective properties of adenosine are its ability to improve cholesterol homeostasis, impact platelet aggregation and inhibit the inflammatory response. Through modulation of forward and reverse cholesterol transport pathways, adenosine can improve cholesterol balance and thereby protect macrophages from lipid overload and foam cell transformation. The function of adenosine is controlled through four G-protein coupled receptors: A1, A2A, A2B and A3. Of these four, it is the A2A receptor that is in a large part responsible for the anti-inflammatory effects of adenosine as well as defense against excess cholesterol accumulation. A2A receptor agonists are the focus of efforts by the pharmaceutical industry to develop new cardiovascular therapies, and pharmacological actions of the atheroprotective and anti-inflammatory drug methotrexate are mediated via release of adenosine and activation of the A2A receptor. Also relevant are anti-platelet agents that decrease platelet activation and adhesion and reduce thrombotic occlusion of atherosclerotic arteries by antagonizing adenosine diphosphate-mediated effects on the P2Y12 receptor. The purpose of this review is to discuss the effects of adenosine on cell types found in the arterial wall that are involved in atherosclerosis, to describe use of adenosine and its receptor ligands to limit excess cholesterol accumulation and to explore clinically applied anti-platelet effects. Its impact on electrophysiology and use as a clinical treatment for myocardial preservation during infarct will also be covered. Results of cell culture studies, animal experiments and human clinical trials are presented. Finally, we highlight future directions of research in the application of adenosine as an approach to improving outcomes in persons with cardiovascular disease.
Collapse
|
7
|
Simard T, Jung R, Labinaz A, Faraz MA, Ramirez FD, Di Santo P, Pitcher I, Motazedian P, Gaudet C, Rochman R, Marbach J, Boland P, Sarathy K, Alghofaili S, Russo JJ, Couture E, Beanlands RS, Hibbert B. Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective. Cardiovasc Hematol Disord Drug Targets 2019; 19:109-131. [PMID: 30318008 DOI: 10.2174/1871529x18666181011103719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Adenosine, a purine nucleoside, is produced broadly and implicated in the homeostasis of many cells and tissues. It signals predominantly via 4 purinergic adenosine receptors (ADORs) - ADORA1, ADORA2A, ADORA2B and ADOosine signaling, both through design as specific ADOR agonists and antagonists and as offtarget effects of existing anti-platelet medications. Despite this, adenosine has yet to be firmly established as either a therapeutic or a prognostic tool in clinical medicine to date. Herein, we provide a bench-to-bedside review of adenosine biology, highlighting the key considerations for further translational development of this proRA3 in addition to non-ADOR mediated effects. Through these signaling mechanisms, adenosine exerts effects on numerous cell types crucial to maintaining vascular homeostasis, especially following vascular injury. Both in vitro and in vivo models have provided considerable insights into adenosine signaling and identified targets for therapeutic intervention. Numerous pharmacologic agents have been developed that modulate adenmising molecule.
Collapse
Affiliation(s)
- Trevor Simard
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Richard Jung
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Alisha Labinaz
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | | | - F Daniel Ramirez
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pietro Di Santo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Ian Pitcher
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pouya Motazedian
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, ON, Canada
| | - Chantal Gaudet
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rebecca Rochman
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Jeffrey Marbach
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Paul Boland
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Kiran Sarathy
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Saleh Alghofaili
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Juan J Russo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Etienne Couture
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rob S Beanlands
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Benjamin Hibbert
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| |
Collapse
|
8
|
Ganbaatar B, Fukuda D, Salim HM, Nishimoto S, Tanaka K, Higashikuni Y, Hirata Y, Yagi S, Soeki T, Sata M. Ticagrelor, a P2Y12 antagonist, attenuates vascular dysfunction and inhibits atherogenesis in apolipoprotein-E-deficient mice. Atherosclerosis 2018; 275:124-132. [PMID: 29902700 DOI: 10.1016/j.atherosclerosis.2018.05.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Ticagrelor reduces cardiovascular events in patients with acute coronary syndrome (ACS). Recent studies demonstrated the expression of P2Y12 on vascular cells including endothelial cells, as well as platelets, and suggested its contribution to atherogenesis. We investigated whether ticagrelor attenuates vascular dysfunction and inhibits atherogenesis in apolipoprotein E-deficient (apoe-/-) mice. METHODS Eight-week-old male apoe-/- mice were fed a western-type diet (WTD) supplemented with 0.1% ticagrelor (approximately 120 mg/kg/day). Non-treated animals on WTD served as control. Atherosclerotic lesions were examined by en-face Sudan IV staining, histological analyses, quantitative RT-PCR analysis, and western blotting. Endothelial function was analyzed by acetylcholine-dependent vasodilation using aortic rings. Human umbilical vein endothelial cells (HUVEC) were used for in vitro experiments. RESULTS Ticagrelor treatment for 20 weeks attenuated atherosclerotic lesion progression in the aortic arch compared with control (p < 0.05). Ticagrelor administration for 8 weeks attenuated endothelial dysfunction (p < 0.01). Ticagrelor reduced the expression of inflammatory molecules such as vascular cell adhesion molecule-1, macrophage accumulation, and lipid deposition. Ticagrelor decreased the phosphorylation of JNK in the aorta compared with control (p < 0.05). Ticagrelor and a JNK inhibitor ameliorated impairment of endothelium-dependent vasodilation by adenosine diphosphate (ADP) in wild-type mouse aortic segments. Furthermore, ticagrelor inhibited the expression of inflammatory molecules which were promoted by ADP in HUVEC (p < 0.001). Ticagrelor also inhibited ADP-induced JNK activation in HUVEC (p < 0.05). CONCLUSIONS Ticagrelor attenuated vascular dysfunction and atherogenesis through the inhibition of inflammatory activation of endothelial cells. These effects might be a potential mechanism by which ticagrelor decreases cardiovascular events in patients with ACS.
Collapse
Affiliation(s)
- Byambasuren Ganbaatar
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Daiju Fukuda
- Department of Cardio-Diabetes Medicine, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Hotimah Masdan Salim
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Sachiko Nishimoto
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Kimie Tanaka
- Division for Health Service Promotion, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yasutomi Higashikuni
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yoichiro Hirata
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| |
Collapse
|
9
|
Filippini A, Sica G, D'Alessio A. The caveolar membrane system in endothelium: From cell signaling to vascular pathology. J Cell Biochem 2018; 119:5060-5071. [PMID: 29637636 DOI: 10.1002/jcb.26793] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
Abstract
Caveolae are 50- to 100-nm cholesterol and glycosphingolipid-rich flask-shaped invaginations commonly observed in many terminally differentiated cells. These organelles have been described in many cell types and are particularly abundant in endothelial cells, where they have been involved in the regulation of certain signaling pathways. Specific scaffolding proteins termed caveolins, along with the more recently discovered members of the cavin family, represent the major protein components during caveolae biogenesis. In addition, multiple studies aimed to investigate the expression and the regulation of these proteins significantly contributed to elucidate the role of caveolae and caveolins in endothelial cell physiology and disease. The aim of this review is to survey recent evidence of the involvement of the caveolar network in endothelial cell biology and endothelial cell dysfunction.
