1
|
Kazakova A, Zhelnov P, Sidorov R, Rogova A, Vasileva O, Ivanov R, Reshetnikov V, Muslimov A. DNA and RNA vaccines against tuberculosis: a scoping review of human and animal studies. Front Immunol 2024; 15:1457327. [PMID: 39421744 PMCID: PMC11483866 DOI: 10.3389/fimmu.2024.1457327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction To comprehensively identify and provide an overview of in vivo or clinical studies of nucleic acids (NA)-based vaccines against TB we included human or animal studies of NA vaccines for the prevention or treatment of TB and excluded in vitro or in silico research, studies of microorganisms other than M. tuberculosis, reviews, letters, and low-yield reports. Methods We searched PubMed, Scopus, Embase, selected Web of Science and ProQuest databases, Google Scholar, eLIBRARY.RU, PROSPERO, OSF Registries, Cochrane CENTRAL, EU Clinical Trials Register, clinicaltrials.gov, and others through WHO International Clinical Trials Registry Platform Search Portal, AVMA and CABI databases, bioRxiv, medRxiv, and others through OSF Preprint Archive Search. We searched the same sources and Google for vaccine names (GX-70) and scanned reviews for references. Data on antigenic composition, delivery systems, adjuvants, and vaccine efficacy were charted and summarized descriptively. Results A total of 18,157 records were identified, of which 968 were assessed for eligibility. No clinical studies were identified. 365 reports of 345 animal studies were included in the review. 342 (99.1%) studies involved DNA vaccines, and the remaining three focused on mRNA vaccines. 285 (82.6%) studies used single-antigen vaccines, while 48 (13.9%) used multiple antigens or combinations with adjuvants. Only 12 (3.5%) studies involved multiepitope vaccines. The most frequently used antigens were immunodominant secretory antigens (Ag85A, Ag85B, ESAT6), heat shock proteins, and cell wall proteins. Most studies delivered naked plasmid DNA intramuscularly without additional adjuvants. Only 4 of 17 studies comparing NA vaccines to BCG after M. tuberculosis challenge demonstrated superior protection in terms of bacterial load reduction. Some vaccine variants showed better efficacy compared to BCG. Systematic review registration https://osf.io/, identifier F7P9G.
Collapse
Affiliation(s)
- Alisa Kazakova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Pavel Zhelnov
- Zheln, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Roman Sidorov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Perm, Russia
| | - Anna Rogova
- Saint-Petersburg State Chemical-Pharmaceutical University, St. Petersburg, Russia
- Laboratory of Nano- and Microencapsulation of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Olga Vasileva
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Albert Muslimov
- Saint-Petersburg State Chemical-Pharmaceutical University, St. Petersburg, Russia
| |
Collapse
|
2
|
Multicomponent Pseudomonas aeruginosa Vaccines Eliciting Th17 Cells and Functional Antibody Responses Confer Enhanced Protection against Experimental Acute Pneumonia in Mice. Infect Immun 2022; 90:e0020322. [PMID: 36069593 PMCID: PMC9584304 DOI: 10.1128/iai.00203-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative pathogen Pseudomonas aeruginosa is a common cause of pneumonia in hospitalized patients. Its increasing antibiotic resistance and widespread occurrence present a pressing need for vaccines. We previously showed that a P. aeruginosa type III secretion system protein, PopB, elicits a strong Th17 response in mice after intranasal (IN) immunization and confers antibody-independent protection against pneumonia in mice. In the current study, we evaluated the immunogenicity and protective efficacy in mice of the combination of PopB (purified with its chaperone protein PcrH) and OprF/I, an outer membrane hybrid fusion protein, compared with immunization with the proteins individually either by the intranasal (IN) or subcutaneous (SC) routes. Our results show that after vaccination, a Th17 recall response from splenocytes was detected only in mice vaccinated with PopB/PcrH, either alone or in combination with OprF/I. Mice immunized with the combination of PopB/PcrH and OprF/I had enhanced protection in an acute lethal P. aeruginosa pneumonia model, regardless of vaccine route, compared with mice vaccinated with either alone or adjuvant control. Immunization generated IgG titers against the vaccine proteins and whole P. aeruginosa cells. Interestingly, none of these antisera had opsonophagocytic killing activity, but antisera from mice immunized with vaccines containing OprF/I, had the ability to block IFN-γ binding to OprF/I, a known virulence mechanism. Hence, vaccines combining PopB/PcrH with OprF/I that elicit functional antibodies lead to a broadly and potently protective vaccine against P. aeruginosa pulmonary infections.
Collapse
|
3
|
Vaccination of mice with hybrid protein containing Exotoxin S and PcrV with adjuvants alum and MPL protects Pseudomonas aeruginosa infections. Sci Rep 2022; 12:1325. [PMID: 35079054 PMCID: PMC8789797 DOI: 10.1038/s41598-022-05157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas aeruginosa as a common pathogen causing urinary tract infections (UTIs) has been resistant to different antibiotics and developing an effective vaccine can be an alternative strategy. In the present study, the immunogenicity and protection efficacy of formulations composed of a hybrid protein composed of P. aeruginosa V-antigen (PcrV) and exoenzyme S (ExoS) with alum and MPL were evaluated. The hybrid protein could increase the specific systemic and mucosal immune responses, as well as cellular responses as compared with control groups. Combining of alum or MPL adjuvant with the hybrid protein significantly improved the levels of IgG1, serum IgA, mucosal IgG, and IL-17 as compared to the ExoS.PcrV alone. After bladder challenge with a P. aeruginosa strain, the bacterial loads of bladder and kidneys were significantly decreased in mice received ExoS.PcrV admixed with alum and ExoS.PcrV admixed with MPL than controls. The present study indicated that immunization of mice with a hybrid protein composed of ExoS and PcrV could induce multifactorial immune responses and opsonize the bacteria and decrease the viable bacterial cells. Because P. aeruginosa have caused therapeutic challenges worldwide, our study proposed ExoS.PcrV + alum and ExoS.PcrV + MPL as promising candidates for the prevention of infections caused by P. aeruginosa.
