1
|
Zhou Y, Zhang T, Wang Z, Xu X. Augmented immunogenicity of the HPV16 DNA vaccine via dual adjuvant approach: integration of CpG ODN into plasmid backbone and co-administration with IL-28B gene adjuvant. Virol J 2025; 22:3. [PMID: 39780219 PMCID: PMC11707914 DOI: 10.1186/s12985-024-02604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models. In this study, we employed multifaceted approach to enhance the potency of the HPV16 DNA vaccine. Strategies including inserting CpG oligodeoxynucleotide (CpG ODNs) into the vaccine vector backbone, selecting cytokine gene adjuvants, combining plasmids encoding mE6/HSP70 and mE7/HSP70, and utilizing electroporation for vaccination. Our findings revealed that mice immunized with CpG-modified vaccines, coupled with an IL-28B gene adjuvant exhibited heightened antigen-specific CD8+ T cell responses. Additionally, the combination of mE6/HSP70 and mE7/HSP70 plasmids synergistically enhanced the specific CD8+ T cell response. Furthermore, vaccination with CpG-modified mE7/HSP70 and mE6/HSP70 plasmids, alongside the Interleukin-28B (IL-28B) gene adjuvant, generated substantial preventive and therapeutic antitumor effects against HPV E6- and E7-expressing tumors in C57BL/6 mice. These results suggested that integrating these multiple strategies into an HPV DNA vaccine holds promise for effectively controlling HPV infection and related diseases.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Department of Immunology, Hebei North University, Zhangjiakou, China
| | - Ting Zhang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhirong Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuemei Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Xia W, Wu J. Flagellate bacteria-mediated tumour antigen delivery: A novel approach to enhance dendritic cell activation for in situ cancer vaccination. Microb Biotechnol 2024; 17:e70028. [PMID: 39422491 PMCID: PMC11487680 DOI: 10.1111/1751-7915.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In situ vaccination is a therapeutic approach aimed at exploiting tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. Antigens released from dying tumour cells are assumed to be taken up by activated dendritic cells and presented to T cells that seek out and destroy tumour cells. This process is significantly impeded in the immunosuppressive microenvironment of tumours. There is a growing trend in in situ vaccine strategies that utilize bacteria as natural adjuvants or as factories for cytokines, aiming to enhance the presentation of in situ antigens by antigen-presenting cells. Recently, a novel approach using flagellate bacteria-mediated antigen delivery to activate dendritic cells has been proposed. This method actively facilitates the delivery of intratumoral antigens, improving their presentation for in situ cancer vaccination. Here, we highlight how flagellate bacteria-mediated antigen delivery enhances the immune activation capabilities of in situ vaccines. Meanwhile, we provide perspectives and outlooks on these promising antigen delivery technologies.
Collapse
Affiliation(s)
- Wen Xia
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School of Nanjing UniversityNanjingChina
- Chemistry and Biomedicine Innovation CentreNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjing UniversityNanjingChina
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School of Nanjing UniversityNanjingChina
- Chemistry and Biomedicine Innovation CentreNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjing UniversityNanjingChina
| |
Collapse
|
3
|
Zhang Y, Liu S, Chen M, Ou Q, Tian S, Tang J, He Z, Chen Z, Wang C. Preimmunization with Listeria-vectored cervical cancer vaccine candidate strains can establish specific T-cell immune memory and prevent tumorigenesis. BMC Cancer 2024; 24:288. [PMID: 38439023 PMCID: PMC10910769 DOI: 10.1186/s12885-024-12046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Although HPV prophylactic vaccines can provide effective immune protection against high-risk HPV infection, studies have shown that the protective effect provided by them would decrease with the increased age of vaccination, and they are not recommended for those who are not in the appropriate age range for vaccination. Therefore, in those people who are not suitable for HPV prophylactic vaccines, it is worth considering establishing memory T-cell immunity to provide long-term immune surveillance and generate a rapid response against lesional cells to prevent tumorigenesis. METHODS In this study, healthy mice were preimmunized with LM∆E6E7 and LI∆E6E7, the two Listeria-vectored cervical cancer vaccine candidate strains constructed previously by our laboratory, and then inoculated with tumor cells 40 d later. RESULTS The results showed that preimmunization with LM∆E6E7 and LI∆E6E7 could establish protective memory T-cell immunity against tumor antigens in mice, which effectively eliminate tumor cells. 60% of mice preimmunized with vaccines did not develop tumors, and for the remaining mice, tumor growth was significantly inhibited. We found that preimmunization with vaccines may exert antitumor effects by promoting the enrichment of T cells at tumor site to exert specific immune responses, as well as inhibiting intratumoral angiogenesis and cell proliferation. CONCLUSION Altogether, this study suggests that preimmunization with LM∆E6E7 and LI∆E6E7 can establish memory T-cell immunity against tumor antigens in vivo, which provides a viable plan for preventing tumorigenesis and inhibiting tumor progression.