Collapse
Affiliation(s)
- Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gigliola Sica
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessio D'Alessio
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
10
|
Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar-Onfray F, López MN, Melo R, Oyarzún C, San Martín R, Quezada C. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget 2018; 7:67373-67386. [PMID: 27634913 PMCID: PMC5341882 DOI: 10.18632/oncotarget.12033] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022] Open
Abstract
MRP1 transporter correlates positively with glioma malignancy and the Multiple Drug Resistance (MDR) phenotype in Glioblastoma Multiforme (GBM). Evidence shows that the MRP1 transporter is controlled by the adenosine signalling axis. The aim of this study was to identify the role of adenosine on the MDR phenotype in Glioblastoma Stem-like Cells (GSCs), the cell population responsible for the tumorigenic and chemoresistance capabilities of this tumour. We found that GSCs have increased intrinsic capacity to generate extracellular adenosine, thus controlling MRP1 transporter expression and activity via activation of the adenosine A3 receptor (A3AR). We showed PI3K/Akt and MEK/ERK1/2 signaling pathways downstream A3AR to control MRP1 in GSCs. In vitro pharmacological blockade of A3AR had a chemosensitizing effect, enhancing the actions of antitumour drugs and decreasing cell viability and proliferation of GSCs. In addition, we produced an in vivo xenograft model by subcutaneous inoculation of human GSCs in NOD/SCID-IL2Rg null mice. Pharmacological blockade of A3AR generated a chemosensitizing effect, enhancing the effectiveness of the MRP1 transporter substrate, vincristine, reducing tumour size and the levels of CD44 and Nestin stem cell markers as well as the Ki-67 proliferation indicator. In conclusion, we demonstrated the chemosensitizing effect of A3AR blockade on GSCs.
Collapse
Affiliation(s)
- Angelo Torres
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Yosselyn Vargas
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Uribe
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Catherine Jaramillo
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Gleisner
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mercedes N López
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rómulo Melo
- Servicio de Neurocirugía, Instituto de Neurocirugía Dr. Asenjo, Santiago, Chile
| | - Carlos Oyarzún
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Quezada
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
11
|
Kang H, Kim M, Feng Q, Lin S, Wei K, Li R, Choi CJ, Kim TH, Li G, Oh JM, Bian L. Nanolayered hybrid mediates synergistic co-delivery of ligand and ligation activator for inducing stem cell differentiation and tissue healing. Biomaterials 2017; 149:12-28. [PMID: 28988061 DOI: 10.1016/j.biomaterials.2017.09.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/23/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022]
Abstract
Cellular behaviors, such as differentiation, are regulated by complex ligation processes involving cell surface receptors, which can be activated by various divalent metal cations. The design of nanoparticle for co-delivery of ligand and ligation activator can offer a novel strategy to synergistically stimulate ligation processes in vivo. Here, we present a novel layered double hydroxide (LDH)-based nanohybrid (MgFe-Ado-LDH), composed of layered MgFe hydroxide nanocarriers sandwiching the adenosine cargo molecule, maintained through an electrostatic balance, to co-deliver the adenosine (Ado) ligand from the interlayer spacing and the Mg2+ ion (ligation activator) through the dissolution of the MgFe nanocarrier itself. Our findings demonstrate that the MgFe-Ado-LDH nanohybrid promoted osteogenic differentiation of stem cells through the synergistic activation of adenosine A2b receptor (A2bR) by the dual delivery of adenosine and Mg2+ ions, outperforming direct supplementation of adenosine alone. Furthermore, the injection of the MgFe-Ado-LDH nanohybrid and stem cells embedded within hydrogels promoted the healing of rat tibial bone defects through the rapid formation of fully integrated neo-bone tissue through the activation of A2bR. The newly formed bone tissue displayed the key features of native bone, including calcification, mature tissue morphology, and vascularization. This study demonstrates a novel and effective strategy of bifunctional nanocarrier-mediated delivery of ligand (cargo molecule) and activation of its ligation to receptor by the nanocarrier itself for synergistically inducing stem cell differentiation and tissue healing in vivo, thus offering novel design of biomaterials for regenerative medicine.
Collapse
Affiliation(s)
- Heemin Kang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Minkyu Kim
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Republic of Korea; Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Qian Feng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Sien Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kongchang Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Rui Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Chan Ju Choi
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Tae-Hyun Kim
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jae-Min Oh
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Republic of Korea.
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China; Centre for Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Caffeinated energy drink intake modulates motor circuits at rest, before and after a movement. Physiol Behav 2017; 179:361-368. [PMID: 28694153 DOI: 10.1016/j.physbeh.2017.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 11/20/2022]
|
13
|
Sung SSJ, Li L, Huang L, Lawler J, Ye H, Rosin DL, Vincent IS, Le TH, Yu J, Görldt N, Schrader J, Okusa MD. Proximal Tubule CD73 Is Critical in Renal Ischemia-Reperfusion Injury Protection. J Am Soc Nephrol 2017; 28:888-902. [PMID: 27628903 PMCID: PMC5328157 DOI: 10.1681/asn.2016020229] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/17/2016] [Indexed: 11/03/2022] Open
Abstract
CD73-derived adenosine plays an anti-inflammatory role in various organs. However, its role in renal ischemia-reperfusion injury (IRI) is controversial. We targeted CD73 mutant mice to determine the function of CD73 expressed by various renal cell types under mild IRI conditions. Mice with CD73 deletion in proximal tubules exhibited exacerbated IRI, comparable with that of CD73-/- mice compared with WT mice. Mice with CD73 deletions in other cell types, including cortical type 1 fibroblast-like cells, mesangial cells, macrophages, and dendritic cells, showed small or no increases in injury above control mice when subjected to threshold levels of ischemia. Results from adoptive transfer experiments between WT and CD73-/- mice and pharmacologic studies modulating enzymatic activity of CD73 and extracellular adenosine levels supported a critical role of adenosine generated by proximal tubule CD73 expression in abrogating IRI. Renal adenosine levels were lower before and after ischemia in CD73-deficient mice. However, reduction in total acid-extractable renal adenosine levels was inadequate to explain the marked difference in kidney injury in these CD73-deficient mice. Furthermore, CD73 inhibition and enzyme replacement studies showed no change in total kidney adenosine levels in treated mice compared with vehicle-treated controls. Protection from IRI in neutrophil-depleted WT recipients was sustained by repopulation with bone marrow neutrophils from WT mice but not by those lacking adenosine 2a receptors (from Adora2a-/- mice). These data support the thesis that local adenosine generated by cells at the injury site is critical for protection from IRI through bone marrow-derived adenosine 2a receptors.
Collapse
Affiliation(s)
- Sun-Sang J Sung
- Division of Nephrology and
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine and
| | - Li Li
- Division of Nephrology and
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine and
| | - Liping Huang
- Division of Nephrology and
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine and
| | - Jessica Lawler
- Division of Nephrology and
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine and
| | - Hong Ye
- Division of Nephrology and
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine and
| | - Diane L Rosin
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine and
- Departments of Pharmacology and
| | - Issah S Vincent
- Division of Nephrology and
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine and
| | - Thu H Le
- Division of Nephrology and
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine and
| | - Jing Yu
- Cell Biology, University of Virginia, Charlottesville, Virginia; and
| | - Nicole Görldt
- Department of Molecular Cardiology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Mark D Okusa
- Division of Nephrology and
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine and
| |
Collapse
|
14
|
Bader A, Bintig W, Begandt D, Klett A, Siller IG, Gregor C, Schaarschmidt F, Weksler B, Romero I, Couraud PO, Hell SW, Ngezahayo A. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca 2+ influx through cyclic nucleotide-gated channels. J Physiol 2017; 595:2497-2517. [PMID: 28075020 DOI: 10.1113/jp273150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/16/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. ABSTRACT The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca2+ influx by opening CNG channels in a cAMP-dependent manner. Ca2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier.