Collapse
|
4
|
Zhang G, Liu W, Gao Z, Chang Y, Yang S, Peng Q, Ge S, Kang B, Shao J, Chang H. Antigenic and immunogenic properties of recombinant proteins consisting of two immunodominant African swine fever virus proteins fused with bacterial lipoprotein OprI. Virol J 2022; 19:16. [PMID: 35062983 PMCID: PMC8781047 DOI: 10.1186/s12985-022-01747-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
African swine fever (ASF) is a highly fatal swine disease, which threatens the global pig industry. There is no commercially available vaccine against ASF and effective subunit vaccines would represent a real breakthrough.
Methods
In this study, we expressed and purified two recombinant fusion proteins, OPM (OprI-p30-modified p54) and OPMT (OprI-p30-modified p54-T cell epitope), which combine the bacterial lipoprotein OprI with ASF virus proteins p30 and p54. Purified recombinant p30 and modified p54 expressed alone or fused served as controls. The activation of dendritic cells (DCs) by these proteins was first assessed. Then, humoral and cellular immunity induced by the proteins were evaluated in mice.
Results
Both OPM and OPMT activated DCs with elevated expression of relevant surface molecules and proinflammatory cytokines. Furthermore, OPMT elicited the highest levels of antigen-specific IgG responses, cytokines including interleukin-2, interferon-γ, and tumor necrosis factor-α, and proliferation of lymphocytes. Importantly, the sera from mice vaccinated with OPM or OPMT neutralized more than 86% of ASF virus in vitro.
Conclusions
Our results suggest that OPMT has good immunostimulatory activities and immunogenicity in mice, and might be an appropriate candidate to elicit immune responses in swine. Our study provides valuable information on further development of a subunit vaccine against ASF.
Collapse
|
5
|
Molecular Characterization and Designing of a Novel Multiepitope Vaccine Construct Against Pseudomonas aeruginosa. Int J Pept Res Ther 2022; 28:49. [PMID: 35069055 PMCID: PMC8762192 DOI: 10.1007/s10989-021-10356-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/30/2022]
Abstract
ABSTRACT Pseudomonas aeruginosa, an ESKAPE pathogen causes many fatal clinical diseases in humans across the globe. Despite an increase in clinical instances of Pseudomonas infection, there is currently no effective vaccine or treatment available. The major membrane protein candidate of the P. aeruginosa bacterial cell is known to be a critical component for cellular bacterial susceptibility to antimicrobial peptides and survival inside the host organisms. Therefore, the current computational study aims to examine P. aeruginosa's major membrane protein, OprF, and OprI, in order to design linear B-cell, cytotoxic T-cell, and helper T-cell peptide-based vaccine constructs. Utilizing various immune-informatics tools and databases, a total of two B-cells and twelve T-cells peptides were predicted. The final vaccine design was simulated to generate a high-quality three-dimensional structure, which included epitopes, adjuvant, and linkers. The vaccine was shown to be nonallergenic, antigenic, soluble, and had the best biophysical properties. The vaccine and Toll-like receptor 4 have a strong and stable interaction, according to protein-protein docking and molecular dynamics simulations. Additionally, in silico cloning was employed to see how the developed vaccine expressed in the pET28a (+) vector. Ultimately, an immune simulation was performed to see the vaccine efficacy. In conclusion, the newly developed vaccine appears to be a promising option for a vaccine against P. aeruginosa infection. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10989-021-10356-z.
Collapse
|
6
|
Fakoor MH, Mousavi Gargari SL, Owlia P, Sabokbar A. Protective Efficacy of the OprF/OprI/PcrV Recombinant Chimeric Protein Against Pseudomonas aeruginosa in the Burned BALB/c Mouse Model. Infect Drug Resist 2020; 13:1651-1661. [PMID: 32606816 PMCID: PMC7294051 DOI: 10.2147/idr.s244081] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Pseudomonas aeruginosa infection is the major cause of death in burn patients. Thus, in this study, a chimeric vaccine harboring the OprF185–350–OprI22–83–PcrV was designed and expressed in Escherichia coli. The immunogenicity of the recombinant chimer, OprI, OprF, and PcrV was studied in a burned mouse model. Methodology Recombinant proteins including the proposed chimer, OprF, OprI, and PcrV were expressed in the E.coli. Mice were immunized with the purified recombinant proteins, and the antibody titre was estimated in the sera obtained from immunized mice. Immunized and control mice were challenged with 2, 5, and 10xLD50 of the P. aeruginosa strains (PAO1, PAK, and R5), and microbial counts were measured in the skin, liver, spleen, and kidney of the studied mice. Results Results showed that the antibody titre (total IgG) was significantly increased by injection of 10 μg of chimeric protein in the experimental groups compared to the control groups. The antibody survival titre was high until 235 days after administration of the second booster. The survival rate of the mice infected with 10xLD50 was significantly increased and the number of bacteria was reduced, especially in the internal organs (kidney, spleen, and liver) compared to the mice immunized with any of the OprF, OprI, and PcrV proteins alone. Conclusion The findings of our study revealed that the chimeric protein is a promising vaccine candidate for control of the P. aeruginosa infection.