Collapse
Affiliation(s)
- Yunwen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Shen Zhen Biomed Alliance Biotech Group Co., Ltd., Shenzhen, China
| | - Sijing Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Mengdie Chen
- Shen Zhen Biomed Alliance Biotech Group Co., Ltd., Shenzhen, China
| | - Qian Ou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Sicheng Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhaobin Chen
- Shen Zhen Biomed Alliance Biotech Group Co., Ltd., Shenzhen, China.
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Díaz-Dinamarca DA, Salazar ML, Castillo BN, Manubens A, Vasquez AE, Salazar F, Becker MI. Protein-Based Adjuvants for Vaccines as Immunomodulators of the Innate and Adaptive Immune Response: Current Knowledge, Challenges, and Future Opportunities. Pharmaceutics 2022; 14:1671. [PMID: 36015297 PMCID: PMC9414397 DOI: 10.3390/pharmaceutics14081671] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
New-generation vaccines, formulated with subunits or nucleic acids, are less immunogenic than classical vaccines formulated with live-attenuated or inactivated pathogens. This difference has led to an intensified search for additional potent vaccine adjuvants that meet safety and efficacy criteria and confer long-term protection. This review provides an overview of protein-based adjuvants (PBAs) obtained from different organisms, including bacteria, mollusks, plants, and humans. Notably, despite structural differences, all PBAs show significant immunostimulatory properties, eliciting B-cell- and T-cell-mediated immune responses to administered antigens, providing advantages over many currently adopted adjuvant approaches. Furthermore, PBAs are natural biocompatible and biodegradable substances that induce minimal reactogenicity and toxicity and interact with innate immune receptors, enhancing their endocytosis and modulating subsequent adaptive immune responses. We propose that PBAs can contribute to the development of vaccines against complex pathogens, including intracellular pathogens such as Mycobacterium tuberculosis, those with complex life cycles such as Plasmodium falciparum, those that induce host immune dysfunction such as HIV, those that target immunocompromised individuals such as fungi, those with a latent disease phase such as Herpes, those that are antigenically variable such as SARS-CoV-2 and those that undergo continuous evolution, to reduce the likelihood of outbreaks.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
| | - Michelle L. Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Byron N. Castillo
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Augusto Manubens
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| | - Abel E. Vasquez
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Providencia, Santiago 8320000, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
| | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| |
Collapse
|
5
|
Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z, Agi E. Development of multiepitope therapeutic vaccines against the most prevalent high-risk human papillomaviruses. Immunotherapy 2020; 12:459-479. [DOI: 10.2217/imt-2019-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Our goal was the development of DNA- or peptide-based multiepitope vaccines targeting HPV E7, E6 and E5 oncoproteins in tumor mouse model. Materials & methods: After designing the multiepitope E7, E6 and E5 constructs from four types of high risk HPVs (16, 18, 31 & 45) using bioinformatics tools, mice vaccination was performed by different homologous and heterologous modalities in a prophylactic setting. Then, anti-tumor effects of the best prophylactic strategies were studied in a therapeutic setting. Results: In both prophylactic and therapeutic experiments, groups receiving homologous E7+E6+E5 polypeptide, and heterologous E7+E6+E5 DNA prime/polypeptide boost were successful in complete rejection of tumors. Conclusion: The designed multiepitope constructs can be considered as promising candidates to develop effective therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Heidar Ali Panahi
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Javadi
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| |
Collapse
|
6
|
Wang ZB, Xu J. Better Adjuvants for Better Vaccines: Progress in Adjuvant Delivery Systems, Modifications, and Adjuvant-Antigen Codelivery. Vaccines (Basel) 2020; 8:vaccines8010128. [PMID: 32183209 PMCID: PMC7157724 DOI: 10.3390/vaccines8010128] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional aluminum adjuvants can trigger strong humoral immunity but weak cellular immunity, limiting their application in some vaccines. Currently, various immunomodulators and delivery carriers are used as adjuvants, and the mechanisms of action of some of these adjuvants are clear. However, customizing targets of adjuvant action (cellular or humoral immunity) and action intensity (enhancement or inhibition) according to different antigens selected is time-consuming. Here, we review the adjuvant effects of some delivery systems and immune stimulants. In addition, to improve the safety, effectiveness, and accessibility of adjuvants, new trends in adjuvant development and their modification strategies are discussed.