Collapse
Affiliation(s)
- Almke Bader
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Willem Bintig
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Begandt
- Walter Brendel Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anne Klett
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Ina G Siller
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Carola Gregor
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Babette Weksler
- Weill Medical College of Cornell University, New York, NY, USA
| | - Ignacio Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Pierre-Olivier Couraud
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
15
|
Yang C, Leung GPH. Equilibrative Nucleoside Transporters 1 and 4: Which One Is a Better Target for Cardioprotection Against Ischemia-Reperfusion Injury? J Cardiovasc Pharmacol 2015; 65:517-21. [PMID: 26070128 PMCID: PMC4461397 DOI: 10.1097/fjc.0000000000000194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 11/14/2014] [Indexed: 01/04/2023]
Abstract
The cardioprotective effects of adenosine and adenosine receptor agonists have been studied extensively. However, their therapeutic outcomes in ischemic heart disease are limited by systemic side effects such as hypotension, bradycardia, and sedation. Equilibrative nucleoside transporter (ENT) inhibitors may be an alternative. By reducing the uptake of extracellular adenosine, ENT1 inhibitors potentiate the cardioprotective effect of endogenous adenosine. They have fewer systemic side effects because they selectively increase the extracellular adenosine levels in ischemic tissues undergoing accelerated adenosine formation. Nonetheless, long-term inhibition of ENT1 may adversely affect tissues that have low capacity for de novo nucleotide biosynthesis. ENT1 inhibitors may also affect the cellular transport, and hence the efficacy, of anticancer and antiviral nucleoside analogs used in chemotherapy. It has been proposed that ENT4 may also contribute to the regulation of extracellular adenosine in the heart, especially under the acidotic conditions associated with ischemia. Like ENT1 inhibitors, ENT4 inhibitors should work specifically on ischemic tissues. Theoretically, ENT4 inhibitors do not affect tissues that rely on ENT1 for de novo nucleotide synthesis. They also have no interaction with anticancer and antiviral nucleosides. Development of specific ENT4 inhibitors may open a new avenue in research on ischemic heart disease therapy.
Collapse
Affiliation(s)
- Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China; and
| | - George P. H. Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Can soluble CD73 predict the persistent organ failure in patients with acute pancreatitis? Crit Care Med 2015; 43:e35-6. [PMID: 25514743 DOI: 10.1097/ccm.0000000000000687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Li RWS, Yang C, Chan SW, Hoi MPM, Lee SMY, Kwan YW, Leung GPH. Relaxation effect of abacavir on rat basilar arteries. PLoS One 2015; 10:e0123043. [PMID: 25853881 PMCID: PMC4390379 DOI: 10.1371/journal.pone.0123043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/25/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels. METHODS The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5' nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate. RESULTS Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5' nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries. CONCLUSION Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to endothelial dysfunction as abacavir does not impair relaxation of blood vessels. The most likely explanation of increased cardiovascular risk may be increased platelet aggregation as suggested by other studies.
Collapse
Affiliation(s)
- Rachel Wai Sum Li
- Department of Pharmacology and Pharmacy, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cui Yang
- Key Laboratory of Ethnic Medicine Resource Chemistry (Yunnan University of Nationalities), State Ethnic Affairs Commission & Ministry of Education, School of Chemistry & Biotechnology, Yunnan University of Nationalities, Kunming, China
| | - Shun Wan Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Maggie Pui Man Hoi
- Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | - Yiu Wa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - George Pak Heng Leung
- Department of Pharmacology and Pharmacy, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
18
|
Alterations in the extracellular catabolism of nucleotides and platelet aggregation induced by high-fat diet in rats: effects of α-tocopherol. J Physiol Biochem 2014; 70:487-96. [PMID: 24623516 DOI: 10.1007/s13105-014-0327-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/19/2014] [Indexed: 02/07/2023]
Abstract
The aim of this study was to assess whether α-tocopherol administration prevented alterations in the ectonucleotidase activities and platelet aggregation induced by high-fat diet in rats. Thus, we examined four groups of male rats which received standard diet, high-fat diet (HFD), α-tocopherol (α-Toc), and high-fat diet plus α-tocopherol. HFD was administered ad libitum and α-Toc by gavage using a dose of 50 mg/kg. After 3 months of treatment, animals were submitted to euthanasia, and blood samples were collected for biochemical assays. Results demonstrate that NTPDase, ectonucleotide pyrophosphatase/phosphodiesterase, and 5'-nucleotidase activities were significantly decreased in platelets of HFD group, while that adenosine deaminase (ADA) activity was significantly increased in this group in comparison to the other groups (P < 0.05). When rats that received HFD were treated with α-Toc, the activities of these enzymes were similar to the control, but ADA activity was significantly increased in relation to the control and α-Toc group (P < 0.05). HFD group showed an increased in platelet aggregation in comparison to the other groups, and treatment with α-Toc significantly reduced platelet aggregation in this group. These findings demonstrated that HFD alters platelet aggregation and purinergic signaling in the platelets and that treatment with α-Toc was capable of modulating the adenine nucleotide hydrolysis in this experimental condition.