Collapse
Affiliation(s)
| | | | - Parviz Owlia
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Azar Sabokbar
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
7
|
Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy. Front Immunol 2020; 11:283. [PMID: 32153587 PMCID: PMC7050619 DOI: 10.3389/fimmu.2020.00283] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Today, vaccinologists have come to understand that the hallmark of any protective immune response is the antigen. However, it is not the whole antigen that dictates the immune response, but rather the various parts comprising the whole that are capable of influencing immunogenicity. Protein-based antigens hold particular importance within this structural approach to understanding immunity because, though different molecules can serve as antigens, only proteins are capable of inducing both cellular and humoral immunity. This fact, coupled with the versatility and customizability of proteins when considering vaccine design applications, makes protein-based vaccines (PBVs) one of today's most promising technologies for artificially inducing immunity. In this review, we follow the development of PBV technologies through time and discuss the antigen-specific receptors that are most critical to any immune response: pattern recognition receptors, B cell receptors, and T cell receptors. Knowledge of these receptors and their ligands has become exceptionally valuable in the field of vaccinology, where today it is possible to make drastic modifications to PBV structure, from primary to quaternary, in order to promote recognition of target epitopes, potentiate vaccine immunogenicity, and prevent antigen-associated complications. Additionally, these modifications have made it possible to control immune responses by modulating stability and targeting PBV to key immune cells. Consequently, careful consideration should be given to protein structure when designing PBVs in the future in order to potentiate PBV efficacy.
Collapse
Affiliation(s)
- Kyle Saylor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- Locus Biosciences, Morrisville, NC, United States
| | - Taylor Lohneis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- BioPharmaceutical Technology Department, GlaxoSmithKline, Rockville, MD, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Protective Efficacy of the Trivalent Pseudomonas aeruginosa Vaccine Candidate PcrV-OprI-Hcp1 in Murine Pneumonia and Burn Models. Sci Rep 2017. [PMID: 28638106 PMCID: PMC5479855 DOI: 10.1038/s41598-017-04029-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas aeruginosa is a formidable pathogen that is responsible for a diverse spectrum of human infectious diseases, resulting in considerable annual mortality rates. Because of biofilm formation and its ability of rapidly acquires of resistance to many antibiotics, P. aeruginosa related infections are difficult to treat, and therefore, developing an effective vaccine is the most promising method for combating infection. In the present study, we designed a novel trivalent vaccine, PcrV28-294-OprI25-83-Hcp11-162 (POH), and evaluated its protective efficacy in murine pneumonia and burn models. POH existed as a dimer in solution, it induced better protection efficacy in P. aeruginosa lethal pneumonia and murine burn models than single components alone when formulated with Al(OH)3 adjuvant, and it showed broad immune protection against several clinical isolates of P. aeruginosa. Immunization with POH induced strong immune responses and resulted in reduced bacterial loads, decreased pathology, inflammatory cytokine expression and inflammatory cell infiltration. Furthermore, in vitro opsonophagocytic killing assay and passive immunization studies indicated that the protective efficacy mediated by POH vaccination was largely attributed to POH-specific antibodies. Taken together, these data provided evidence that POH is a potentially promising vaccine candidate for combating P. aeruginosa infection in pneumonia and burn infections.
Collapse
|
9
|
Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol Adv 2017; 35:375-389. [PMID: 28288861 DOI: 10.1016/j.biotechadv.2017.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023]
Abstract
Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their mechanisms of action, structural or sequence requirements for activity, sequence modifications to enhance their activity or simplify production, adverse effects, and examples of vaccines in preclinical or human clinical trials.
Collapse
|
10
|
N-terminal fusion of a toll-like receptor 2-ligand to a Neospora caninum chimeric antigen efficiently modifies the properties of the specific immune response. Parasitology 2016; 143:606-16. [DOI: 10.1017/s0031182016000056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SUMMARYImmunoprophylactic products against neosporosis during pregnancy should induce an appropriately balanced immune response. In this respect, OprI, a bacterial lipoprotein targeting toll like receptor (TLR)2, provides promising adjuvant properties. We report on the manipulation of the innate and the T-cell immune response through the fusion of OprI with the Neospora caninum chimeric protein Mic3-1-R. In contrast to Mic3-1-R, OprI-MIC3-1-R significantly activated bone-marrow dendritic cells from naïve mice. Mice immunized with OprI-Mic3-1-R induced an immune response with mixed T helper (Th)1 and Th2 properties (high levels of both immunoglobulin (Ig)G1 and IgG2a and of interleukin (IL)-10, IL-12(p70) and interferon-γ responses) whereas Mic3-1-R+saponin induced a clear Th2-biased response (low IgG2a and high IL-4 and IL-10). After mating and challenge with N. caninum, increased expression of interferon-γ was only found in placentas from OprI-Mic3-1-R immunized dams. However, no protection against vertical transmission and neonatal mortality was observed in either of the two groups. These results indicated that more exhaustive studies must be done to elucidate the immune mechanisms associated with transplacental transmission. Antigen linkage to TLR2-ligands, such as OprI, is a useful tool to investigate this enigma by reorienting the innate and adaptive immune responses against other candidate antigens in future studies.
