1
|
Meng K, Zhang B, Ma C, Dai Q, Gui X, Liu X, Zhao Q, Gao Q, Wen Y, Ding J. Serum amyloid A/anti-CCL20 induced the rebalance of Th17/regulatory T cells in SodA-induced sarcoidosis. Int Immunopharmacol 2022; 109:108784. [PMID: 35461156 DOI: 10.1016/j.intimp.2022.108784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Sarcoidosis is a multisystemic granulomatous inflammation associated with Th17/regulatory T cell (Treg) polarization. As a marker of inflammation, serum amyloid A (SAA) could upregulate the expression of chemokine ligand 20 (CCL20), which induces the migration of Treg cells and Th17 cells by binding and activating thechemokine C-C receptor (CCR) 6. Our goal was to determine whether SAA/anti-CCL20 induces Th17/Treg rebalance in pulmonary sarcoidosis. The deposition of SAA- and Th17/Treg-related proteins in SodA-induced granulomas was tested using immunohistochemistry. Mice with SodA-induced sarcoidosis were treated with SAA or SAA + anti-CCL20, and then Th1/Th2 and Th17/Treg cells were detected by fluorescence-activated cell sorting (FACS) analysis. The expression of SAA/CCL20 and IL-23/IL-17A was detected by enzyme-linked immunosorbent assay (ELISA) and multiplex. Key proteins in the TGF-β/Smad signaling pathway were tested by western blot. SAA mainly plays a pro-inflammatory role by promoting the expression of CCL20 and IL-17A in bronchoalveolar lavage fluid (BALF) and serum, exacerbating this elevation of CD4+/CD8+ T cells in both mediastinal lymph nodes (LNs) and BALF, as well as proliferating Th1 in LNs in SodA-induced pulmonary sarcoidosis. In addition, SAA could also promote the proliferation of Tregs in LNs. Intriguingly, blocking of CCL20 could partially reverse the expression of Th17-related cytokine, ameliorate Th1/Th2 and Treg/Th17 bias in mice with SodA-induced pulmonary sarcoidosis, and rescue the overactivation of the TGF-β/Smad2/Smad3 signaling pathway. Anti-CCL20 may have the potential for therapeutic translation, targeting on the immunopathogenesis of pulmonary sarcoidosis.
Collapse
Affiliation(s)
- Kaifang Meng
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Bin Zhang
- Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, Jiangsu, People's Republic of China
| | - Chengxing Ma
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Qianqian Dai
- Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, Jiangsu, People's Republic of China
| | - Xianhua Gui
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Xiaoqin Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Qi Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Qian Gao
- Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, Jiangsu, People's Republic of China
| | - Yanting Wen
- Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, Jiangsu, People's Republic of China.
| | - Jingjing Ding
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China; Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
He W, Li J, Gong AY, Deng S, Li M, Wang Y, Mathy NW, Feng Y, Xiao L, Chen XM. Cryptosporidial Infection Suppresses Intestinal Epithelial Cell MAPK Signaling Impairing Host Anti-Parasitic Defense. Microorganisms 2021; 9:microorganisms9010151. [PMID: 33445463 PMCID: PMC7826584 DOI: 10.3390/microorganisms9010151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cryptosporidium is a genus of protozoan parasites that infect the gastrointestinal epithelium of a variety of vertebrate hosts. Intestinal epithelial cells are the first line of defense and play a critical role in orchestrating host immunity against Cryptosporidium infection. To counteract host defense response, Cryptosporidium has developed strategies of immune evasion to promote parasitic replication and survival within epithelial cells, but the underlying mechanisms are largely unclear. Using various models of intestinal cryptosporidiosis, we found that Cryptosporidium infection caused suppression of mitogen-activated protein kinase (MAPK) signaling in infected murine intestinal epithelial cells. Whereas expression levels of most genes encoding the key components of the MAPK signaling pathway were not changed in infected intestinal epithelial cells, we detected a significant downregulation of p38/Mapk, MAP kinase-activated protein kinase 2 (Mk2), and Mk3 genes in infected host cells. Suppression of MAPK signaling was associated with an impaired intestinal epithelial defense against C. parvum infection. Our data suggest that cryptosporidial infection may suppress intestinal epithelial cell MAPK signaling associated with the evasion of host antimicrobial defense.