Collapse
Affiliation(s)
| | - Jing Xu
- Correspondence: ; Tel.: +86-(10)-5224-5008
| |
Collapse
|
7
|
Li J, Chen S, Ge J, Lu F, Ren S, Zhao Z, Pu X, Chen X, Sun J, Gu Y. A novel therapeutic vaccine composed of a rearranged human papillomavirus type 16 E6/E7 fusion protein and Fms-like tyrosine kinase-3 ligand induces CD8 + T cell responses and antitumor effect. Vaccine 2017; 35:6459-6467. [PMID: 29029939 DOI: 10.1016/j.vaccine.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/26/2017] [Accepted: 09/03/2017] [Indexed: 01/15/2023]
Abstract
The development of cervical cancer is mainly caused by infection with high risk genotypes of human papillomavirus, particularly type 16 (HPV16), which accounts for more than 50% of cervical cancer. The two early viral oncogenes, E6 and E7, are continuously expressed in cervical cancer cells and are necessary to maintain the malignant cellular phenotype, thus providing ideal targets for immunotherapy of cervical cancer. In this study, a novel vaccine strategy was developed based on a rationally shuffled HPV16 E6/E7 fusion protein, the addition of Fms-like tyrosine kinase-3 ligand (Flt3L) or the N domain of calreticulin (NCRT), and the usage of a CpG adjuvant. Four recombinant proteins were constructed: m16E6E7 (mutant E6/E7 fusion protein), rm16E6E7 (rearranged mutant HPV16 E6/E7 fusion protein), Flt3L-RM16 (Flt3L fused to rm16E6E7), and NCRT-RM16 (NCRT fused to rm16E6E7). Our results suggest that Flt3L-RM16 was the most potent of these proteins in terms of inducing E6- and E7-specific CD8+ T cell responses. Additionally, Flt3L-RM16 significantly induced regression of established E6/E7-expressing TC-1 tumors. Higher doses of Flt3L-RM16 trended toward higher levels of antitumor activity, but these differences did not reach statistical significance. In summary, this study found that Flt3L-RM16 fusion protein is a promising therapeutic vaccine for immunotherapy of HPV16-associated cervical cancer.
Collapse
Affiliation(s)
- Jianqiang Li
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Si Chen
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Jun Ge
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Feng Lu
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Sulin Ren
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Zhiqiang Zhao
- Suzhou Yuankang Bio-pharmaceutical Co., Ltd., Suzhou, China.
| | - Xiuying Pu
- Suzhou Yuankang Bio-pharmaceutical Co., Ltd., Suzhou, China.