Collapse
|
19
|
Dobson GP, Faggian G, Onorati F, Vinten-Johansen J. Hyperkalemic cardioplegia for adult and pediatric surgery: end of an era? Front Physiol 2013; 4:228. [PMID: 24009586 PMCID: PMC3755226 DOI: 10.3389/fphys.2013.00228] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/05/2013] [Indexed: 12/16/2022] Open
Abstract
Despite surgical proficiency and innovation driving low mortality rates in cardiac surgery, the disease severity, comorbidity rate, and operative procedural difficulty have increased. Today's cardiac surgery patient is older, has a "sicker" heart and often presents with multiple comorbidities; a scenario that was relatively rare 20 years ago. The global challenge has been to find new ways to make surgery safer for the patient and more predictable for the surgeon. A confounding factor that may influence clinical outcome is high K(+) cardioplegia. For over 40 years, potassium depolarization has been linked to transmembrane ionic imbalances, arrhythmias and conduction disturbances, vasoconstriction, coronary spasm, contractile stunning, and low output syndrome. Other than inducing rapid electrochemical arrest, high K(+) cardioplegia offers little or no inherent protection to adult or pediatric patients. This review provides a brief history of high K(+) cardioplegia, five areas of increasing concern with prolonged membrane K(+) depolarization, and the basic science and clinical data underpinning a new normokalemic, "polarizing" cardioplegia comprising adenosine and lidocaine (AL) with magnesium (Mg(2+)) (ALM™). We argue that improved cardioprotection, better outcomes, faster recoveries and lower healthcare costs are achievable and, despite the early predictions from the stent industry and cardiology, the "cath lab" may not be the place where the new wave of high-risk morbid patients are best served.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Department of Physiology and Pharmacology, Heart and Trauma Research Laboratory, James Cook UniversityTownsville, QLD, Australia
| | - Giuseppe Faggian
- Division of Cardiac Surgery, University of Verona Medical SchoolVerona, Italy
| | - Francesco Onorati
- Division of Cardiac Surgery, University of Verona Medical SchoolVerona, Italy
| | - Jakob Vinten-Johansen
- Cardiothoracic Research Laboratory of Emory University Hospital Midtown, Carlyle Fraser Heart CenterAtlanta, GA, USA
| |
Collapse
|
20
|
Baraldi PG, Fruttarolo F, Tabrizi MA, Romagnoli R, Preti D. Novel 8-heterocyclyl xanthine derivatives in drug development - an update. Expert Opin Drug Discov 2013; 2:1161-83. [PMID: 23496127 DOI: 10.1517/17460441.2.9.1161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Naturally occurring methyl xanthines, especially caffeine and theophylline, have been widely investigated for their pharmacological properties as cognition enhancers, bronchodilator agents and mild diuretics. The xanthine core (3,7-dihydro-1H-purine-2,6-dione) has been largely manipulated in the search for selective ligands for different pharmacological targets, proving to be a versatile scaffold for the development of lead compounds in multiple therapeutic areas. The introduction of a heterocycle at the 8-position of some xanthine derivatives demonstrated to be a successful strategy for the identification of potent and selective A1 or A2B adenosine receptors antagonists as potential agents for the treatment of Alzheimer's disease and asthma, respectively. Interesting examples of 8-heterocyclyl-xanthines as dipeptidyl peptidase IV inhibitors and liver X receptor agonists have been claimed for their possible therapeutic use in the treatment of Type 2 diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Pier G Baraldi
- Università di Ferrara, Dipartimento di Scienze Farmaceutiche, 44100 Ferrara, Italy +39 0532 455921 ; +39 0532 455953 ;
| | | | | | | | | |
Collapse
|
21
|
Abstract
Adenosine modulates various vascular functions such as vasodilatation and anti-inflammation. The local concentration of adenosine in the vicinity of adenosine receptors is fine tuned by 2 classes of nucleoside transporters: equilibrative nucleoside transporters (ENTs) and concentrative nucleoside transporters (CNTs). In vascular smooth muscle cells, 95% of adenosine transport is mediated by ENT-1 and the rest by ENT-2. In endothelial cells, 60%, 10%, and 30% of adenosine transport are mediated by ENT-1, ENT-2, and CNT-2, respectively. In vitro studies show that glucose per se increases the expression level of ENT-1 via mitogen-activating protein kinase-dependent pathways. Similar results have been demonstrated in diabetic animal models. Hypertension is associated with the increased expression of CNT-2. It has been speculated that the increase in the activities of ENT-1 and CNT-2 may reduce the availability of adenosine to adenosine receptors, thereby weakening the vascular functions of adenosine. This may explain why patients with diabetes and hypertension suffer greater morbidity from ischemia and atherosclerosis. No oral hypoglycemic agents can inhibit ENTs, but an exception is troglitazone (a thiazolidinedione that has been withdrawn from the market). ENTs are also sensitive to dihydropyridine-type calcium-channel blockers, particularly nimodipine, which can inhibit ENT-1 in the nanomolar range. Those calcium-channel blockers are noncompetitive inhibitors of ENTs, probably working through the reversible interactions with allosteric sites. The nonsteroidal anti-inflammatory drug sulindac sulfide is a competitive inhibitor of ENT-1. In addition to their original pharmacological actions, it is believed that the drugs mentioned above may regulate vascular functions through potentiation of the effects of adenosine.
Collapse
|
22
|
Wiejak J, Dunlop J, Gao S, Borland G, Yarwood SJ. Extracellular signal-regulated kinase mitogen-activated protein kinase-dependent SOCS-3 gene induction requires c-Jun, signal transducer and activator of transcription 3, and specificity protein 3 transcription factors. Mol Pharmacol 2012; 81:657-68. [PMID: 22311708 DOI: 10.1124/mol.111.076976] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SOCS-3 gene induction by cAMP-elevating agents or the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), in primary HUVECs was found to require PKCη- and PKCε-dependent extracellular signal-regulated kinase (ERK) activation. The minimal, ERK-responsive element of the SOCS-3 promoter was localized to a region spanning nucleotides -107 to the transcription start site and contains conserved binding sites for AP-1 and SP1/SP3 transcription factors, as well as proximal and distal signal transducer and activator of transcription (pSTAT and dSTAT) binding elements. All three classes of transcription factor were activated in response to ERK activation. Moreover, representative protein components of each of these transcription factor binding sites, namely c-Jun, STAT3, and SP3, were found to undergo ERK-dependent phosphorylation within their respective transactivation domains. Mutational analysis demonstrated an absolute requirement for the SP1/SP3 binding element in controlling basal transcriptional activity of the minimal SOCS-3 promoter. In addition AP-1, pSTAT, and SP1/SP3 binding sites were required for ERK-dependent, PMA-stimulated SOCS-3 gene activation. The dSTAT site seems to be important for supporting activity of the AP-1 site, because combined deletion of both sites completely blocks transcriptional activation of SOCS-3 by PMA. Together these results describe novel, ERK-dependent regulation of transcriptional activity that requires codependent activation of multiple transcription factors within the same region of the SOCS-3 gene promoter.
Collapse
Affiliation(s)
- Jolanta Wiejak
- The Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
De Bona KS, Bellé LP, Bittencourt PER, Bonfanti G, Cargnelluti LO, Pimentel VC, Ruviaro AR, Schetinger MRC, Emanuelli T, Moretto MB. Erythrocytic enzymes and antioxidant status in people with type 2 diabetes: beneficial effect of Syzygium cumini leaf extract in vitro. Diabetes Res Clin Pract 2011; 94:84-90. [PMID: 21737173 DOI: 10.1016/j.diabres.2011.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 05/25/2011] [Accepted: 06/06/2011] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate the effects of Syzygium cumini leaf extract (ASc), on Adenosine deaminase (ADA) and Acetylcholinesterase (AChE) activities, and also on oxidative stress parameters in erythrocytes hemolysates (RBCs) and erythrocytes membranes (ghosts) from type 2 diabetics patients (Type 2 DM) under in vitro conditions. Non protein thiol groups (NP-SH), AChE, Catalase (CAT) and Superoxide Dismutase (SOD) activities were measure in RBCs. Further, ADA activity, Thiobarbituric Acid-Reactive Substances (TBARS) levels and protein thiol groups (P-SH) were estimated in ghosts. Also, P-SH and Vitamin C (VIT C) were measure in plasma sample. The results demonstrated that ADA and AChE activities, besides TBARS levels were higher in erythrocytes of Type 2 DM, while SOD activity and NP-SH levels were decreased when compared to control group. ASc, in vitro, reduced ADA and AChE activities and some parameters of oxidative stress. Furthermore, we observed correlations between VIT C and P-SH levels, ADA activity and P-SH levels, as well as NP-SH and TBARS levels in diabetics. The results suggest that ASc in vitro is able to promote the reduction of inflammation and oxidative stress parameters, and act against biochemical changes occurring in Diabetes mellitus (DM).