Collapse
|
11
|
Bruffaerts N, Pedersen LE, Vandermeulen G, Préat V, Stockhofe-Zurwieden N, Huygen K, Romano M. Increased B and T Cell Responses in M. bovis Bacille Calmette-Guérin Vaccinated Pigs Co-Immunized with Plasmid DNA Encoding a Prototype Tuberculosis Antigen. PLoS One 2015; 10:e0132288. [PMID: 26172261 PMCID: PMC4501720 DOI: 10.1371/journal.pone.0132288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/11/2015] [Indexed: 11/18/2022] Open
Abstract
The only tuberculosis vaccine currently available, bacille Calmette-Guérin (BCG) is a poor inducer of CD8(+) T cells, which are particularly important for the control of latent tuberculosis and protection against reactivation. As the induction of strong CD8(+) T cell responses is a hallmark of DNA vaccines, a combination of BCG with plasmid DNA encoding a prototype TB antigen (Ag85A) was tested. As an alternative animal model, pigs were primed with BCG mixed with empty vector or codon-optimized pAg85A by the intradermal route and boosted with plasmid delivered by intramuscular electroporation. Control pigs received unformulated BCG. The BCG-pAg85A combination stimulated robust and sustained Ag85A specific antibody, lymphoproliferative, IL-6, IL-10 and IFN-γ responses. IgG1/IgG2 antibody isotype ratio reflected the Th1 helper type biased response. T lymphocyte responses against purified protein derivative of tuberculin (PPD) were induced in all (BCG) vaccinated animals, but responses were much stronger in BCG-pAg85A vaccinated pigs. Finally, Ag85A-specific IFN-γ producing CD8(+) T cells were detected by intracellular cytokine staining and a synthetic peptide, spanning Ag85A131-150 and encompassing two regions with strong predicted SLA-1*0401/SLA-1*0801 binding affinity, was promiscuously recognized by 6/6 animals vaccinated with the BCG-pAg85A combination. Our study provides a proof of concept in a large mammalian species, for a new Th1 and CD8(+) targeting tuberculosis vaccine, based on BCG-plasmid DNA co-administration.
Collapse
Affiliation(s)
- Nicolas Bruffaerts
- Service Immunology, Scientific Institute for Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
| | - Lasse E. Pedersen
- Section for Immunology and Vaccinology, Technical University of Denmark, Bulowsvej Frederiksberg C, Denmark
| | - Gaëlle Vandermeulen
- Louvain Drug Research Institute, Pharmaceutics and Drug Delivery, Université Catholique de Louvain, Brussels, Belgium
| | - Véronique Préat
- Louvain Drug Research Institute, Pharmaceutics and Drug Delivery, Université Catholique de Louvain, Brussels, Belgium
| | - Norbert Stockhofe-Zurwieden
- Division Infection Biology Central Veterinary Institute, Part of Wageningen U(niversity)&R(esearch); Lelystad, The Netherlands
| | - Kris Huygen
- Service Immunology, Scientific Institute for Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
- * E-mail:
| | - Marta Romano
- Service Immunology, Scientific Institute for Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
| |
Collapse
|
12
|
Ndiaye BP, Thienemann F, Ota M, Landry BS, Camara M, Dièye S, Dieye TN, Esmail H, Goliath R, Huygen K, January V, Ndiaye I, Oni T, Raine M, Romano M, Satti I, Sutton S, Thiam A, Wilkinson KA, Mboup S, Wilkinson RJ, McShane H. Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. THE LANCET. RESPIRATORY MEDICINE 2015; 3:190-200. [PMID: 25726088 PMCID: PMC4648060 DOI: 10.1016/s2213-2600(15)00037-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/26/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND HIV-1 infection is associated with increased risk of tuberculosis and a safe and effective vaccine would assist control measures. We assessed the safety, immunogenicity, and efficacy of a candidate tuberculosis vaccine, modified vaccinia virus Ankara expressing antigen 85A (MVA85A), in adults infected with HIV-1. METHODS We did a randomised, double-blind, placebo-controlled, phase 2 trial of MVA85A in adults infected with HIV-1, at two clinical sites, in Cape Town, South Africa and Dakar, Senegal. Eligible participants were aged 18-50 years, had no evidence of active tuberculosis, and had baseline CD4 counts greater than 350 cells per μL if they had never received antiretroviral therapy or greater than 300 cells per μL (and with undetectable viral load before randomisation) if they were receiving antiretroviral therapy; participants with latent tuberculosis infection were eligible if they had completed at least 5 months of isoniazid preventive therapy, unless they had completed treatment for tuberculosis disease within 3 years before randomisation. Participants were randomly assigned (1:1) in blocks of four by randomly generated sequence to receive two intradermal injections of either MVA85A or placebo. Randomisation was stratified by antiretroviral therapy status and study site. Participants, nurses, investigators, and laboratory staff were masked to group allocation. The second (booster) injection of MVA85A or placebo was given 6-12 months after the first vaccination. The primary study outcome was safety in all vaccinated participants (the safety analysis population). Safety was assessed throughout the trial as defined in the protocol. Secondary outcomes were immunogenicity and vaccine efficacy against Mycobacterium tuberculosis infection and disease, assessed in the per-protocol population. Immunogenicity was assessed in a subset of participants at day 7 and day 28 after the first and second vaccination, and M tuberculosis infection and disease were assessed at the end of the study. The trial is registered with ClinicalTrials.gov, number NCT01151189. FINDINGS Between Aug 4, 2011, and April 24, 2013, 650 participants were enrolled and randomly assigned; 649 were included in the safety analysis (324 in the MVA85A group and 325 in the placebo group) and 645 in the per-protocol analysis (320 and 325). 513 (71%) participants had CD4 counts greater than 300 cells per μL and were receiving antiretroviral therapy; 136 (21%) had CD4 counts above 350 cells per μL and had never received antiretroviral therapy. 277 (43%) had received isoniazid prophylaxis before enrolment. Solicited adverse events were more frequent in participants who received MVA85A (288 [89%]) than in those given placebo (235 [72%]). 34 serious adverse events were reported, 17 (5%) in each group. MVA85A induced a significant increase in antigen 85A-specific T-cell response, which peaked 7 days after both vaccinations and was primarily monofunctional. The number of participants with negative QuantiFERON-TB Gold In-Tube findings at baseline who converted to positive by the end of the study was 38 (20%) of 186 in the MVA85A group and 40 (23%) of 173 in the placebo group, for a vaccine efficacy of 11·7% (95% CI -41·3 to 44·9). In the per-protocol population, six (2%) cases of tuberculosis disease occurred in the MVA85A group and nine (3%) occurred in the placebo group, for a vaccine efficacy of 32·8% (95% CI -111·5 to 80·3). INTERPRETATION MVA85A was well tolerated and immunogenic in adults infected with HIV-1. However, we detected no efficacy against M tuberculosis infection or disease, although the study was underpowered to detect an effect against disease. Potential reasons for the absence of detectable efficacy in this trial include insufficient induction of a vaccine-induced immune response or the wrong type of vaccine-induced immune response, or both. FUNDING European & Developing Countries Clinical Trials Partnership (IP.2007.32080.002), Aeras, Bill & Melinda Gates Foundation, Wellcome Trust, and Oxford-Emergent Tuberculosis Consortium.
