1
|
Huang JX, Zhu BL, Xu JP, Zhou ZZ. Advances in the development of phosphodiesterase 7 inhibitors. Eur J Med Chem 2023; 250:115194. [PMID: 36796299 DOI: 10.1016/j.ejmech.2023.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Phosphodiesterase 7 (PDE7) specifically hydrolyzes cyclic adenosine monophosphate (cAMP), a second messenger that plays essential roles in cell signaling and physiological processes. Many PDE7 inhibitors used to investigate the role of PDE7 have displayed efficacy in the treatment of a wide range of diseases, such as asthma and central nervous system (CNS) disorders. Although PDE7 inhibitors are developed more slowly than PDE4 inhibitors, there is increasing recognition of PDE7 inhibitors as potential therapeutics for no nausea and vomiting secondary. Herein, we summarized the advances in PDE7 inhibitors over the past decade, focusing on their crystal structures, key pharmacophores, subfamily selectivity, and therapeutic potential. Hopefully, this summary will lead to a better understanding of PDE7 inhibitors and provide strategies for developing novel therapies targeting PDE7.
Collapse
Affiliation(s)
- Jia-Xi Huang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bo-Lin Zhu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiang-Ping Xu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Pharmacy Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Thapa K, Singh TG, Kaur A. Cyclic nucleotide phosphodiesterase inhibition as a potential therapeutic target in renal ischemia reperfusion injury. Life Sci 2021; 282:119843. [PMID: 34298037 DOI: 10.1016/j.lfs.2021.119843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
AIMS Ischemia/reperfusion (I/R) occurs in renal artery stenosis, partial nephrectomy and most commonly during kidney transplantation. It brings serious consequences such as DGF (Delayed Graft Function) or organ dysfunction leading to renal failure and ultimate death. There is no effective therapy to handle the consequences of Renal Ischemia/Reperfusion (I/R) injury. Cyclic nucleotides, cAMP and cGMP are the important second messengers that stimulate intracellular signal transduction for cell survival in response to growth factors and peptide hormones in normal tissues and in kidneys plays significant role that involves vascular tone regulation, inflammation and proliferation of parenchymal cells. Renal ischemia and subsequent reperfusion injury stimulate signal transduction pathways involved in oxidative stress, inflammation, alteration in renal blood flow leading to necrosis and apoptosis of renal cell. MATERIALS AND METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out. To understand the functioning of Phosphodiesterases (PDEs) and its pharmacological modulation in Renal Ischemia-Reperfusion Injury. KEY FINDINGS Current therapeutic options may not be enough to treat renal I/R injury in group of patients and therefore, the current review has discussed the general characteristics and physiology of PDEs and preclinical-studies defining the relationship between PDEs expression in renal injury due to I/R and its outcome on renal function. SIGNIFICANCE The role of PDE inhibitors in renal I/R injury and the clinical status of drugs for various renal diseases have been summarized in this review.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India; School of Pharmacy, Himachal Pradesh, India
| | | | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| |
Collapse
|
3
|
Ponsaerts L, Alders L, Schepers M, de Oliveira RMW, Prickaerts J, Vanmierlo T, Bronckaers A. Neuroinflammation in Ischemic Stroke: Inhibition of cAMP-Specific Phosphodiesterases (PDEs) to the Rescue. Biomedicines 2021; 9:703. [PMID: 34206420 PMCID: PMC8301462 DOI: 10.3390/biomedicines9070703] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Ischemic stroke is caused by a thromboembolic occlusion of a major cerebral artery, with the impaired blood flow triggering neuroinflammation and subsequent neuronal damage. Both the innate immune system (e.g., neutrophils, monocytes/macrophages) in the acute ischemic stroke phase and the adaptive immune system (e.g., T cells, B cells) in the chronic phase contribute to this neuroinflammatory process. Considering that the available therapeutic strategies are insufficiently successful, there is an urgent need for novel treatment options. It has been shown that increasing cAMP levels lowers neuroinflammation. By inhibiting cAMP-specific phosphodiesterases (PDEs), i.e., PDE4, 7, and 8, neuroinflammation can be tempered through elevating cAMP levels and, thereby, this can induce an improved functional recovery. This review discusses recent preclinical findings, clinical implications, and future perspectives of cAMP-specific PDE inhibition as a novel research interest for the treatment of ischemic stroke. In particular, PDE4 inhibition has been extensively studied, and is promising for the treatment of acute neuroinflammation following a stroke, whereas PDE7 and 8 inhibition more target the T cell component. In addition, more targeted PDE4 gene inhibition, or combined PDE4 and PDE7 or 8 inhibition, requires more extensive research.