Collapse
Affiliation(s)
- Karine Santos De Bona
- Postgraduate Program in Pharmaceutical Sciences, Health Science Centre, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Viganò A, Vasso M, Caretti A, Bravatà V, Terraneo L, Fania C, Capitanio D, Samaja M, Gelfi C. Protein modulation in mouse heart under acute and chronic hypoxia. Proteomics 2011; 11:4202-17. [PMID: 21948614 DOI: 10.1002/pmic.201000804] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 07/08/2011] [Accepted: 08/08/2011] [Indexed: 11/10/2022]
Abstract
Exploring cellular mechanisms underlying beneficial and detrimental responses to hypoxia represents the object of the present study. Signaling molecules controlling adaptation to hypoxia (HIF-1α), energy balance (AMPK), mitochondrial biogenesis (PGC-1α), autophagic/apoptotic processes regulation and proteomic dysregulation were assessed. Responses to acute hypoxia (AH) and chronic hypoxia (CH) in mouse heart proteome were detected by 2-D DIGE, mass spectrometry and antigen-antibody reactions. Both in AH and CH, the results indicated a deregulation of proteins related to sarcomere stabilization and muscle contraction. Neither in AH nor in CH the HIF-1α stabilization was observed. In AH, the metabolic adaptation to lack of oxygen was controlled by AMPK activation and sustained by an up-regulation of adenosylhomocysteinase and acetyl-CoA synthetase. AH was characterized by the mitophagic protein Bnip 3 increment. PGC-1α, a master regulator of mitochondrial biogenesis, was down-regulated. CH was characterized by the up-regulation of enzymes involved in antioxidant defense, in aldehyde bio-product detoxification and in misfolded protein degradation. In addition, a general down-regulation of enzymes controlling anaerobic metabolism was observed. After 10 days of hypoxia, cardioprotective molecules were substantially decreased whereas pro-apoptotic molecules increased accompained by down-regulation of specific target proteins.
Collapse
Affiliation(s)
- Agnese Viganò
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, Segrate (MI), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Toll-like receptor 4-mediated cAMP production up-regulates B-cell activating factor expression in Raw264.7 macrophages. Exp Cell Res 2011; 317:2447-55. [PMID: 21782812 DOI: 10.1016/j.yexcr.2011.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/18/2011] [Accepted: 07/05/2011] [Indexed: 11/22/2022]
Abstract
B-cell activating factor (BAFF) plays a role in the generation and the maintenance of mature B cells. Lipopolysaccharide (LPS) increased BAFF expression through the activation of toll-like receptor 4 (TLR4)-dependent signal transduction. Here, we investigated the mechanism of action on mouse BAFF (mBAFF) expression by cAMP production in Raw264.7 mouse macrophages. mBAFF expression was increased by the treatment with a cAMP analogue, dibutyryl-cAMP which is the activator of protein kinase A (PKA), cAMP effector protein. PKA activation was measured by the phosphorylation of cAMP-response element binding protein (CREB) on serine 133 (S133). cAMP production and CREB (S133) phosphorylation were augmented by LPS-stimulation. While mBAFF promoter activity was enhanced by the co-transfection with pS6-RSV-CREB, it was reduced by siRNA-CREB. PKA inhibitor, H-89, reduced CREB (S133) phosphorylation and mBAFF expression in control and LPS-stimulated macrophages. Another principal cAMP effector protein is cAMP-responsive guanine nucleotide exchange factor (Epac), a Rap GDP exchange factor. Epac was activated by the treatment with 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (CPT), Epac activator, as judged by the measurement of Rap1 activation. Basal level of mBAFF expression was increased by CPT treatment. LPS-stimulated mBAFF expression was also slightly enhanced by co-treatment with CPT. In addition, dibutyryl-cAMP and CPT enhanced mBAFF expression in bone marrow-derived macrophages (BMDM). With these data, it suggests that the activation of PKA and cAMP/Epac1/Rap1 pathways could be required for basal mBAFF expression, as well as being up-regulated in the TLR4-induced mBAFF expression.
Collapse
|
26
|
Feoktistov I, Biaggioni I. Role of adenosine A(2B) receptors in inflammation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:115-44. [PMID: 21586358 PMCID: PMC3748596 DOI: 10.1016/b978-0-12-385526-8.00005-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in our understanding of the unique role of A(2B) receptors in the regulation of inflammation, immunity, and tissue repair was considerably facilitated with the introduction of new pharmacological and genetic tools. However, it also led to seemingly conflicting conclusions on the role of A(2B) adenosine receptors in inflammation with some publications indicating proinflammatory effects and others suggesting the opposite. This chapter reviews the functions of A(2B) receptors in various cell types related to inflammation and integrated effects of A(2B) receptor modulation in several animal models of inflammation. It is argued that translation of current findings into novel therapies would require a better understanding of A(2B) receptor functions in diverse types of inflammatory responses in various tissues and at different points of their progression.
Collapse
Affiliation(s)
- Igor Feoktistov
- Department of Medicine, Vanderbilt University, Division of Cardiovascular Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
27
|
Thakur S, Du J, Hourani S, Ledent C, Li JM. Inactivation of adenosine A2A receptor attenuates basal and angiotensin II-induced ROS production by Nox2 in endothelial cells. J Biol Chem 2010; 285:40104-13. [PMID: 20940302 PMCID: PMC3000993 DOI: 10.1074/jbc.m110.184606] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells (ECs) express a Nox2 enzyme, which, by generating reactive oxygen species (ROS), contributes to EC redox signaling and angiotensin II (AngII)-induced endothelial dysfunction. ECs also express abundantly an adenosine A(2A) receptor (A(2A)R), but its role in EC ROS production remains unknown. In this study, we investigated the role of A(2A)R in the regulation of Nox2 activity and signaling in ECs with or without acute AngII stimulation. In cultured ECs (SVEC4-10), AngII (100 nm, 30 min) significantly increased Nox2 membrane translocation and association with A(2A)R. These were accompanied by p47(phox), ERK1/2, p38 MAPK, and Akt phosphorylation and an increased ROS production (169 ± 0.04%). These AngII effects were inhibited back to the control levels by a specific A(2A)R antagonist (SCH58261), or adenosine deaminase, or by knockdown of A(2A)R or Nox2 using specific siRNAs. Knockdown of A(2A)R, as determined by Western blotting, decreased Nox2 and p47(phox) expression. In wild-type mouse aorta, SCH58261 significantly reduced acute AngII-induced ROS production and preserved endothelium-dependent vessel relaxation to acetylcholine. These results were further confirmed by using aortas from A(2A)R knock-out mice. In conclusion, A(2A)R is involved in the regulation of EC ROS production by Nox2. Inhibition or blockade of A(2A)R protects ECs from acute AngII-induced oxidative stress, MAPK activation, and endothelium dysfunction.