Collapse
Affiliation(s)
- Wei He
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.H.); (Y.F.); (L.X.)
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
| | - Juan Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
| | - Silu Deng
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
| | - Min Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
| | - Yang Wang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
| | - Nicholas W. Mathy
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.H.); (Y.F.); (L.X.)
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.H.); (Y.F.); (L.X.)
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
- Correspondence:
| |
Collapse
|
3
|
Wang YW, Wang WS, Wang LY, Bao YR, Lu JW, Lu Y, Zhang CY, Li WJ, Sun K, Ying H. Extracellular matrix remodeling effects of serum amyloid A1 in the human amnion: Implications for fetal membrane rupture. Am J Reprod Immunol 2018; 81:e13073. [PMID: 30461130 DOI: 10.1111/aji.13073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Rupture of fetal membranes is a crucial event at parturition, which is preceded by extensive extracellular matrix (ECM) remodeling. Our recent studies have demonstrated that the human fetal membranes are capable of de novo synthesis of serum amyloid A1 (SAA1), an acute phase protein, and the abundance of SAA1 in the amnion was increased at parturition. However, the exact role of SAA1 in human parturition remains to be established. METHOD OF STUDY The effects of SAA1 on the abundance of collagenases and lysyl oxidase, the enzyme that cross-links collagens, were investigated in culture primary human amnion fibroblasts and tissue explants with an aim to examine the involvement of SAA1 in the ECM remodeling in the amnion. RESULTS Serum amyloid A1 (SAA1) time- and dose-dependently increased the abundance of collagenases MMP-1, MMP-8, and MMP-13, while decreased the abundance of lysyl oxidase-like 1 (LOXL1). These effects of SAA1 were attenuated by siRNA-mediated knockdown of the Toll-like receptor (TLR) 4 and its antagonist CLI-095, but not by siRNA-mediated knockdown of TLR2. Furthermore, the inhibitors for NF-κB (JSH-23) and mitogen-activated protein kinases (MAPKs) p38 (SB203580) and JNK (SP600125) could also attenuate the effects of SAA1, while the inhibitor for MAPK ERK1/2 (PD 98059) could block the effects of SAA1 only on MMP-1, MMP-8, and LOXL1 but not on MMP-13. CONCLUSION These data highlight a possible role for SAA1 in ECM remodeling preceding membrane rupture by regulating the expression of collagenases MMP-1, MMP-8, MMP-13, and LOXL1 through TLR4-mediated activation of the NF-κB and MAPK pathways in amnion fibroblasts.
Collapse
Affiliation(s)
- Ya-Wei Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Lu-Yao Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Rong Bao
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yi Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Chu-Yue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wen-Jiao Li
- Maternity and Infant Hospital of Changning District, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhang X, Xin G, Sun D. Serum exosomal miR-328, miR-575, miR-134 and miR-671-5p as potential biomarkers for the diagnosis of Kawasaki disease and the prediction of therapeutic outcomes of intravenous immunoglobulin therapy. Exp Ther Med 2018; 16:2420-2432. [PMID: 30186482 PMCID: PMC6122496 DOI: 10.3892/etm.2018.6458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
The present study was conducted to screen serum exosomal microRNAs (miRNAs) for the early diagnosis of Kawasaki disease (KD) and to investigate their underlying mechanisms by analyzing microarray data under accession numbers GSE60965 [exosomal miRNA, including three pooled serum samples from 5 healthy children, 5 patients with KD and 5 patients with KD following intravenous immunoglobulin (IVIG) therapy] and GSE73577 (mRNA, including peripheral blood mononuclear cell samples from 19 patients with KD prior to and following IVIG treatment) from the Gene Expression Omnibus database. Differentially expressed miRNAs (DE-miRNAs) and genes (DEGs) were identified using the Linear Models for Microarray data method, and the mRNA targets of DE-miRNAs were predicted using the miRWalk 2.0 database. The functions of the target genes were analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). As