| | - Xiaoxiao Chen
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Jiaojiao Sun
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Yueqing Gu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
8
|
Li YL, Ma ZL, Zhao Y, Zhang J. Immunization with mutant HPV16 E7 protein inhibits the growth of TC-1 cells in tumor-bearing mice. Oncol Lett 2015; 9:1851-1856. [PMID: 25789055 PMCID: PMC4356387 DOI: 10.3892/ol.2015.2911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
Two human papillomavirus (HPV) 16 oncogenic proteins, E6 and E7, are co-expressed in the majority of HPV16-induced cervical cancer cells. Thus, the E6 and E7 proteins are good targets for developing therapeutic vaccines for cervical cancer. In the present study, immunization with the mutant non-transforming HPV16 E7 (mE7) protein was demonstrated to inhibit the growth of TC-1 cells in the TC-1 mouse model. The HPV16 mE7 gene was amplified by splicing overlap extension polymerase chain reaction using pET-28a(+)-E7 as a template, and the gene was cloned into pET-28a(+) to form pET-28a(+)-mE7. Compared with the E7 protein, mE7 lacks amino acid residues 94–98, and at residue 24, there is a Cys to Gly substitution. pET-28a(+)-mE7 was then introduced into Escherichia coli Rosetta. The expression of mE7 was induced by isopropyl β-D-1-thiogalactopyranoside. The mE7 protein was purified using Ni-NTA agarose and detected by SDS-PAGE and western blot analysis. In the tumor prevention model, no tumor was detected in the mice vaccinated with the mE7 protein. After 40 days, the tumor-free mice and control mice were challenged with 2×105 TC-1 cells. All control mice developed tumors six days later, but mE7 immunized mice were tumor free until 90 days. In the tumor therapy model, the TC-1 cells were initially injected subcutaneously, and the mice were subsequently vaccinated. Vaccination against the mE7 protein may significantly inhibit TC-1 cell growth compared to the control. These results demonstrated that immunization with the HPV16 mE7 protein elicited a long-term protective immunity against TC-1 tumor growth and generated a significant inhibition of TC-1 growth in a TC-1 mouse model.
Collapse
Affiliation(s)
- Yan-Li Li
- School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China ; Institute of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Zhong-Liang Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yue Zhao
- Institute of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Jing Zhang
- Institute of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
9
|
Decrausaz L, Pythoud C, Domingos-Pereira S, Derré L, Jichlinski P, Nardelli-Haefliger D. Intravaginal live attenuated Salmonella increase local antitumor vaccine-specific CD8 + T cells. Oncoimmunology 2014; 2:e22944. [PMID: 23483225 PMCID: PMC3583940 DOI: 10.4161/onci.22944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have recently reported that the intravaginal instillation of synthetic Toll-like receptor 3 (TLR3) or TLR9 agonists after a subcutaneous vaccination against human papillomavirus E7 highly increases (~5-fold) the number of vaccine-specific CD8+ T cells in the genital mucosa of mice, without affecting E7-specific systemic responses. Here, we show that the instillation of live attenuated Salmonella enterica serovar Typhimurium similarly, though more efficiently (~15- fold), increases both E7-specific and total CD8+ T cells in the genital mucosa. Cancer immunotherapeutic strategies combining vaccination with local immunostimulation with live bacteria deserve further investigations.
Collapse
Affiliation(s)
- Loane Decrausaz
- Department of Urology; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
AIM To evaluate the inhibitory effect of a recombinant human papillomavirus (HPV) fusion protein vaccine on oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS An animal model of OSCC was established using human peripheral blood lymphocyte reconstituted nonobese diabetic/severe combined immunodeficiency mice. HPV vaccine was subcutaneously injected into mice after tumor establishment. Tumors and spleens were measured, weighed and stained with hematoxylin and eosin. Lymphocyte subpopulations and cytotoxicity were analyzed with flow cytometric and cytotoxic T lymphocyte assay. RESULTS The average weight and volume of tumors were significantly lower in the vaccine group than in the control group from day 27. Mice in both groups had high percentages of human CD3+ and CD3+CD8+ T lymphocytes. An elevated percentage of human CD3+CD16+56+ natural killer cells was found in the vaccine group. Moreover, vaccine increased the infiltration of human CD3 and UCHL-1+ cells in tumor tissues and enhanced cytotoxicity. CONCLUSIONS The HPV fusion protein vaccine induces tumor cell death, lymphocyte infiltration and therefore suppresses tumor growth and protects against OSCC.