Collapse
Affiliation(s)
- Sapna Thakur
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Li RWS, Seto SW, Au ALS, Kwan YW, Chan SW, Lee SMY, Tse CM, Leung GPH. Inhibitory effect of nonsteroidal anti-inflammatory drugs on adenosine transport in vascular smooth muscle cells. Eur J Pharmacol 2009; 612:15-20. [DOI: 10.1016/j.ejphar.2009.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/02/2009] [Accepted: 04/09/2009] [Indexed: 01/04/2023]
|
29
|
Abstract
Extracellular adenosine is produced in a coordinated manner from cells following cellular challenge or tissue injury. Once produced, it serves as an autocrine- and paracrine-signaling molecule through its interactions with seven-membrane-spanning G-protein-coupled adenosine receptors. These signaling pathways have widespread physiological and pathophysiological functions. Immune cells express adenosine receptors and respond to adenosine or adenosine agonists in diverse manners. Extensive in vitro and in vivo studies have identified potent anti-inflammatory functions for all of the adenosine receptors on many different inflammatory cells and in various inflammatory disease processes. In addition, specific proinflammatory functions have also been ascribed to adenosine receptor activation. The potent effects of adenosine signaling on the regulation of inflammation suggest that targeting specific adenosine receptor activation or inactivation using selective agonists and antagonists could have important therapeutic implications in numerous diseases. This review is designed to summarize the current status of adenosine receptor signaling in various inflammatory cells and in models of inflammation, with an emphasis on the advancement of adenosine-based therapeutics to treat inflammatory disorders.
Collapse
Affiliation(s)
- Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
30
|
Trevethick MA, Mantell SJ, Stuart EF, Barnard A, Wright KN, Yeadon M. Treating lung inflammation with agonists of the adenosine A2A receptor: promises, problems and potential solutions. Br J Pharmacol 2008; 155:463-74. [PMID: 18846036 PMCID: PMC2579671 DOI: 10.1038/bjp.2008.329] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/16/2008] [Accepted: 07/30/2008] [Indexed: 01/17/2023] Open
Abstract
Adenosine A(2A) receptor agonists may be important regulators of inflammation. Such conclusions have come from studies demonstrating that, (i) adenosine A(2A) agonists exhibit anti-inflammatory properties in vitro and in vivo, (ii) selective A(2A) antagonists enhance inflammation in vivo and, (iii) knock outs of this receptor aggravate inflammation in a wide variety of in vivo models. Inflammation is a hallmark of asthma and COPD and adenosine has long been suggested to be involved in disease pathology. Two recent publications, however, suggested that an inhaled adenosine A(2A) receptor agonist (GW328267X) did not affect either the early and late asthmatic response or symptoms associated with allergic rhinitis suggesting that the rationale for treating inflammation with an adenosine A(2A) receptor agonist may be incorrect. A barrier to fully investigating the role of adenosine A(2A) receptor agonists as anti-inflammatory agents in the lung is the side effect profile due to systemic exposure, even with inhalation. Unless strategies can be evolved to limit the systemic exposure of inhaled adenosine A(2A) receptor agonists, the promise of treating lung inflammation with such agents may never be fully explored. Using strategies similar to that devised to improve the therapeutic index of inhaled corticosteroids, UK371,104 was identified as a selective agonist of the adenosine A(2A) receptor that has a lung focus of pharmacological activity following delivery to the lung in a pre clinical in vivo model of lung function. Lung-focussed agents such as UK371,104 may be suitable for assessing the anti-inflammatory potential of inhaled adenosine A(2A) receptor agonists.
Collapse
Affiliation(s)
- M A Trevethick
- Allergy and Respiratory Biology, Pfizer Global R&D, Sandwich, Kent, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Jolly L, March JE, Kemp PA, Bennett T, Gardiner SM. Regional haemodynamic responses to adenosine receptor activation vary across time following lipopolysaccharide treatment in conscious rats. Br J Pharmacol 2008; 154:1600-10. [PMID: 18500354 PMCID: PMC2440086 DOI: 10.1038/bjp.2008.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Studies using adenosine receptor antagonists have shown that adenosine-mediated vasodilatations play an important role in the maintenance of regional perfusion during sepsis, but it is unclear whether vascular sensitivity to adenosine is affected. Here, we assessed regional haemodynamic responses to adenosine agonists and antagonists in normal and lipopolysaccharide (LPS)-treated rats to investigate a possible role for adenosine in the haemodynamic sequelae. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were chronically instrumented with pulsed Doppler flow probes to measure regional haemodynamic responses to adenosine-receptor agonists (adenosine, 2-choloro-N6-cyclopentyladenosine (CCPA)) and antagonists (8-phenyltheophylline (8-PT), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)), at selected time points in control and LPS-treated rats. KEY RESULTS The responses to 8-PT were consistent with endogenous adenosine causing bradycardia, and renal and hindquarters vasodilatation in control rats, whereas in LPS-treated rats, there was evidence for endogenous adenosine causing renal (at 1.5 h) and hindquarters (at 6 h) vasoconstriction. In control animals, exogenous adenosine caused hypotension, tachycardia and widespread vasodilatation, whereas in LPS-treated rats, the adenosine-induced renal (at 1.5 h) and hindquarters (at 6 h) vasodilatations were abolished. As enhanced A1 receptor-mediated vasoconstriction could explain the results in LPS-treated rats, vascular responsiveness to a selective A1-receptor agonist (CCPA) or antagonist (DPCPX) was assessed. There was no evidence for enhanced vasoconstrictor responsiveness to CCPA in LPS-treated rats, but DPCPX caused renal vasodilatation, consistent with endogenous adenosine mediating renal vasoconstriction under these conditions. CONCLUSIONS AND IMPLICATIONS The results show changes in adenosine receptor-mediated cardiovascular effects in endotoxaemia that may have implications for the use of adenosine-based therapies in sepsis.
Collapse
Affiliation(s)
- L Jolly
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queens Medical Centre, University of Nottingham Medical School Nottingham, UK
| | - J E March
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queens Medical Centre, University of Nottingham Medical School Nottingham, UK
| | - P A Kemp
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queens Medical Centre, University of Nottingham Medical School Nottingham, UK
| | - T Bennett
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queens Medical Centre, University of Nottingham Medical School Nottingham, UK
| | - S M Gardiner
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queens Medical Centre, University of Nottingham Medical School Nottingham, UK
| |
Collapse
|
32
|
Li RWS, Man RYK, Vanhoutte PM, Leung GPH. Stimulation of ecto-5'-nucleotidase in human umbilical vein endothelial cells by lipopolysaccharide. Am J Physiol Heart Circ Physiol 2008; 295:H1177-H1181. [PMID: 18641267 DOI: 10.1152/ajpheart.91513.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The involvement of ecto-5'-nucleotidase (E-5'Nu) in the elevation of extracellular adenosine during inflammation is unclear. In the present study, the effect of lipopolysaccharide (LPS), an inflammation inducer, was investigated on E-5'Nu in human umbilical vein endothelial cells (HUVECs). E-5'Nu activity was enhanced after a 24 h exposure to LPS. This effect was dose dependent, with an EC50 of 1.66 ng/ml. At 10 microM, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 abolished the LPS-induced E-5'Nu activity. However, at 10 microM, the NF-kappaB inhibitor ammonium pyrrolidine dithiocarbamate had no effect. LPS upregulated the protein expression but not the messenger RNA expression of E-5'Nu. The inhibition of E-5'Nu by 100 microM alpha,beta-methylene adenosine-5'-diphosphate increased the LPS-induced inflammation, suggesting that E-5'Nu plays a significant role in reducing inflammation, probably through the generation of adenosine. In conclusion, the experiments indicate that LPS upregulates E-5'Nu activity in HUVECs through a PI3K-dependent increase in the abundance of E-5'Nu on cell membranes. Since adenosine is an anti-inflammatory molecule, E-5'Nu upregulation may be crucial in protecting endothelial cells against inflammatory damage.