a result, 65 DE-miRNAs were identified with different expression patterns between the healthy children and patients with KD and between patients with KD and patients with KD following IVIG therapy. The target genes of 15 common DE-miRNAs were predicted. Following overlapping the target genes of DE-miRNAs with 355 DEGs, 28 common genes were identified and further screened to construct a network containing 30 miRNA-mRNA regulatory associations. Of these associations, only miR-328-spectrin α, erythrocytic 1, miR-575-cyclic AMP-responsive element-binding protein 5/b-1,4-galactosyltransferase 5/WD repeat and FYVE domain-containing 3/cystatin-A/C-X-C motif chemokine receptor 1/protein phosphatase 1 regulatory subunit 3B, miR-134-acyl-CoA synthetase long chain family member 1/C-type lectin domain family 1 member A and miR-671-5p-tripartite motif containing 25/leucine rich repeat kinase 2/kinesin family member 1B/leucine rich repeat neuronal 1 were involved in the negative regulation of gene expression. Functional analysis indicated that the identified target genes may be associated with inflammation. Accordingly, serum exosomal miR-328, miR-575, miR-134 and miR-671-5p may act as potential biomarkers for the diagnosis of KD and the prediction of outcomes of the IVIG therapy by influencing the expression of inflammatory genes.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guangda Xin
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dajun Sun
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
5
|
Serum Amyloid A Induces a Vascular Smooth Muscle Cell Phenotype Switch through the p38 MAPK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28642873 PMCID: PMC5469989 DOI: 10.1155/2017/4941379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atherosclerosis is an important pathological condition which is accompanied by a vascular smooth muscle cell (VSMC) phenotype switch toward a synthetic phenotype. As an acute-phase protein, Serum Amyloid A (SAA) is thought to have a close relationship to atherosclerosis development. However, no study has investigated the direct effect of SAA on the VSMC phenotype switch, as well as the underlying mechanisms. The purpose of our study was to explore the effect of SAA on the VSMC phenotype switch and the potential mechanisms involved. In our study, we found that SAA induced the VSMC phenotype switch which reduced expression of the smooth muscle cell (SMC) marker and enhanced expression of the matrix synthesis related marker. The proliferative ability of VSMCs was also increased by SAA treatment. Furthermore, our research found that SAA activated the ERK1/2 and p38 MAPK signaling pathways. Finally, by applying the ERK1/2 and p38 inhibitors, U0126 and SB203580, we demonstrated that the SAA-induced VSMC phenotype switch was p38-dependent. Taken together, these results indicated that SAA may play an important role in promoting the VSMC phenotype switch through the p38 MAPK signaling pathway.
Collapse
|
6
|
Gao S, Qi X, Li J, Sang L. Upregulated KAT7 in synovial fibroblasts promotes Th17 cell differentiation and infiltration in rheumatoid arthritis. Biochem Biophys Res Commun 2017; 489:235-241. [PMID: 28552525 DOI: 10.1016/j.bbrc.2017.05.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease involving multiple cellular participants, of which synovial fibroblasts (SFs) are tightly connected with the development and progression of RA. Here, we provide evidence confirming that KAT7, an H4-specific histone acetylase, is upregulated in SFs of RA patients, which is at least attributed to the stimulation by RA-associated proinflammatory cytokines, such as TNF-α, IL-1β or IFN-γ. In addition, KAT7 overexpression in cultured human fibroblast-like synoviocytes (HFLSs) induces IL-6 and TGF-β expression through an epigenetic mechanism, and in vitro T helper 17 (Th17) cell polarization cultured in these supernatants shows promoted cell differentiation. Moreover, KAT7 overexpression in HFLSs induces CCL20 expression via p44/42 MAPK pathway, whereby promoting Th17 cell migration. These two activities of KAT7 in RA SFs indicate its potential roles in accelerating RA pathology. Overall, these results demonstrate some connections between KAT7 upregulated in RA SFs and RA progression and present the inhibition of KAT7 activity as a novel therapeutic target for interfering RA disease.