Collapse
Affiliation(s)
- Laura Ponsaerts
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Lotte Alders
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Melissa Schepers
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Jos Prickaerts
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Annelies Bronckaers
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
4
|
Jankowska A, Pawłowski M, Chłoń-Rzepa G. Diabetic Theory in Anti-Alzheimer's Drug Research and Development. Part 2: Therapeutic Potential of cAMP-Specific Phosphodiesterase Inhibitors. Curr Med Chem 2021; 28:3535-3553. [PMID: 32940168 DOI: 10.2174/0929867327666200917125857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent age-related neurodegenerative disease that affects the cognition, behavior, and daily activities of individuals. Studies indicate that this disease is characterized by several pathological mechanisms, including the accumulation of amyloid-beta peptide, hyperphosphorylation of tau protein, impairment of cholinergic neurotransmission, and increase in inflammatory responses within the central nervous system. Chronic neuroinflammation associated with AD is closely related to disturbances in metabolic processes, including insulin release and glucose metabolism. As AD is also called type III diabetes, diverse compounds having antidiabetic effects have been investigated as potential drugs for its symptomatic and disease-modifying treatment. In addition to insulin and oral antidiabetic drugs, scientific attention has been paid to cyclic-3',5'-adenosine monophosphate (cAMP)-specific phosphodiesterase (PDE) inhibitors that can modulate the concentration of glucose and related hormones and exert beneficial effects on memory, mood, and emotional processing. In this review, we present the most recent reports focusing on the involvement of cAMP-specific PDE4, PDE7, and PDE8 in glycemic and inflammatory response controls as well as the potential utility of the PDE inhibitors in the treatment of AD. Besides the results of in vitro and in vivo studies, the review also presents recent reports from clinical trials.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, Krakow 30-688, Poland
| | - Maciej Pawłowski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, Krakow 30-688, Poland
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, Krakow 30-688, Poland
| |
Collapse
|
5
|
Sun J, Xiao Z, Haider A, Gebhard C, Xu H, Luo HB, Zhang HT, Josephson L, Wang L, Liang SH. Advances in Cyclic Nucleotide Phosphodiesterase-Targeted PET Imaging and Drug Discovery. J Med Chem 2021; 64:7083-7109. [PMID: 34042442 DOI: 10.1021/acs.jmedchem.1c00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) control the intracellular concentrations of cAMP and cGMP in virtually all mammalian cells. Accordingly, the PDE family regulates a myriad of physiological functions, including cell proliferation, differentiation and apoptosis, gene expression, central nervous system function, and muscle contraction. Along this line, dysfunction of PDEs has been implicated in neurodegenerative disorders, coronary artery diseases, chronic obstructive pulmonary disease, and cancer development. To date, 11 PDE families have been identified; however, their distinct roles in the various pathologies are largely unexplored and subject to contemporary research efforts. Indeed, there is growing interest for the development of isoform-selective PDE inhibitors as potential therapeutic agents. Similarly, the evolving knowledge on the various PDE isoforms has channeled the identification of new PET probes, allowing isoform-selective imaging. This review highlights recent advances in PDE-targeted PET tracer development, thereby focusing on efforts to assess disease-related PDE pathophysiology and to support isoform-selective drug discovery.