Collapse
Affiliation(s)
- R W S Li
- Department of Pharmacology, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | |
Collapse
|
33
|
Ribé D, Sawbridge D, Thakur S, Hussey M, Ledent C, Kitchen I, Hourani S, Li JM. Adenosine A2A receptor signaling regulation of cardiac NADPH oxidase activity. Free Radic Biol Med 2008; 44:1433-42. [PMID: 18206127 PMCID: PMC2889612 DOI: 10.1016/j.freeradbiomed.2007.12.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/17/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
Cardiac tissues express constitutively an NADPH oxidase, which generates reactive oxygen species (ROS) and is involved in redox signaling. Myocardial metabolism generates abundant adenosine, which binds to its receptors and plays important roles in cardiac function. The adenosine A2A receptor (A2AR) has been found to be expressed in cardiac myocytes and coronary endothelial cells. However, the role of the A2AR in the regulation of cardiac ROS production remains unknown. We found that knockout of A2AR significantly decreased (39+/-8%) NADPH-dependent O2- production in mouse hearts compared to age (10 weeks)-matched wild-type controls. This was accompanied by a significant decrease in Nox2 (a catalytic subunit of NADPH oxidase) protein expression, and down-regulation of ERK1/2, p38MAPK, and JNK phosphorylation (all P<0.05). In wild-type mice, intraperitoneal injection of the selective A2AR antagonist SCH58261 (3-10 mg/kg body weight for 90 min) inhibited phosphorylation of p47phox (a regulatory subunit of Nox2), which was accompanied by a down-regulated cardiac ROS production (48+/-8%), and decreased JNK and ERK1/2 activation by 54+/-28% (all P<0.05). In conclusion, A2AR through MAPK signaling regulates p47phox phosphorylation and cardiac ROS production by NADPH oxidase. Modulation of A2AR activity may have potential therapeutic applications in controlling ROS production by NADPH oxidase in the heart.
Collapse
Affiliation(s)
- David Ribé
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - David Sawbridge
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Sapna Thakur
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Martin Hussey
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | | - Ian Kitchen
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Susanna Hourani
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Jian-Mei Li
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
- Corresponding author. (J.-M. Li)
| |
Collapse
|
34
|
Rose JB, Coe IR. Physiology of Nucleoside Transporters: Back to the Future. . . . Physiology (Bethesda) 2008; 23:41-8. [DOI: 10.1152/physiol.00036.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nucleoside transporters (NTs) are integral membrane proteins responsible for mediating and facilitating the flux of nucleosides and nucleobases across cellular membranes. NTs are also responsible for the uptake of nucleoside analog drugs used in the treatment of cancer and viral infections, and they are the target of certain compounds used in the treatment of some types of cardiovascular disease. The important role of NTs as drug transporters and therapeutic targets has necessarily led to intense interest into their structure and function and the relationship between these proteins and drug efficacy. In contrast, we still know relatively little about the fundamental physiology of NTs. In this review, we discuss various aspects of the physiology of NTs in mammalian systems, particularly noting tissues and cells where there has been little recent research. Our central thesis is reference back to some of the older literature, combined with current findings, will provide direction for future research into NT physiology that will lead to a fuller understanding of the role of these intriguing proteins in the everyday lives of cells, tissues, organs, and whole animals.
Collapse
Affiliation(s)
- Jennifer B. Rose
- Department of Biology, York University, Toronto, Ontario, Canada,
| | - Imogen R. Coe
- Department of Biology, York University, Toronto, Ontario, Canada,
| |
Collapse
|
35
|
Li W, Dai S, An J, Li P, Chen X, Xiong R, Liu P, Wang H, Zhao Y, Zhu M, Liu X, Zhu P, Chen JF, Zhou Y. Chronic but not acute treatment with caffeine attenuates traumatic brain injury in the mouse cortical impact model. Neuroscience 2007; 151:1198-207. [PMID: 18207647 DOI: 10.1016/j.neuroscience.2007.11.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/23/2007] [Accepted: 11/30/2007] [Indexed: 11/28/2022]
Abstract
Caffeine, the most consumed psychoactive drug and non-specific adenosine receptor antagonist, has recently been shown to exert a neuroprotective effect against brain injury in animal models of Parkinson's disease (PD) and stroke. However, the effects of caffeine on traumatic brain injury (TBI) are not known. In this study, we investigated the effects of acute and chronic caffeine treatment on brain injury in a cortical-impact model of TBI in mice. Following TBI, neurological deficits, cerebral edema, as well as inflammatory cell infiltration were all significantly attenuated in mice pretreated chronically (for 3 weeks) with caffeine in drinking water compared with the mice pretreated with saline. Furthermore, we found that chronic caffeine treatment attenuated glutamate release and inflammatory cytokine production, effects that were correlated with an upregulation of brain A1 receptor mRNA. By contrast, acute treatment with caffeine (i.p. injection, 30 min before TBI) was not effective in protecting against TBI-induced brain injury. These results suggest that chronic (but not acute) caffeine treatment attenuates brain injury, possibly by A1 receptor-mediated suppression of glutamate release and inhibition of excessive inflammatory cytokine production. These results highlight the potential benefit of chronic caffeine intake for preventing TBI and provide a rationale for the epidemiological investigation of the potential association between TBI and human caffeine intake.
Collapse
Affiliation(s)
- W Li
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, 10 Changjiang Zhilu, Third Military Medical University, Chongqing 400042, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Beukers MW, Meurs I, Ijzerman AP. Structure-affinity relationships of adenosine A2B receptor ligands. Med Res Rev 2007; 26:667-98. [PMID: 16847822 DOI: 10.1002/med.20069] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many selective and high affinity agonists and antagonists have been developed for the adenosine A(1), A(2A), and A(3) receptors. Very recently such compounds have been identified for the adenosine A(2B) receptors. This review presents an overview of the structure-affinity relationships of antagonists and agonists for this receptor subtype as published in the scientific and patent literature. To date the most selective >370-fold, high affinity adenosine A(2B) receptor antagonist is the xanthine analog, compound 16 (8-(1-(3-phenyl-1,2,4-oxadiazol-5-yl)methyl)-1H-pyrazol-4-yl)-1,3-dipropyl-1H-purine-2,6(3H,7H)-dione). The pyrrolopyrimidine analog OSIP339391 (73) is slightly less selective, 70-fold, but has a higher affinity 0.41 nM compared to 1 nM for compound 16. Other promising classes of compounds with selectivities ranging from 10- to 160-fold and affinities ranging from 3 to 112 nM include triazolo, aminothiazole, quinazoline, and pyrimidin-2-amine analogs. Progress has also been achieved concerning the development of selective high affinity agonists for the adenosine A(2B) receptor. For years the most potent, albeit non-selective adenosine A(2B) receptor agonist was (S)PHPNECA (88). Last year, a new class of non-ribose ligands was reported. Several compounds displayed selectivity with respect to adenosine A(2A) and A(3) receptors. In addition, full and partial agonists for the adenosine A(2B) receptor were identified with EC(50) values of 10 nM (LUF5835, 103) and 9 nM (LUF5845, 105), respectively.