Collapse
|
11
|
Suppression of breast tumor growth by DNA vaccination against phosphatase of regenerating liver 3. Gene Ther 2013; 20:834-45. [PMID: 23364316 DOI: 10.1038/gt.2013.5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/14/2012] [Accepted: 12/31/2012] [Indexed: 12/18/2022]
Abstract
Phosphatase of regenerating liver (PRL)-3 is highly expressed in multiple cancers and has important roles in cancer development. Some small-molecule inhibitors and antibodies targeting PRL-3 have been recently reported to inhibit tumor growth effectively. To determine whether PRL-3-targeted DNA vaccination can induce immune response to prevent or inhibit the tumor growth, we established mouse D2F2 breast cancer cells expressing PRL-3 (D2F2/PRL-3) and control cells (D2F2/NC) with lentivirus, and constructed pVAX1-Igκ-PRL-3 plasmid (named as K-P3) as DNA vaccine to immunize BALB/c mice. We found that the K-P3 vaccine delivered by gene gun significantly prevented the growth of D2F2/PRL-3 compared with pVAX1-vector (P<0.01), but not of D2F2/NC, and improved the survival of D2F2/PRL-3-innoculated mice. Both PRL-3-targeted cytotoxic T lymphocytes (CTLs) and T-helper type 1 cell immune response (production of high levels of interferon-γ and tumor necrosis factor-α) were found to be involved in the preventive effect. Furthermore, PRL-3-targeted DNA immunization inhibited tumor growth of D2F2/PRL-3 cells in mice. We also evaluated the potential of immunization with PRL-3 protein, but no significant therapeutic or preventive effect was obtained on tumor growth. To enhance the immunity of PRL-3, we incorporated different molecular adjuvants, such as Mycobacterium tuberculosis heat-shock protein, CTL antigen 4 and M. tuberculosis T-cell stimulatory epitope (MT), into K-P3 vaccine for expressing the fusion proteins. We found that these adjuvant molecules did not significantly improve the antitumor activity of PRL-3 vaccine, but enhanced the production of PRL-3 antibodies in immunized mice. Summarily, our findings demonstrate that PRL-3-targeted DNA vaccine can generate significantly preventive and therapeutic effects on the growth of breast cancer expressing PRL-3 through the induction of cellular immune responses to PRL-3.
Collapse
|
12
|
Song X, Guo W, Cui J, Qian X, Yi L, Chang M, Cai Q, Zhao Q. A tritherapy combination of a fusion protein vaccine with immune-modulating doses of sequential chemotherapies in an optimized regimen completely eradicates large tumors in mice. Int J Cancer 2011; 128:1129-38. [PMID: 20473939 DOI: 10.1002/ijc.25451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor-induced immunosuppression plays a critical role in both impeding tumor-specific immune responses and limiting the effects of cancer immunotherapy. Analyses of regulatory cells recruited during the growth of the E7-expressing tumor, TC-1, revealed a high percentage of regulatory T cells (Tregs) as well as myeloid-derived suppressor cells (MDSCs) in spleens and tumors. In this study, we proposed that treatment with immune-modulating doses of cyclophosphamide (CTX) and all-trans retinoic acid (ATRA) would result in a beneficial tumor microenvironment with the suppression of Tregs and MDSCs and, thus, enhance the effect of a human papillomavirus protein vaccine. Our results showed that CTX preconditioning and persistent ATRA treatment along with the vaccine achieved long-term survival and induced long-term memory responses. However, the effect of the antitumor response sharply declined when the tritherapy was initiated after the optimal therapeutic time. The more intensive regimen could rescue the effect of the tritherapy accompanied by the decreased percentage of Tregs and MDSCs in spleens and tumors. Besides, a favorable host environment was created by the reduced secretion of interleukin-10 and 6 and vascular endothelial growth factor (VEGF) in the tumor niche and decreased the expression of phosphorylation-signal transducer and activator of transcription 3 of TC-1 tumors. Our data shed light on the immune-modulating doses of sequential chemoimmunotherapeutic strategy targeting not only the tumor but also its microenvironment, which suggests a potential clinical benefit for the immunotherapy of HPV-associated malignancies.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Cellular and Molecular Biology, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Hung CF, Wu TC, Monie A, Roden R. Antigen-specific immunotherapy of cervical and ovarian cancer. Immunol Rev 2009; 222:43-69. [PMID: 18363994 DOI: 10.1111/j.1600-065x.2008.00622.