Collapse
Affiliation(s)
- Birahim Pierre Ndiaye
- Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Le Dantec, Dakar, Senegal
| | - Friedrich Thienemann
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Martin Ota
- Medical Research Council Unit, Fajara, The Gambia
| | | | - Makhtar Camara
- Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Le Dantec, Dakar, Senegal
| | - Siry Dièye
- Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Le Dantec, Dakar, Senegal
| | - Tandakha Ndiaye Dieye
- Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Le Dantec, Dakar, Senegal
| | - Hanif Esmail
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, Imperial College London, London, UK
| | - Rene Goliath
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kris Huygen
- Immunology Service, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Vanessa January
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ibrahima Ndiaye
- Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Le Dantec, Dakar, Senegal
| | - Tolu Oni
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Public Health Medicine, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Marta Romano
- Immunology Service, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Iman Satti
- Jenner Institute, University of Oxford, Oxford, UK
| | | | - Aminata Thiam
- Centre de Traitement Ambulatoire, Centre Hospitalier Universitaire de Fann, Dakar, Senegal
| | - Katalin A Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, University of Cape Town, Cape Town, South Africa; MRC National Institute for Medical Research, London, UK
| | - Souleymane Mboup
- Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Le Dantec, Dakar, Senegal
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, Imperial College London, London, UK; MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
13
|
Junqueira-Kipnis AP, Marques Neto LM, Kipnis A. Role of Fused Mycobacterium tuberculosis Immunogens and Adjuvants in Modern Tuberculosis Vaccines. Front Immunol 2014; 5:188. [PMID: 24795730 PMCID: PMC4005953 DOI: 10.3389/fimmu.2014.00188] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 04/09/2014] [Indexed: 11/13/2022] Open
Abstract
Several approaches have been developed to improve or replace the only available vaccine for tuberculosis (TB), BCG (Bacille Calmette Guerin). The development of subunit protein vaccines is a promising strategy because it combines specificity and safety. In addition, subunit protein vaccines can be designed to have selected immune epitopes associated with immunomodulating components to drive the appropriate immune response. However, the limited antigens present in subunit vaccines reduce their capacity to stimulate a complete immune response compared with vaccines composed of live attenuated or killed microorganisms. This deficiency can be compensated by the incorporation of adjuvants in the vaccine formulation. The fusion of adjuvants with Mycobacterium tuberculosis (Mtb) proteins or immune epitopes has the potential to become the new frontier in the TB vaccine development field. Researchers have addressed this approach by fusing the immune epitopes of their vaccines with molecules such as interleukins, lipids, lipoproteins, and immune stimulatory peptides, which have the potential to enhance the immune response. The fused molecules are being tested as subunit vaccines alone or within live attenuated vector contexts. Therefore, the objectives of this review are to discuss the association of Mtb fusion proteins with adjuvants; Mtb immunogens fused with adjuvants; and cytokine fusion with Mtb proteins and live recombinant vectors expressing cytokines. The incorporation of adjuvant molecules in a vaccine can be complex, and developing a stable fusion with proteins is a challenging task. Overall, the fusion of adjuvants with Mtb epitopes, despite the limited number of studies, is a promising field in vaccine development.
Collapse
Affiliation(s)
- Ana Paula Junqueira-Kipnis
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia , Brazil
| | - Lázaro Moreira Marques Neto
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia , Brazil
| | - André Kipnis
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia , Brazil
| |
Collapse
|
14
|
Todoroff J, Lemaire MM, Fillee C, Jurion F, Renauld JC, Huygen K, Vanbever R. Mucosal and systemic immune responses to Mycobacterium tuberculosis antigen 85A following its co-delivery with CpG, MPLA or LTB to the lungs in mice. PLoS One 2013; 8:e63344. [PMID: 23675482 PMCID: PMC3651129 DOI: 10.1371/journal.pone.0063344] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/29/2013] [Indexed: 11/18/2022] Open
Abstract
Pulmonary vaccination is a promising route for immunization against tuberculosis because the lung is the natural site of infection with Mycobacterium tuberculosis. Yet, adjuvants with a suitable safety profile need to be found to enhance mucosal immunity to recombinant antigens. The aim of this study was to evaluate the immunogenicity, the safety and the protective efficacy of a subunit vaccine composed of the immunodominant mycolyl-transferase antigen 85A (Ag85A) and one of three powerful mucosal adjuvants: the oligodeoxynucleotide containing unmethylated cytosine-phosphate-guanine motifs (CpG), the monophosphoryl lipid A of Salmonella minnesota (MPLA) or the B subunit of heat-labile enterotoxin of Escherichia coli (LTB). BALB/c mice were vaccinated in the deep lungs. Our results showed that lung administration of these adjuvants could specifically induce different types of T cell immunity. Both CpG and MPLA induced a Th-1 type immune response with significant antigen-specific IFN-γ production by spleen mononuclear cells in vitro and a tendency of increased IFN-γ in the lungs. Moreover, MPLA triggered a Th-17 response reflected by high IL-17A levels in the spleen and lungs. By contrast, LTB promoted a Th-2 biased immune response, with a production of IL-5 but not IFN-γ by spleen mononuclear cells in vitro. CpG did not induce inflammation in the lungs while LTB and MPLA showed a transient inflammation including a neutrophil influx one day after pulmonary administration. Pulmonary vaccination with Ag85A without or with MPLA or LTB tended to decrease bacterial counts in the spleen and lungs following a virulent challenge with M. tuberculosis H37Rv. In conclusion, CpG and MPLA were found to be potential adjuvants for pulmonary vaccination against tuberculosis, providing Th-1 and Th-17 immune responses and a good safety profile.