Collapse
Affiliation(s)
- Margot W Beukers
- Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
37
|
Li RWS, Tse CM, Man RYK, Vanhoutte PM, Leung GPH. Inhibition of human equilibrative nucleoside transporters by dihydropyridine-type calcium channel antagonists. Eur J Pharmacol 2007; 568:75-82. [PMID: 17512522 DOI: 10.1016/j.ejphar.2007.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 04/12/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
Dihydropyridine-type calcium channel antagonists, in addition to having a vasodilatory effect, are known to inhibit cellular uptake of nucleosides such as adenosine. However, the nucleoside transporter subtypes involved and the mechanism by which this occurs are not known. Therefore, we have studied the inhibitory effects of dihydropyridines on both human equilibrative nucleoside transporters, hENT-1 and hENT-2, which are the major transporters mediating nucleoside transport in most tissues. Among the dihydropyridines tested, nimodipine proved to be the most potent inhibitor of hENT-1, with an IC(50) value of 60+/-31 muM, whereas nifedipine, nicardipine, nitrendipine, and felodipine exhibited 100-fold less effective inhibitory activity. Nifedipine, nitrendipine, and nimodipine inhibited hENT-2 with IC(50) values in the micromolar range; however, nicardipine and felodipine had no significant effect on hENT-2. Removal of the 4-aryl ring or changing the nitro group at the 4-aryl ring proved not to be detrimental to the inhibitory effects of dihydropyridines on hENT-1, but resulted in a drastic decrease in their inhibitory effects on hENT-2. Kinetic studies revealed that nimodipine and nifedipine reduced V(max) of [(3)H]uridine transport without affecting K(m). The inhibitory effects of nimodipine and nifedipine could be washed out. In addition, nimodipine and nifedipine inhibited the rate of NBTGR-induced dissociation of [(3)H]NBMPR from hENT-1 cell membrane. We conclude that dihydropyridines are non-competitive inhibitors of hENT-1 and hENT-2, probably working through reversible interactions with the allosteric sites. The inhibitory potencies of dihydropyridines may be associated with the structure of the 4-aryl ring, as well as the ester groups at the C-3 and C-5 positions.
Collapse
Affiliation(s)
- Rachel W S Li
- Department of Pharmacology, The University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
38
|
Kälvegren H, Andersson J, Grenegård M, Bengtsson T. Platelet activation triggered by Chlamydia pneumoniae is antagonized by 12-lipoxygenase inhibitors but not cyclooxygenase inhibitors. Eur J Pharmacol 2007; 566:20-7. [PMID: 17459368 DOI: 10.1016/j.ejphar.2007.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
Chlamydia pneumoniae is a respiratory pathogen that has been linked to cardiovascular disease. We have recently shown that C. pneumoniae activates platelets, leading to oxidation of low-density lipoproteins. The aim of the present study was to evaluate the inhibitory effects of different pharmacological agents on platelet aggregation and secretion induced by C. pneumoniae. Platelet interaction with C. pneumoniae was studied by analyzing platelet aggregation and ATP-secretion with Lumi-aggregometry. Platelet aggregation and ATP-secretion induced by C. pneumoniae was markedly inhibited by the NO-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP), an effect that was counteracted by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Pre-treatment of platelets with the 12-lipoxygenase (12-LOX) inhibitors cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate (CDC) and 5,6,7-trikydroxyflavone (baicalein) completely blocked the activation, whereas the cyclooxygenase (COX) inhibitors 2-acetyloxybenzoic acid (aspirin) and (8E)-8-[hydroxy-(pyridin-2-ylamino)methylidene]-9-methyl-10,10-dioxo-10$l;(6)thia-9-azabicyclo[4.4.0]deca-1,3,5-trien-7-one (piroxicam) had no inhibitory effects. Opposite to C. pneumoniae-induced activation, platelets stimulated by collagen were inhibited by the COX-inhibitors but were unaffected by the 12-LOX-inhibitors. The platelet activating factor (PAF) antagonist Ginkgolide B blocked the C. pneumoniae-induced platelet activation, whereas the responses to collagen were unaffected. Furthermore, the P2Y1 and P2Y12 purinergic receptor antagonists 2'-deoxy-N6-methyladenosine 3',5'-bisphosphate (MRS2179) and N(6)-(2-methyl-thioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene-ATP (cangrelor) inhibited the aggregation and secretion caused by C. pneumoniae. It is well-known that the efficacy of COX inhibitors in the prevention and treatment of cardiovascular disease varies between different patients, and that patients with low responses to aspirin have a higher risk to encounter cardiovascular events. The findings in this study showing that platelets stimulated by C. pneumoniae are unaffected by COX inhibitors but sensitive to 12-LOX inhibitors, may thus be of importance in future management of atherosclerosis and thrombosis.
Collapse
Affiliation(s)
- Hanna Kälvegren
- Division of Pharmacology, Department of Medicine and Care, Cardiovascular Inflammation Research Centre, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden.
| | | | | | | |
Collapse
|
39
|
Elmaleh DR, Fischman AJ, Tawakol A, Zhu A, Shoup TM, Hoffmann U, Brownell AL, Zamecnik PC. Detection of inflamed atherosclerotic lesions with diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) and positron-emission tomography. Proc Natl Acad Sci U S A 2006; 103:15992-6. [PMID: 17038498 PMCID: PMC1599947 DOI: 10.1073/pnas.0607246103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Diadenosine-5',5'''-P(1),P(4)-tetraphosphate (Ap(4)A) and its analog P(2),P(3)-monochloromethylene diadenosine-5',5'''-P(1),P(4)-tetraphosphate (AppCHClppA) are competitive inhibitors of adenosine diphosphate-induced platelet aggregation, which plays a central role in arterial thrombosis and plaque formation. In this study, we evaluate the imaging capabilities of positron-emission tomography (PET) with P(2),P(3)-[(18)F]monofluoromethylene diadenosine-5',5'''-P(1),P(4)-tetraphosphate ([(18)F]AppCHFppA) to detect atherosclerotic lesions in male New Zealand White rabbits. Three to six months after balloon injury to the aorta, the rabbits were injected with [(18)F]AppCHFppA, and microPET imaging showed rapid accumulation of this radiopharmaceutical in the atherosclerotic abdominal aorta, with lesions clearly visible 30 min after injection. Computed tomographic images were coregistered with PET images to improve delineation of aortoiliac tracer activity. Plaque macrophage density, quantified by immunostaining with RAM11 against rabbit macrophages, correlated with PET measurements of [(18)F]AppCHFppA uptake (r = 0.87, P < 0.0001), whereas smooth-muscle cell density, quantified by immunostaining with 1A4 against smooth muscle actin, did not. Biodistribution studies of [(18)F]AppCHFppA in normal rats indicated typical adenosine dinucleotide behavior with insignificant myocardial uptake and fast kidney clearance. The accumulation of [(18)F]AppCHFppA in macrophage-rich atherosclerotic plaques can be quantified noninvasively with PET. Hence, [(18)F]AppCHFppA holds promise for the noninvasive characterization of vascular inflammation.
Collapse
Affiliation(s)
- D R Elmaleh
- Department of Radiology and Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|