Collapse
Affiliation(s)
- Jiyun Sun
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Zhiwei Xiao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Ahmed Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, Zurich 8006, Switzerland.,Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Han-Ting Zhang
- Departments of Neuroscience, Behavioral Medicine & Psychiatry, and Physiology & Pharmacology, the Rockefeller Neuroscience Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Lu Wang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States.,Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
6
|
He Y, Huang Y, Mai C, Pan H, Luo HB, Liu L, Xie Y. The immunomodulatory role of PDEs inhibitors in immune cells: therapeutic implication in rheumatoid arthritis. Pharmacol Res 2020; 161:105134. [DOI: 10.1016/j.phrs.2020.105134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/19/2023]
|
7
|
Role of Phosphodiesterase 7 (PDE7) in T Cell Activity. Effects of Selective PDE7 Inhibitors and Dual PDE4/7 Inhibitors on T Cell Functions. Int J Mol Sci 2020; 21:ijms21176118. [PMID: 32854348 PMCID: PMC7504236 DOI: 10.3390/ijms21176118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphodiesterase 7 (PDE7), a cAMP-specific PDE family, insensitive to rolipram, is present in many immune cells, including T lymphocytes. Two genes of PDE7 have been identified: PDE7A and PDE7B with three or four splice variants, respectively. Both PDE7A and PDE7B are expressed in T cells, and the predominant splice variant in these cells is PDE7A1. PDE7 is one of several PDE families that terminates biological functions of cAMP—a major regulating intracellular factor. However, the precise role of PDE7 in T cell activation and function is still ambiguous. Some authors reported its crucial role in T cell activation, while according to other studies PDE7 activity was not pivotal to T cells. Several studies showed that inhibition of PDE7 by its selective or dual PDE4/7 inhibitors suppresses T cell activity, and consequently T-mediated immune response. Taken together, it seems quite likely that simultaneous inhibition of PDE4 and PDE7 by dual PDE4/7 inhibitors or a combination of selective PDE4 and PDE7 remains the most interesting therapeutic target for the treatment of some immune-related disorders, such as autoimmune diseases, or selected respiratory diseases. An interesting direction of future studies could also be using a combination of selective PDE7 and PDE3 inhibitors.
Collapse
|
8
|
Jankowska A, Świerczek A, Wyska E, Gawalska A, Bucki A, Pawłowski M, Chłoń-Rzepa G. Advances in Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 1: Overview of the Chemical and Biological Research. Curr Drug Targets 2020; 20:122-143. [PMID: 30091414 DOI: 10.2174/1389450119666180808105056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022]
Abstract
Phosphodiesterase 10A (PDE10A) is a double substrate enzyme that hydrolyzes second messenger molecules such as cyclic-3',5'-adenosine monophosphate (cAMP) and cyclic-3',5'-guanosine monophosphate (cGMP). Through this process, PDE10A controls intracellular signaling pathways in the mammalian brain and peripheral tissues. Pharmacological, biochemical, and anatomical data suggest that disorders in the second messenger system mediated by PDE10A may contribute to impairments in the central nervous system (CNS) function, including cognitive deficits as well as disturbances of behavior, emotion processing, and movement. This review provides a detailed description of PDE10A and the recent advances in the design of selective PDE10A inhibitors. The results of preclinical studies regarding the potential utility of PDE10A inhibitors for the treatment of CNS-related disorders, such as schizophrenia as well as Huntington's and Parkinson's diseases are also summarized.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Alicja Gawalska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
9
|
Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev 2019; 28:28/154/190095. [PMID: 31871127 DOI: 10.1183/16000617.0095-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Available bronchodilators can satisfy many of the needs of patients suffering from airway disorders, but they often do not relieve symptoms and their long-term use raises safety concerns. Therefore, there is interest in developing new classes that could help to overcome the limits that characterise the existing classes.At least nine potential new classes of bronchodilators have been identified: 1) selective phosphodiesterase inhibitors; 2) bitter-taste receptor agonists; 3) E-prostanoid receptor 4 agonists; 4) Rho kinase inhibitors; 5) calcilytics; 6) agonists of peroxisome proliferator-activated receptor-γ; 7) agonists of relaxin receptor 1; 8) soluble guanylyl cyclase activators; and 9) pepducins. They are under consideration, but they are mostly in a preclinical phase and, consequently, we still do not know which classes will actually be developed for clinical use and whether it will be proven that a possible clinical benefit outweighs the impact of any adverse effect.It is likely that if developed, these new classes may be a useful addition to, rather than a substitution of, the bronchodilator therapy currently used, in order to achieve further optimisation of bronchodilation.