Collapse
Affiliation(s)
- Julie Todoroff
- Pharmaceutics and Drug Delivery Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Muriel M. Lemaire
- de Duve Institute, Experimental Medicine Unit, Université catholique de Louvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels branch, Brussels, Belgium
| | - Catherine Fillee
- Department of Clinical Biology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Fabienne Jurion
- Ludwig Institute for Cancer Research, Brussels branch, Brussels, Belgium
| | - Jean-Christophe Renauld
- de Duve Institute, Experimental Medicine Unit, Université catholique de Louvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels branch, Brussels, Belgium
| | - Kris Huygen
- Service Immunology, Scientific Institute of Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
| | - Rita Vanbever
- Pharmaceutics and Drug Delivery Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
15
|
Todoroff J, Ucakar B, Inglese M, Vandermarliere S, Fillee C, Renauld JC, Huygen K, Vanbever R. Targeting the deep lungs, Poloxamer 407 and a CpG oligonucleotide optimize immune responses to Mycobacterium tuberculosis antigen 85A following pulmonary delivery. Eur J Pharm Biopharm 2012; 84:40-8. [PMID: 23238272 DOI: 10.1016/j.ejpb.2012.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/07/2012] [Accepted: 11/11/2012] [Indexed: 10/27/2022]
Abstract
The current Bacille Calmette-Guérin vaccine provides variable protection against tuberculosis and new vaccination approaches are urgently needed. Pulmonary vaccination could be the best way to induce a protective immunity against Mycobacterium tuberculosis as it targets its natural site of infection. The aim of this study was to investigate the potential of Poloxamer 407 (P407) combined with a CpG oligonucleotide (CpG) to enhance immune responses to M. tuberculosis antigen 85A (Ag85A) following pulmonary delivery in BALB/c mice. An additional goal of this study was to localize the optimal delivery site of Ag85A within the lungs for generating the most intense immunity. We also investigated the capacity of P407 to prolong the residence time of the antigen within the lungs and we studied the safety of the adjuvants following pulmonary delivery. Targeting the antigen to the deep lungs produced more intense specific immune responses than targeting it to the upper airways. P407 and CpG further increased humoral immune responses and splenocyte proliferation in vitro. CpG strongly increased the Th-1 immune response with high IgG2a/IgG1 ratio, high IFN-γ and TNF-α productions by spleen mononuclear cells in vitro. P407 tended to induce a Th-2 response, as indicated by the slight decrease in IgG2a/IgG1 ratio and the slight increase in IL-5 levels. The combination of P407 and CpG produced the highest Th-1 and Th-17 responses by generating IFN-γ, TNF-α, IL-2, and IL-17A cytokines. Targeting the antigen to the deep lungs and the presence of P407 increased the residence time of the antigen within the lungs. This might explain the enhancement of immune responses induced by these factors. CpG did not induce inflammation in the lungs while P407 produced a reversible alteration of the alveolo-capillary barrier. Adding CpG to P407 did not further increase this alteration of the alveolo-capillary barrier. In conclusion, delivery of Ag85A formulated in a combination of P407 and CpG to the deep lungs induced strong immune responses, with a polyfunctional T cells phenotype.
Collapse
Affiliation(s)
- Julie Todoroff
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmaceutics and Drug Delivery Research Group, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pinto R, Leotta L, Shanahan ER, West NP, Leyh TS, Britton W, Triccas JA. Host cell-induced components of the sulfate assimilation pathway are major protective antigens of Mycobacterium tuberculosis. J Infect Dis 2012; 207:778-85. [PMID: 23225904 DOI: 10.1093/infdis/jis751] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
New therapies to control tuberculosis are urgently required because of the inability of the only available vaccine, BCG, to adequately protect against tuberculosis. Here we demonstrate that proteins of the Mycobacterium tuberculosis sulfate-assimilation pathway (SAP) represent major immunogenic targets of the bacillus, as defined by strong T-cell recognition by both mice and humans infected with M. tuberculosis. SAP proteins displayed increased expression when M. tuberculosis was resident within host cells, which may account in part for their ability to stimulate anti-M. tuberculosis host immunity. Vaccination with the first enzyme in this pathway, adenosine-5'-triphosphate sulfurylase, conferred significant protection against murine tuberculosis and boosted BCG-induced protective immunity in the lung. Therefore, we have identified SAP components as a new family of M. tuberculosis antigens, and we have demonstrated that these components are promising candidate for inclusion in new vaccines to control tuberculosis in humans.