Collapse
Affiliation(s)
- Shouda Gao
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang, 050051, China
| | - Xiangbei Qi
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang, 050051, China.
| | - Junke Li
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang, 050051, China
| | - Linchao Sang
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang, 050051, China
| |
Collapse
|
7
|
Induction of pro-inflammatory genes by serum amyloid A1 in human amnion fibroblasts. Sci Rep 2017; 7:693. [PMID: 28386088 PMCID: PMC5429602 DOI: 10.1038/s41598-017-00782-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/13/2017] [Indexed: 12/11/2022] Open
Abstract
Serum amyloid A1 (SAA1) is an acute response protein, which is mainly produced by the liver, during infection. However, it remains unknown whether SAA1 can be produced in human fetal membranes where it is able to elicit events pertinent to labor initiation. We demonstrated that SAA1 was expressed in the fibroblasts and epithelium of the amnion and the trophoblasts of the chorion. Further study in human amnion fibroblasts showed that SAA1 production was augmented by interleukin-1β (IL-1β) and cortisol alone and synergistically, and SAA1 in turn induced the expression of IL-1β, interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and PGE2 production. These effects of SAA1 were mediated through activation of the NF-κB, p38 and ERK1/2 pathways via the toll-like receptor 4 (TLR4). Inhibition of TLR4 attenuated not only SAA1-induced activation of NF-κB, p38 and ERK1/2 but also increases in IL-1β, IL-6 and COX-2 expression. Moreover, SAA1 expression was increased in human amnion tissue following spontaneous labor. In conclusion, this study has demonstrated for the first time that SAA1 can be produced in human fetal membranes, which can be greatly induced in the presence of proinflammatory cytokines and glucocorticoids thereby producing effects associated with parturition.
Collapse
|
8
|
de Oliveira EM, Visniauskas B, Tufik S, Andersen ML, Chagas JR, Campa A. Serum Amyloid A Production Is Triggered by Sleep Deprivation in Mice and Humans: Is That the Link between Sleep Loss and Associated Comorbidities? Nutrients 2017; 9:nu9030311. [PMID: 28335560 PMCID: PMC5372974 DOI: 10.3390/nu9030311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 01/26/2023] Open
Abstract
Serum amyloid A (SAA) was recently associated with metabolic endotoxemia, obesity and insulin resistance. Concurrently, insufficient sleep adversely affects metabolic health and is an independent predisposing factor for obesity and insulin resistance. In this study we investigated whether sleep loss modulates SAA production. The serum SAA concentration increased in C57BL/6 mice subjected to sleep restriction (SR) for 15 days or to paradoxical sleep deprivation (PSD) for 72 h. Sleep restriction also induced the upregulation of Saa1.1/Saa2.1 mRNA levels in the liver and Saa3 mRNA levels in adipose tissue. SAA levels returned to the basal range after 24 h in paradoxical sleep rebound (PSR). Metabolic endotoxemia was also a finding in SR. Increased plasma levels of SAA were also observed in healthy human volunteers subjected to two nights of total sleep deprivation (Total SD), returning to basal levels after one night of recovery. The observed increase in SAA levels may be part of the initial biochemical alterations caused by sleep deprivation, with potential to drive deleterious conditions such as metabolic endotoxemia and weight gain.
Collapse
Affiliation(s)
- Edson M de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo SP 05509-000, Brazil.
| | - Bruna Visniauskas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo SP 04024-002, Brazil.
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo SP 04024-002, Brazil.
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo SP 04024-002, Brazil.
| | - Jair R Chagas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo SP 04024-002, Brazil.
| | - Ana Campa
- Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo SP 05509-000, Brazil.