Collapse
Affiliation(s)
- Mario Cazzola
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
10
|
Saber AF, Zaki RM, Kamal El‐Dean AM, Radwan SM. Synthesis, reactions, and spectral characterization of some new biologically active compounds derived from thieno[2,3‐
c
]pyrazole‐5‐carboxamide. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ahmed F. Saber
- Chemistry Department, Faculty of ScienceAssiut University Assiut Egypt
| | - Remon M. Zaki
- Chemistry Department, Faculty of ScienceAssiut University Assiut Egypt
| | | | - Shaban M. Radwan
- Chemistry Department, Faculty of ScienceAssiut University Assiut Egypt
| |
Collapse
|
11
|
A systematic review on the association between inflammatory genes and cognitive decline in non-demented elderly individuals. Eur Neuropsychopharmacol 2017; 27:568-588. [PMID: 26718789 DOI: 10.1016/j.euroneuro.2015.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/27/2015] [Accepted: 12/01/2015] [Indexed: 01/15/2023]
Abstract
Cognitive impairment, or decline, is not only a feature of Alzheimer׳s disease and other forms of dementia but also normal ageing. Abundant evidence from epidemiological studies points towards perturbed inflammatory mechanisms in aged individuals, though the cause-effect nature of this apparent relationship is difficult to establish. Genetic association studies focusing on polymorphism in and around inflammatory genes represent a viable approach to establish whether inflammatory mechanisms might play a causal role in cognitive decline, whilst also enabling the identification of specific genes potentially influencing specific cognitive facets. Thus, here we provide a review of published genetic association studies investigating inflammatory genes in the context of cognitive decline in elderly, non-demented, samples. Numerous candidate gene association studies have been performed to date, focusing almost exclusively on genes encoding major cytokines. Some of these studies report significant cognitive domain-specific associations implicating Interleukin 1β (IL1β) (rs16944), Tumour Necrosis Factor α (TNFα) (rs1800629) and C-reactive protein (CRP) in various domains of cognitive function. However, the majority of these studies are lacking in statistical power and have other methodological limitations, suggesting some of them may have yielded false positive results. Genome-wide association studies have implicated less direct and less obvious regulators of inflammatory processes (i.e., PDE7A, HS3ST4, SPOCK3), indicating that a shift away from the major cytokine-encoding genes in future studies will be important. Furthermore, better cohesion across studies with regards to the cognitive test batteries administered to participants along with the continued application of longitudinal designs will be vital.
Collapse
|
12
|
Boularan C, Gales C. Cardiac cAMP: production, hydrolysis, modulation and detection. Front Pharmacol 2015; 6:203. [PMID: 26483685 PMCID: PMC4589651 DOI: 10.3389/fphar.2015.00203] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/03/2015] [Indexed: 01/04/2023] Open
Abstract
Cyclic adenosine 3′,5′-monophosphate (cAMP) modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors' signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability.