Collapse
Affiliation(s)
- Rachel Pinto
- Mycobacterial Research Program, Centenary Institute, Newtown, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Recombinant lipidated HPV E7 induces a Th-1-biased immune response and protective immunity against cervical cancer in a mouse model. PLoS One 2012; 7:e40970. [PMID: 22815882 PMCID: PMC3399806 DOI: 10.1371/journal.pone.0040970] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 06/18/2012] [Indexed: 02/02/2023] Open
Abstract
The E7 oncoprotein of human papillomavirus (HPV) is an ideal target for developing immunotherapeutic strategies against HPV-associated tumors. However, because protein-based immunogens alone are poor elicitors of the cytotoxic T-lymphocyte (CTL) responses, they have been difficult to exploit for therapeutic purposes. In this study, we report that a recombinant lipoprotein consisting of inactive E7 (E7m) biologically linked to a bacterial lipid moiety (rlipo-E7m) induces the maturation of mouse bone marrow-derived dendritic cells through toll-like receptor 2 (TLR2), skews the immune responses toward the Th1 responses and induces E7-specific CTL responses. We further studied the ability of rlipo-E7m to provide protection against a TC-1 tumor cell challenge in an animal model. Mice prophylactically immunized with two 10-µg doses of rlipo-E7m were found to be free of TC-1 tumor growth. Experiments in a therapeutic immunization model showed that the tumor volume in mice receiving a single dose of rlipo-E7m was less than 0.01 cm3 on day 40, whereas the tumor volume in mice treated with rE7m was 2.28±1.21 cm3. The tumor volume of the entire control group was over 3 cm3. In addition, we demonstrated that the CD8+ T cells play a major role in anti-tumor immunity when administration of rlipo-E7m. These results demonstrate that rlipo-E7m could be a promising candidate for treating HPV-associated tumors.
Collapse
|
18
|
Basto AP, Piedade J, Ramalho R, Alves S, Soares H, Cornelis P, Martins C, Leitão A. A new cloning system based on the OprI lipoprotein for the production of recombinant bacterial cell wall-derived immunogenic formulations. J Biotechnol 2011; 157:50-63. [PMID: 22115954 DOI: 10.1016/j.jbiotec.2011.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 02/06/2023]
Abstract
The conjugation of antigens with ligands of pattern recognition receptors (PRR) is emerging as a promising strategy for the modulation of specific immunity. Here, we describe a new Escherichia coli system for the cloning and expression of heterologous antigens in fusion with the OprI lipoprotein, a TLR ligand from the Pseudomonas aeruginosa outer membrane (OM). Analysis of the OprI expressed by this system reveals a triacylated lipid moiety mainly composed by palmitic acid residues. By offering a tight regulation of expression and allowing for antigen purification by metal affinity chromatography, the new system circumvents the major drawbacks of former versions. In addition, the anchoring of OprI to the OM of the host cell is further explored for the production of novel recombinant bacterial cell wall-derived formulations (OM fragments and OM vesicles) with distinct potential for PRR activation. As an example, the African swine fever virus ORF A104R was cloned and the recombinant antigen was obtained in the three formulations. Overall, our results validate a new system suitable for the production of immunogenic formulations that can be used for the development of experimental vaccines and for studies on the modulation of acquired immunity.
Collapse
Affiliation(s)
- Afonso P Basto
- Laboratório de Doenças Infecciosas, CIISA, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Genome-wide study of Pseudomonas aeruginosa outer membrane protein immunogenicity using self-assembling protein microarrays. Infect Immun 2009; 77:4877-86. [PMID: 19737893 DOI: 10.1128/iai.00698-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is responsible for potentially life-threatening infections in individuals with compromised defense mechanisms and those with cystic fibrosis. P. aeruginosa infection is notable for the appearance of a humoral response to some known antigens, such as flagellin C, elastase, alkaline protease, and others. Although a number of immunogenic proteins are known, no effective vaccine has been approved yet. Here, we report a comprehensive study of all 262 outer membrane and exported P. aeruginosa PAO1 proteins by a modified protein microarray methodology called the nucleic acid-programmable protein array. From this study, it was possible to identify 12 proteins that trigger an adaptive immune response in cystic fibrosis and acutely infected patients, providing valuable information about which bacterial proteins are actually recognized by the immune system in vivo during the natural course of infection. The differential detections of these proteins in patients and controls proved to be statistically significant (P<0.01). The study provides a list of potential candidates for the improvement of serological diagnostics and the development of vaccines.
Collapse
|
20
|
Leandro ACCS, Rocha MA, Cardoso CSA, Bonecini-Almeida MG. Genetic polymorphisms in vitamin D receptor, vitamin D-binding protein, Toll-like receptor 2, nitric oxide synthase 2, and interferon-gamma genes and its association with susceptibility to tuberculosis. Braz J Med Biol Res 2009; 42:312-22. [PMID: 19330258 DOI: 10.1590/s0100-879x2009000400002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 02/16/2009] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis kills more people than any other single pathogen, with an estimated one-third of the world's population being infected. Among those infected, only 10% will develop the disease. There are several demonstrations that susceptibility to tuberculosis is linked to host genetic factors in twins, family and associated-based case control studies. In the past years, there has been dramatic improvement in our understanding of the role of innate and adaptive immunity in the human host defense to tuberculosis. To date, attention has been paid to the role of genetic host and parasitic factors in tuberculosis pathogenesis mainly regarding innate and adaptive immune responses and their complex interactions. Many studies have focused on the candidate genes for tuberculosis susceptibility ranging from those expressed in several cells from the innate or adaptive immune system such as Toll-like receptors, cytokines (TNF-alpha, TGF-beta, IFN-gamma, IL-1b, IL-1RA, IL-12, IL-10), nitric oxide synthase and vitamin D, both nuclear receptors and their carrier, the vitamin D-binding protein (VDBP). The identification of possible genes that can promote resistance or susceptibility to tuberculosis could be the first step to understanding disease pathogenesis and can help to identify new tools for treatment and vaccine development. Thus, in this mini-review, we summarize the current state of investigation on some of the genetic determinants, such as the candidate polymorphisms of vitamin D, VDBP, Toll-like receptor, nitric oxide synthase 2 and interferon-gamma genes, to generate resistance or susceptibility to M. tuberculosis infection.