| |
Collapse
|
9
|
de Oliveira EM, Ascar TP, Silva JC, Sandri S, Migliorini S, Fock RA, Campa A. Serum amyloid A links endotoxaemia to weight gain and insulin resistance in mice. Diabetologia 2016; 59:1760-8. [PMID: 27126803 DOI: 10.1007/s00125-016-3970-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/06/2016] [Indexed: 01/21/2023]
Abstract
AIMS/HYPOTHESIS Pre-adipocytes and adipocytes are responsive to the acute phase protein serum amyloid A (SAA). The combined effects triggered by SAA encompass an increase in pre-adipocyte proliferation, an induction of TNF-α and IL-6 release and a decrease in glucose uptake in mature adipocytes, strongly supporting a role for SAA in obesity and related comorbidities. This study addressed whether SAA depletion modulates weight gain and insulin resistance induced by a high-fat diet (HFD). METHODS Male Swiss Webster mice were fed an HFD for 10 weeks under an SAA-targeted antisense oligonucleotide (ASOSAA) treatment in order to evaluate the role of SAA in weight gain. RESULTS With ASOSAA treatment, mice receiving an HFD did not differ in energy intake when compared with their controls, but were prevented from gaining weight and developing insulin resistance. The phenotype was characterised by a lack of adipose tissue expansion, with low accumulation of epididymal, retroperitoneal and subcutaneous fat content and decreased inflammatory markers, such as SAA3 and toll-like receptor (TLR)-4 expression, as well as macrophage infiltration into the adipose tissue. Furthermore, a metabolic status similar to chow-fed mice counterparts could be observed, with equivalent levels of leptin, adiponectin, IGF-I, SAA, fasting glucose and insulin, and remarkable improvement in glucose and insulin tolerance test profiles. Surprisingly, the expected HFD-induced metabolic endotoxaemia was also prevented by the ASOSAA treatment. CONCLUSIONS/INTERPRETATION This study provides further evidence of the role of SAA in weight gain and insulin resistance. Moreover, we also suggest that beyond its proliferative and inflammatory effects, SAA is part of the lipopolysaccharide signalling pathway that links inflammation to obesity and insulin resistance.
Collapse
Affiliation(s)
- Edson M de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580 Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Thais P Ascar
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580 Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Jacqueline C Silva
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580 Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Silvana Sandri
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580 Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Silene Migliorini
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580 Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Ricardo A Fock
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580 Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Ana Campa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580 Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
10
|
Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 2015; 13:301-15. [PMID: 26685902 PMCID: PMC4856808 DOI: 10.1038/cmi.2015.97] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis.
Collapse
Affiliation(s)
- Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Li W, Zhu S, Li J, D'Amore J, D'Angelo J, Yang H, Wang P, Tracey KJ, Wang H. Serum Amyloid A Stimulates PKR Expression and HMGB1 Release Possibly through TLR4/RAGE Receptors. Mol Med 2015; 21:515-25. [PMID: 26052716 DOI: 10.2119/molmed.2015.00109] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/01/2015] [Indexed: 11/06/2022] Open
Abstract
Serum amyloid A (SAA) proteins are known to be surrogate markers of sepsis, but their pathogenic roles remain poorly elucidated. Here we provide evidence to support a possible role of SAA as a pathogenic mediator of lethal sepsis. In a subset of septic patients for which serum high mobility group box 1 (HMGB1) levels paralleled the clinical scores, some anti-HMGB1 antibodies detected a 12-kDa protein belonging to the SAA family. In contrast to the most abundant SAA1, human SAA induced double-stranded RNA-activated protein kinase R (PKR) expression and HMGB1 release in the wild-type, but not toll-like receptor 4/receptor for advanced glycation end products (TLR4/RAGE)-deficient, macrophages. Pharmacological inhibition of PKR phosphorylation blocked SAA-induced HMGB1 release, suggesting an important role of PKR in SAA-induced HMGB1 release. In animal models of lethal endotoxemia and sepsis, recombinant SAA exacerbated endotoxemic lethality, whereas SAA-neutralizing immunoglobulins G (IgGs) significantly improved animal survival. Collectively, these findings have suggested SAA as an important mediator of inflammatory diseases. Highlights of this study include: human SAA is possibly only expressed in a subset of septic patients; SAA induces HMGB1 release via TLR4 and RAGE receptors; SAA supplementation worsens the outcome of lethal endotoxemia; whereas SAA-neutralizing antibodies confer protection against lethal endotoxemia and sepsis.