Collapse
Affiliation(s)
- Cédric Boularan
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier Toulouse, France
| | - Céline Gales
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier Toulouse, France
| |
Collapse
|
13
|
Mahajan PS, Nikam MD, Chate AV, Bobade AS, Gill CH. Design, Synthesis, and Biological Evaluation of Thieno[2,3-c]pyrazole Hydrazide Derivatives as Potential Antimicrobial Agents. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pravin S. Mahajan
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad Maharashtra 431 004 India
| | - Mukesh D. Nikam
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad Maharashtra 431 004 India
| | - Asha V. Chate
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad Maharashtra 431 004 India
| | - Anil S. Bobade
- Haffkine Institute for Training, Research and Testing; Parel Mumbai Maharashtra 400 012 India
| | - Charansingh H. Gill
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad Maharashtra 431 004 India
| |
Collapse
|
14
|
Synthesis, biological evaluation and molecular docking studies of N-acylheteroaryl hydrazone derivatives as antioxidant and anti-inflammatory agents. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2176-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Recent advanced in bioactive systems containing pyrazole fused with a five membered heterocycle. Eur J Med Chem 2015; 97:732-46. [DOI: 10.1016/j.ejmech.2014.12.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/28/2014] [Accepted: 12/13/2014] [Indexed: 12/13/2022]
|
16
|
Abstract
BACKGROUND Identifying specific genes that are differentially expressed during inflammatory bowel disease flares may help stratify disease activity. The aim of this study was to identify panels of genes to be able to distinguish disease activity in Crohn's disease (CD) and ulcerative colitis (UC). METHODS Patients were grouped into categories based on disease and severity determined by histological grading. Whole blood was collected by PAXgene Blood RNA collection tubes, (PreAnalytiX) and gene expression analysis using messenger RNA was conducted. Logistic regression was performed on multiple combinations of common probe sets, and data were evaluated in terms of discrimination by computing the area under the receiving operator characteristic curve (ROC-AUC). RESULTS Nine inactive CD, 8 mild CD, 10 moderate-to-severe CD, 9 inactive UC, 8 mild UC, 10 moderate-to-severe UC, and 120 controls were hybridized to Affymetrix U133 Plus 2 microarrays. Panels of 6 individual genes discriminated the stages of disease activity: CD with mild severity {ROC-AUC, 0.89 (95% confidence interval [CI], 0.84%-0.95%)}, CD with moderate-to-severe severity (ROC-AUC 0.98 [95% CI, 0.97-1.0]), UC with mild severity (ROC-AUC 0.92 [95% CI, 0.87-0.96]), and UC with moderate-to-severe severity (ROC-AUC 0.99 [95% CI, 0.97-1.0]). Validation by real-time reverse transcription-PCR confirmed the Affymetrix microarray data. CONCLUSIONS The specific whole blood gene panels reliably distinguished CD and UC and determined the activity of disease, with high sensitivity and specificity in our cohorts of patients. This simple serological test has the potential to become a biomarker to determine the activity of disease.
Collapse
|
17
|
Umar T, Hoda N. Selective inhibitors of phosphodiesterases: therapeutic promise for neurodegenerative disorders. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00419e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PDE inhibitors: significant contributors to the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tarana Umar
- Department of Chemistry
- Jamia Millia Islamia
- Central University
- New Delhi
- 110025 India
| | - Nasimul Hoda
- Department of Chemistry
- Jamia Millia Islamia
- Central University
- New Delhi
- 110025 India
| |
Collapse
|
18
|
Kawai K, Endo Y, Asano T, Amano S, Sawada K, Ueo N, Takahashi N, Sonoda Y, Nagai M, Kamei N, Nagata N. Discovery of 2-(Cyclopentylamino)thieno[3,2-d]pyrimidin-4(3H)-one Derivatives as a New Series of Potent Phosphodiesterase 7 Inhibitors. J Med Chem 2014; 57:9844-54. [DOI: 10.1021/jm5008215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kentaro Kawai
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Yusuke Endo
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Takeshi Asano
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Seiji Amano
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Keisuke Sawada
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Noriko Ueo
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Nobuaki Takahashi
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Yo Sonoda
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Mika Nagai
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Noriyuki Kamei
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Naoya Nagata
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| |
Collapse
|
19
|
Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 2014; 13:290-314. [PMID: 24687066 DOI: 10.1038/nrd4228] [Citation(s) in RCA: 568] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants.