Collapse
Affiliation(s)
- A C C S Leandro
- Laboratório de Imunologia e Imunogenética, Instituto de Pesquisa Clínica Evandro Chagas, FIOCRUZ, Rio de Janeiro, RJ, Brasil.
| | | | | | | |
Collapse
|
21
|
Tanghe A, Dangy JP, Pluschke G, Huygen K. Improved protective efficacy of a species-specific DNA vaccine encoding mycolyl-transferase Ag85A from Mycobacterium ulcerans by homologous protein boosting. PLoS Negl Trop Dis 2008; 2:e199. [PMID: 18350112 PMCID: PMC2265439 DOI: 10.1371/journal.pntd.0000199] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 01/22/2008] [Indexed: 11/25/2022] Open
Abstract
Vaccination with plasmid DNA encoding Ag85A from M. bovis BCG can partially protect C57BL/6 mice against a subsequent footpad challenge with M. ulcerans. Unfortunately, this cross-reactive protection is insufficient to completely control the infection. Although genes encoding Ag85A from M. bovis BCG (identical to genes from M. tuberculosis) and from M. ulcerans are highly conserved, minor sequence differences exist, and use of the specific gene of M. ulcerans could possibly result in a more potent vaccine. Here we report on a comparison of immunogenicity and protective efficacy in C57BL/6 mice of Ag85A from M. tuberculosis and M. ulcerans, administered as a plasmid DNA vaccine, as a recombinant protein vaccine in adjuvant or as a combined DNA prime-protein boost vaccine. All three vaccination formulations induced cross-reactive humoral and cell-mediated immune responses, although species-specific Th1 type T cell epitopes could be identified in both the NH2-terminal region and the COOH-terminal region of the antigens. This partial species-specificity was reflected in a higher—albeit not sustained—protective efficacy of the M. ulcerans than of the M. tuberculosis vaccine, particularly when administered using the DNA prime-protein boost protocol. Buruli ulcer (BU) is an infectious disease characterized by deep, ulcerating skin lesions, particularly on arms and legs, that are provoked by a toxin. BU is caused by a microbe belonging to the same family that also causes tuberculosis and leprosy. The disease is emerging as a serious health problem, especially in West Africa. Vaccines are considered to be the most cost-effective strategy to control and eventually eradicate an infectious disease. For the moment, however, there is no good vaccine against BU, and it is still not fully understood which immune defence mechanisms are needed to control the infection. The identification of microbial components that are involved in the immune control is an essential step in the development of an effective vaccine. In this paper, we describe the identification of one of these microbial components, i.e., antigen 85A, a protein involved in the integrity of the cell wall of the microbe. Our findings obtained in a mouse model now need to be extended to other experimental animals and later to humans. Combination with a vaccine targeting the toxin may be a way to strengthen the effectiveness of the vaccine.
Collapse
MESH Headings
- Acyltransferases/genetics
- Acyltransferases/immunology
- Acyltransferases/metabolism
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Cell Line
- Cells, Cultured
- Enzyme-Linked Immunosorbent Assay
- Female
- Foot/microbiology
- Immunity, Cellular/immunology
- Immunity, Humoral/immunology
- Immunoglobulin G/immunology
- Interferon-gamma/metabolism
- Interleukin-2/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mycobacterium ulcerans/genetics
- Mycobacterium ulcerans/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/metabolism
Collapse
Affiliation(s)
- Audrey Tanghe
- Mycobacterial Immunology, IPH-Pasteur Institute Brussels, Brussels, Belgium
| | - Jean-Pierre Dangy
- Department of Molecular Immunology, Swiss Tropical Institute, Basel, Switzerland
| | - Gerd Pluschke
- Department of Molecular Immunology, Swiss Tropical Institute, Basel, Switzerland
| | - Kris Huygen
- Mycobacterial Immunology, IPH-Pasteur Institute Brussels, Brussels, Belgium
- * E-mail:
| |
Collapse
|
22
|
Immunogenicity and protective efficacy of a tuberculosis DNA vaccine co-expressing pro-apoptotic caspase-3. Vaccine 2008; 26:1458-70. [PMID: 18280621 DOI: 10.1016/j.vaccine.2007.12.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/21/2007] [Accepted: 12/21/2007] [Indexed: 11/23/2022]
Abstract
DNA vaccination is a potent means for inducing strong cell-mediated immune responses and protective immunity against viral, bacterial and parasite pathogens in rodents. In an attempt to increase cross-presentation through apoptosis, the DNA-encoding caspase-2 prodomain followed by wild-type or catalytically inactive mutated caspase-3 was inserted into a plasmid encoding the 32 kDa mycolyl transferase (Ag85A) from Mycobacterium tuberculosis. Transient transfection showed that the mutated caspase induced slow apoptosis, normal protein expression and NF-kappaB activation while wild-type caspase induced rapid apoptosis, lower protein expression and no NF-kappaB activation. Ag85A specific antibody production was increased by co-expressing the mutated and decreased by co-expressing the wild-type caspase. Vaccination with pro-apoptotic plasmids triggered more Ag85A specific IFN-gamma producing spleen cells, and more efficient IL-2 and IFN-gamma producing memory cells in spleen and lungs after M. tuberculosis challenge. Compared to DNA-encoding secreted Ag85A, vaccination with DNA co-expressing wild-type caspase increased protection after infection with M. tuberculosis, while vaccination with plasmid co-expressing mutated caspase was not protective, possibly due to the stimulation of IL-6, IL-10 and IL-17A production.
Collapse
|