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We contrast the efforts to treat ovarian cancer and cervical cancer through vaccination because of their different pathobiology. A plethora of approaches have been developed for therapeutic vaccination against cancer, many of which target defined tumor-associated antigens (TAAs). Persistent infection with oncogenic human papillomavirus (HPV) types causes cervical cancer. Furthermore, cervical cancer patients frequently mount both humoral and T-cell immune responses to the HPV E6 and E7 oncoproteins, whose expression is required for the transformed phenotype. Numerous vaccine studies target these viral TAAs, including recent trials that may enhance clearance of pre-malignant disease. By contrast, little is known about the etiology of epithelial ovarian cancer. Although it is clear that p53 mutation or loss is a critical early event in the development of epithelial ovarian cancer, no precursor lesion has been described for the most common serous histotype, and even the location of its origin is debated. These issues have complicated the selection of appropriate ovarian TAAs and the design of vaccines. Here we focus on mesothelin as a promising ovarian TAA, because it is overexpressed and immunogenic at high frequency in patients, is displayed on the cell surface, and potentially contributes to ovarian cancer biology.
Collapse
Affiliation(s)
- Chien-Fu Hung
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
15
|
Song X, Ye D, Liu B, Cui J, Zhao X, Yi L, Liang J, Song J, Zhang Z, Zhao Q. Combination of all-trans retinoic acid and a human papillomavirus therapeutic vaccine suppresses the number and function of immature myeloid cells and enhances antitumor immunity. Cancer Sci 2009; 100:334-40. [PMID: 19068090 PMCID: PMC11158584 DOI: 10.1111/j.1349-7006.2008.01037.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/08/2008] [Accepted: 10/14/2008] [Indexed: 01/08/2023] Open
Abstract
Despite advances in the development of human papillomavirus (HPV) prophylactic vaccines, little progress has been made in the field of therapeutic vaccines in recent years. In the present study, we found a significant accumulation of immature myeloid cells (ImC) in large TC-1 tumors and demonstrated that a HPV therapeutic vaccine restored antitumor immune responses with the correction of aberrant myeloid cell differentiation by all-trans retinoic acid (ATRA). Our study demonstrated that combining ATRA with vaccination not only decreased the number of Gr-1+ CD11b+ ImC, but for the first time also suppressed the function of Gr-1+ CD11b+ ImC with decreased expression of CD80. Furthermore, large numbers of CD11c+ CD80+, CD11c+ CD86+, and CD11c+ MHCII+ mature dendritic cells were recruited. The combination therapy generated significantly increased numbers of functional E7-specific T cells with elevated interferon- secretion and enhanced cytotoxic T-cell activity. These findings suggest potential clinical benefits for the combined use of ATRA and HPV therapeutic vaccines.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Cellular and Molecular Biology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bolhassani A, Rafati S. Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines 2008; 7:1185-99. [PMID: 18844593 DOI: 10.1586/14760584.7.8.1185] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heat-shock proteins (HSPs) have been known as multifunctional proteins. They facilitate the folding and unfolding of proteins, participate in vesicular transport processes, prevent protein aggregation in the densely packed cytosol and are involved in signaling processes. HSPs have been involved in different fields, including autoimmunity, immunity to infections and tumor immunology. Although there are many different kinds of HSPs, only some HSPs, including HSP70 and Gp96, have immunological properties. HSP molecules have been applied into DNA- or protein (peptide)-based vaccines as antigens, chaperones or adjuvants. HSP-based vaccines have been shown to immunize against cancer and infectious diseases in both prophylactic and therapeutic protocols. The immunogenicity of HSPs results from two different properties: a peptide-dependent capacity to chaperone and elicit adaptive cytotoxic T-lymphocyte responses against antigenic peptides and a peptide-independent immunomodulatory capacity. Furthermore, HSPs could be immunoregulatory agents with potent and widely applicable therapeutic uses. Accordingly, certain HSPs, such as HSP70 and Gp96, are highly effective carrier molecules for cross-presentation. Their ability in eliciting immune responses against different pathogens (parasite and virus) and their role in cancer immunity will be discussed in this review.