Collapse
Affiliation(s)
- Donald H Maurice
- Biomedical and Molecular Sciences, Queen's University, Kingston K7L3N6, Ontario, Canada
| | - Hengming Ke
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Faiyaz Ahmad
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yousheng Wang
- Beijing Technology and Business University, Beijing 100048, China
| | - Jay Chung
- Genetics and Developmental Biology Center, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
20
|
Sánchez AI, Meneses R, Mínguez JM, Núñez A, Castillo RR, Filace F, Burgos C, Vaquero JJ, Álvarez-Builla J, Cortés-Cabrera A, Gago F, Terricabras E, Segarra V. Microwave-assisted synthesis of potent PDE7 inhibitors containing a thienopyrimidin-4-amine scaffold. Org Biomol Chem 2014; 12:4233-42. [DOI: 10.1039/c4ob00175c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thienopyrimidin-4-amines have been synthesized, evaluated and modelled as phosphodiesterase inhibitors.
Collapse
Affiliation(s)
- Ana I. Sánchez
- Departamento de Química Orgánica
- Universidad de Alcalá
- E-28871 Alcalá de Henares, Spain
| | - Ricardo Meneses
- Departamento de Química Orgánica
- Universidad de Alcalá
- E-28871 Alcalá de Henares, Spain
| | - José M. Mínguez
- Departamento de Química Orgánica
- Universidad de Alcalá
- E-28871 Alcalá de Henares, Spain
| | - Araceli Núñez
- Departamento de Química Orgánica
- Universidad de Alcalá
- E-28871 Alcalá de Henares, Spain
| | - Rafael R. Castillo
- Departamento de Química Orgánica
- Universidad de Alcalá
- E-28871 Alcalá de Henares, Spain
| | - Fabiana Filace
- Departamento de Química Orgánica
- Universidad de Alcalá
- E-28871 Alcalá de Henares, Spain
| | - Carolina Burgos
- Departamento de Química Orgánica
- Universidad de Alcalá
- E-28871 Alcalá de Henares, Spain
| | - Juan J. Vaquero
- Departamento de Química Orgánica
- Universidad de Alcalá
- E-28871 Alcalá de Henares, Spain
| | - Julio Álvarez-Builla
- Departamento de Química Orgánica
- Universidad de Alcalá
- E-28871 Alcalá de Henares, Spain
| | - Alvaro Cortés-Cabrera
- Departamento de Ciencias Biomédicas
- Universidad de Alcalá
- E-28871 Alcalá de Henares, Spain
| | - Federico Gago
- Departamento de Ciencias Biomédicas
- Universidad de Alcalá
- E-28871 Alcalá de Henares, Spain
| | | | - Víctor Segarra
- Almirall-Prodesfarma
- 08980 Sant Feliu de Llobregat, Spain
| |
Collapse
|
21
|
Demirbas D, Wyman AR, Shimizu-Albergine M, Cakici O, Beavo JA, Hoffman CS. A yeast-based chemical screen identifies a PDE inhibitor that elevates steroidogenesis in mouse Leydig cells via PDE8 and PDE4 inhibition. PLoS One 2013; 8:e71279. [PMID: 23967182 PMCID: PMC3743849 DOI: 10.1371/journal.pone.0071279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/04/2013] [Indexed: 02/01/2023] Open
Abstract
A cell-based high-throughput screen (HTS) was developed to detect phosphodiesterase 8 (PDE8) and PDE4/8 combination inhibitors. By replacing the Schizosaccharomyces pombe PDE gene with the murine PDE8A1 gene in strains lacking adenylyl cyclase, we generated strains whose protein kinase A (PKA)-stimulated growth in 5-fluoro orotic acid (5FOA) medium reflects PDE8 activity. From our previously-identified PDE4 and PDE7 inhibitors, we identified a PDE4/8 inhibitor that allowed us to optimize screening conditions. Of 222,711 compounds screened, ∼0.2% displayed composite Z scores of >20. Additional yeast-based assays using the most effective 367 compounds identified 30 candidates for further characterization. Among these, compound BC8-15 displayed the lowest IC₅₀ value for both PDE4 and PDE8 inhibition in in vitro enzyme assays. This compound also displays significant activity against PDE10A and PDE11A. BC8-15 elevates steroidogenesis in mouse Leydig cells as a single pharmacological agent. Assays using BC8-15 and two structural derivatives support a model in which PDE8 is a primary regulator of testosterone production by Leydig cells, with an additional role for PDE4 in this process. BC8-15, BC8-15A, and BC8-15C, which are commercially available compounds, display distinct patterns of activity against PDE4, PDE8, PDE10A, and PDE11A, representing a chemical toolkit that could be used to examine the biological roles of these enzymes in cell culture systems.