Collapse
Affiliation(s)
- Wei Li
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America.,The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Shu Zhu
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America.,The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jianhua Li
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jason D'Amore
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America
| | - John D'Angelo
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America
| | - Huan Yang
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ping Wang
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J Tracey
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America.,The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
12
|
de Oliveira EM, Sandri S, Knebel FH, Contesini CGI, Campa A, Filippin-Monteiro FB. Hypoxia increases serum amyloid A3 (SAA3) in differentiated 3T3-L1 adipocytes. Inflammation 2014; 36:1107-10. [PMID: 23605472 DOI: 10.1007/s10753-013-9644-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypoxia has been implicated as a possible cause of adipose tissue inflammation. Furthermore, the acute phase protein serum amyloid A (SAA) has been associated with the modulation of the adipogenic process, and it is well-known that obese individuals have increased levels of SAA. The effect of hypoxia in the expression and production of SAA was examined in murine 3T3-L1 adipocytes. Hypoxia leads to a substantial increase in SAA3 mRNA and protein level, apparently in a time-dependent manner (threefold in 48 h), in fully differentiated 3T3-L1, followed by reestablishment of gene expression to basal levels after 24 h of reoxygenation. Hypoxia-induced SAA may be one of the key molecules to the development of the inflammatory response in adipose tissue.
Collapse
Affiliation(s)
- Edson Mendes de Oliveira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, CEP 05508-900, Brazil,
| | | | | | | | | | | |
Collapse
|
13
|
Tan SZ, Ooi DSQ, Shen HM, Heng CK. The Atherogenic Effects of Serum Amyloid A are Potentially Mediated via Inflammation and Apoptosis. J Atheroscler Thromb 2014; 21:854-67. [DOI: 10.5551/jat.22665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Dual effect of serum amyloid A on the invasiveness of glioma cells. Mediators Inflamm 2013; 2013:509089. [PMID: 23533307 PMCID: PMC3596950 DOI: 10.1155/2013/509089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/04/2013] [Accepted: 01/22/2013] [Indexed: 02/02/2023] Open
Abstract
Evidence sustains a role for the acute-phase protein serum amyloid A (SAA) in carcinogenesis and metastasis, and the protein has been suggested as a marker for tumor progression. Nevertheless, the demonstration of a direct activity of SAA on tumor cells is still incipient. We have investigated the effect of human recombinant SAA (rSAA) on two human glioma cell lines, A172 and T98G. rSAA stimulated the [(3)H]-thymidine incorporation of both lines, but had dual effects on migration and invasiveness which varied according to the cell line. In T98G, the rSAA increased migration and invasion behaviors whereas in A172 it decreased these behaviors. These findings agree with the effect triggered by rSAA on matrix metalloproteinases (MMPs) activities measured in a gelatinolytic assay. rSAA inhibited activity of both MMPs in A172 cells while increasing them in T98G cells. rSAA also affected the production of compounds present in the tumor microenvironment that orchestrate tumor progression, such as IL-8, the production of reactive oxygen species (ROS) and nitric oxide (NO). We also observed that both lines expressed all three of the isoforms of SAA: SAA1, SAA2, and SAA4. These data suggest that some tumor cells are responsive to SAA and, in these cases, SAA may have a role in cancer progression that varies according to the cell type.
Collapse
|
15
|
Franco AG, Sandri S, Campa A. High-density lipoprotein prevents SAA-induced production of TNF-α in THP-1 monocytic cells and peripheral blood mononuclear cells. Mem Inst Oswaldo Cruz 2012; 106:986-92. [PMID: 22241121 DOI: 10.1590/s0074-02762011000800014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/16/2011] [Indexed: 11/22/2022] Open
Abstract
In this study, we evaluated whether human serum and lipoproteins, especially high-density lipoprotein (HDL), affected serum amyloid A (SAA)-induced cytokine release. We verified the effects of SAA on THP-1 cells in serum-free medium compared to medium containing human serum or lipoprotein-deficient serum. SAA-induced tumour necrosis factor-alpha (TNF-α) production was higher in the medium containing lipoprotein-deficient serum than in the medium containing normal human serum. The addition of HDL inhibited the SAA-induced TNF-α release in a dose-dependent manner. This inhibitory effect was specific for HDL and was not affected by low-density lipoprotein or very low-density lipoprotein. In human peripheral blood mononuclear cells, the inhibitory effect of HDL on TNF-α production induced by SAA was less pronounced. However, this effect was significant when HDL was added to lipoprotein-deficient medium. In addition, a similar inhibitory effect was observed for interleukin-1 beta release. These findings confirm the important role of HDL and support our previous hypothesis that HDL inhibits the effects of SAA during SAA transport in the bloodstream. Moreover, the HDL-induced reduction in the proinflammatory activity of SAA emphasizes the involvement of SAA in diseases, such as atherosclerosis, that are characterized by low levels of HDL.