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
17
|
Huh WK, Roden RBS. The future of vaccines for cervical cancer. Gynecol Oncol 2008; 109:S48-56. [PMID: 18482559 DOI: 10.1016/j.ygyno.2008.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/02/2008] [Indexed: 11/25/2022]
Abstract
Cervical cancer continues to cause significant morbidity and mortality worldwide, making prophylactic cervical cancer vaccines an important focus for cervical cancer prevention. The increasing accessibility of these vaccines worldwide has the potential to greatly decrease the incidence and burden of disease in the future. However, current prophylactic vaccines offer no therapeutic benefit for persons already infected with human papillomavirus HPV types targeted by vaccines or persons with precancerous lesions or cervical cancer. The protection offered by current vaccines is primarily against HPV types used to derive the vaccine, although partial cross-protection for related virus types has been observed. Herein, we describe findings from preclinical and clinical studies that employ vaccine strategies that have the potential to shape the future of vaccines against cervical cancer. Modalities include prophylactic strategies to target more oncogenic virus types by using the minor capsid antigen L2 and/or by increasing the number of types used to derive virus-like particle vaccines. Therapeutic strategies include the development of vaccines against HPV early proteins (targets for cellular immunity) for the resolution of precancerous lesions and cervical cancer. Future applications of existing virus-like particle-based vaccines are also discussed.
Collapse
Affiliation(s)
- Warner K Huh
- Division of Gynecologic Oncology, University of Alabama at Birmingham, 618 20th Street South, OHB Room 538, Birmingham, AL 35233, USA.
| | | |
Collapse
|
18
|
Hung CF, Ma B, Monie A, Tsen SW, Wu TC. Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opin Biol Ther 2008; 8:421-39. [PMID: 18352847 DOI: 10.1517/14712598.8.4.421] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Cervical cancer is the second largest cause of cancer deaths in women worldwide. It is now evident that persistent infection with high-risk human papillomavirus (HPV) is necessary for the development and maintenance of cervical cancer. Thus, effective vaccination against HPV represents an opportunity to restrain cervical cancer and other important cancers. The FDA recently approved the HPV vaccine Gardasil for the preventive control of HPV, using HPV virus-like particles (VLP) to generate neutralizing antibodies against major capsid protein, L1. However, prophylactic HPV vaccines do not have therapeutic effects against pre-existing HPV infections and HPV-associated lesions. Furthermore, due to the considerable burden of HPV infections worldwide, it would take decades for preventive vaccines to affect the prevalence of cervical cancer. Thus, in order to speed up the control of cervical cancer and treat current infections, the continued development of therapeutic vaccines against HPV is critical. Therapeutic HPV vaccines can potentially eliminate pre-existing lesions and malignant tumors by generating cellular immunity against HPV-infected cells that express early viral proteins such as E6 and E7. OBJECTIVE This review discusses the future directions of therapeutic HPV vaccine approaches for the treatment of established HPV-associated malignancies, with emphasis on current progress of HPV vaccine clinical trials. METHODS Relevant literature is discussed. RESULTS/CONCLUSION Though their development has been challenging, many therapeutic HPV vaccines have been shown to induce HPV-specific antitumor immune responses in preclinical animal models and several promising strategies have been applied in clinical trials. With continued progress in the field of vaccine development, HPV therapeutic vaccines may provide a potentially promising approach for the control of lethal HPV-associated malignancies.
Collapse
Affiliation(s)
- Chien-Fu Hung
- The Johns Hopkins University School of Medicine, Department of Pathology, CRBII 309, 1550 Orleans Street, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
19
|
Liu B, Ye D, Song X, Zhao X, Yi L, Song J, Zhang Z, Zhao Q. A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunity and antiangiogenesis. Vaccine 2008; 26:1387-96. [DOI: 10.1016/j.vaccine.2007.12.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/06/2007] [Accepted: 12/13/2007] [Indexed: 12/28/2022]
|
20
|
Lu Y, Zhang Z, Liu Q, Liu B, Song X, Wang M, Zhao X, Zhao Q. Immunological protection against HPV16 E7-expressing human esophageal cancer cell challenge by a novel HPV16-E6/E7 fusion protein based-vaccine in a Hu-PBL-SCID mouse model. Biol Pharm Bull 2007; 30:150-6. [PMID: 17202676 DOI: 10.1248/bpb.30.150] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing evidence has suggested that infection with high-risk human papillomavirus (HPVs) is closely associated with esophageal squamous cell carcinoma (ESCC) in China. The E6 and E7 oncoproteins expressed in ESCC are considered as attractive tumor-specific antigen targets for immunotherapy. We have reported that the HPV16 mE6delta/mE7/TBhsp70delta fusion protein vaccination induced powerful anti-tumor immunity against TC-1 tumor cells in a C57BL/6 mouse model. In the present study, we further evaluate the protective efficacy of this fusion protein vaccine using an HPV E7-expressing human ESCC cell line (EC9706) and a Hu-PBL-SCID mouse model. We demonstrated that immunization with the fusion protein vaccine caused significant inhibition of tumor growth with the delay time to tumor detection (tests vs. controls, 16 d vs. 9 d, p<0.01) and much smaller tumor size (p<0.01) in vivo. The inhibitory rate was ca. 69.6%, and 25% of the fusion protein vaccinated-mice remained tumor free by the end of the experiment (42 d). Furthermore, the activated lymphocytes (CD8+) were capable of infiltrating into the tumor site, and much more apoptotic cells along with activation of caspase-3 were observed in the tumors from vaccinated-mice. Also, high expression levels of human IFN-gamma, TNF-alpha, granzyme B and perforin were detected in the tumors from vaccinated-mice. Therefore, we concluded that the HPV16 mE6delta/mE7/TBhsp70delta fusion protein vaccine is able to stimulate cellular-mediated immune response against E7-containing ESCC cells through CD8+-dependent CTL-induced apoptosis in Hu-PBL-SCID mice. These findings provide a scientific basis for HPV E7-expressing ESCC active immunotherapy.
Collapse
Affiliation(s)
- Yuanzhi Lu
- Laboratory of Cellular and Molecular Biology, Cancer Institute & Hospital, Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Gastric cancer is still one of the leading causes of cancer-related death worldwide. Prevention and treatment of gastric cancer through vaccination has been difficult owing to lack of a specific target and poor immunity. A number of vaccination strategies have been used to augment immune responses against gastric cancer and some progress has been made. In a series of studies, the authors have focused on gastric cancer vaccination approaches based on MG7 mimotopes, which are mimicry epitopes selected from phage-displayed oligopeptide libraries with a gastric cancer cell-specific monoclonal antibody, MG7-Ab. Strategies employed in these studies include viral or plasmid vectors in combination with carrier sequence or unmethylated CpG with synthetic peptides in nanoemulsion. The results demonstrated that MG7 mimotopes could effectively and specifically induce both cellular and humoral immune reactions and in vivo antitumor responses. In particular, a four-MG7 mimotope DNA vaccine was found to elicit much stronger antitumor immune responses in mice compared with its single-mimotope counterpart. These encouraging findings might pave the way for the development of novel MG7 antigen-based vaccination approaches for human gastric cancer. The review also discusses other immune-enhancing vaccination strategies for gastric cancer.
Collapse
Affiliation(s)
- Dexin Zhang
- The Fourth Military Medical University, State Key Laboratory for Tumor Biology and Institute of Digestive Diseases, Xijing Hospital, 15 West Chang-Le Road, Xi'an 710032, PR China.
| | | | | |
Collapse
|