Collapse
Affiliation(s)
- Andressa Grecco Franco
- Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | |
Collapse
|
16
|
Filippin-Monteiro FB, de Oliveira EM, Sandri S, Knebel FH, Albuquerque RC, Campa A. Serum amyloid A is a growth factor for 3T3-L1 adipocytes, inhibits differentiation and promotes insulin resistance. Int J Obes (Lond) 2011; 36:1032-9. [PMID: 21986708 PMCID: PMC3419975 DOI: 10.1038/ijo.2011.193] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND/OBJECTIVES Serum amyloid A (SAA) is an acute-phase protein that has been recently correlated with obesity and insulin resistance. Therefore, we first examined whether human recombinant SAA (rSAA) could affect the proliferation, differentiation and metabolism of 3T3-L1 preadipocytes. DESIGN Preadipocytes were treated with rSAA and analyzed for changes in viability and [³H-methyl]-thymidine incorporation as well as cell cycle perturbations using flow cytometry analysis. The mRNA expression profiles of adipogenic factors during the differentiation protocol were also analyzed using real-time PCR. After differentiation, 2-deoxy-[1,2-³H]-glucose uptake and glycerol release were evaluated. RESULTS rSAA treatment caused a 2.6-fold increase in cell proliferation, which was consistent with the results from flow cytometry showing that rSAA treatment augmented the percentage of cells in the S phase (60.9±0.54%) compared with the control cells (39.8±2.2%, (***) P<0.001). The rSAA-induced cell proliferation was mediated by the ERK1/2 signaling pathway, which was assessed by pretreatment with the inhibitor PD98059. However, the exposure of 3T3-L1 cells to rSAA during the differentiation process resulted in attenuated adipogenesis and decreased expression of adipogenesis-related factors. During the first 72 h of differentiation, rSAA inhibited the differentiation process by altering the mRNA expression kinetics of adipogenic transcription factors and proteins, such as PPARγ2 (peroxisome proliferator-activated receptor γ 2), C/EBPβ (CCAAT/enhancer-binding protein β) and GLUT4. rSAA prevented the intracellular accumulation of lipids and, in fully differentiated cells, increased lipolysis and prevented 2-deoxy-[1,2-³H]-glucose uptake, which favors insulin resistance. Additionally, rSAA stimulated the secretion of proinflammatory cytokines interleukin 6 and tumor necrosis factor α, and upregulated SAA3 mRNA expression during adipogenesis. CONCLUSIONS We showed that rSAA enhanced proliferation and inhibited differentiation in 3T3-L1 preadipocytes and altered insulin sensitivity in differentiated cells. These results highlight the complex role of SAA in the adipogenic process and support a direct link between obesity and its co-morbidities such as type II diabetes.
Collapse
|
17
|
Hatanaka E, Dermargos A, Armelin HA, Curi R, Campa A. Serum amyloid A induces reactive oxygen species (ROS) production and proliferation of fibroblast. Clin Exp Immunol 2010; 163:362-7. [PMID: 21175596 DOI: 10.1111/j.1365-2249.2010.04300.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Serum amyloid A (SAA) levels are elevated highly in acute phase response and elevated slightly and persistently in chronic diseases such as rheumatoid arthritis and diabetes. Given that fibroblasts exert profound effects on progression of inflammatory chronic diseases, the aim of this study was to investigate the response of fibroblasts to SAA. A dose-dependent increase in O(2) (-) levels was observed by treatment of fibroblasts with SAA (r = 0·99 and P ≤ 0·001). In addition, the expression of p47-phox was up-regulated by SAA (P < 0·001) and diphenyliodonium (DPI), a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, reduced the release of O(2) (-) by 50%. Also, SAA raised fibroblast proliferation (P < 0·001) and this effect was completely abolished by the addition of anti-oxidants (P < 0·001). These findings support the notion that, in chronic inflammatory sites, SAA activated fibroblast proliferation and ROS production.
Collapse
Affiliation(s)
- E Hatanaka
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|