Collapse
Affiliation(s)
- Didem Demirbas
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Arlene R. Wyman
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Masami Shimizu-Albergine
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Ozgur Cakici
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Joseph A. Beavo
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Charles S. Hoffman
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Safavi M, Baeeri M, Abdollahi M. New methods for the discovery and synthesis of PDE7 inhibitors as new drugs for neurological and inflammatory disorders. Expert Opin Drug Discov 2013; 8:733-51. [DOI: 10.1517/17460441.2013.787986] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Sánchez AI, Martínez-Barrasa V, Burgos C, Vaquero JJ, Alvarez-Builla J, Terricabras E, Segarra V. Synthesis and evaluation of quinazoline derivatives as phosphodiesterase 7 inhibitors. Bioorg Med Chem 2013; 21:2370-2378. [DOI: 10.1016/j.bmc.2013.01.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/24/2013] [Indexed: 11/28/2022]
|
24
|
DeNinno MP. Future directions in phosphodiesterase drug discovery. Bioorg Med Chem Lett 2012; 22:6794-800. [PMID: 23046962 DOI: 10.1016/j.bmcl.2012.09.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/06/2012] [Accepted: 09/09/2012] [Indexed: 11/26/2022]
Abstract
Research on phosphodiesterases both in academic labs and in the pharmaceutical industry has remained steady over the past 35 years. Although there have been some clinical successes, they have been clustered around just a couple of PDE isoforms, and disproportionate to the huge investment put forth against what seem like very druggable targets. This review attempts to uncover the reasons for the lack of productivity in PDE drug discovery, and summarizes the current hot areas of research. In addition, new insights gathered about structure-function relationships are highlighted, in particular those relating to enzyme regulation. Lastly, novel strategies for targeting the activation or inactivation of selected PDEs are proposed that may allow for a more targeted approach for PDE modulation.
Collapse
Affiliation(s)
- Michael P DeNinno
- Vertex Pharmaceuticals Inc., 11010 Torreyana Rd, San Diego, CA 92121, United States.
| |
Collapse
|
25
|
Keravis T, Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 2012; 165:1288-305. [PMID: 22014080 DOI: 10.1111/j.1476-5381.2011.01729.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) that specifically inactivate the intracellular messengers cAMP and cGMP in a compartmentalized manner represent an important enzyme class constituted by 11 gene-related families of isozymes (PDE1 to PDE11). Downstream receptors, PDEs play a major role in controlling the signalosome at various levels of phosphorylations and protein/protein interactions. Due to the multiplicity of isozymes, their various intracellular regulations and their different cellular and subcellular distributions, PDEs represent interesting targets in intracellular pathways. Therefore, the investigation of PDE isozyme alterations related to various pathologies and the design of specific PDE inhibitors might lead to the development of new specific therapeutic strategies in numerous pathologies. This manuscript (i) overviews the different PDEs including their endogenous regulations and their specific inhibitors; (ii) analyses the intracellular implications of PDEs in regulating signalling cascades in pathogenesis, exemplified by two diseases affecting cell cycle and proliferation; and (iii) discusses perspectives for future therapeutic developments.
Collapse
Affiliation(s)
- Thérèse Keravis
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | | |
Collapse
|
26
|
De Jager PL, Shulman JM, Chibnik LB, Keenan BT, Raj T, Wilson RS, Yu L, Leurgans SE, Tran D, Aubin C, Anderson CD, Biffi A, Corneveaux JJ, Huentelman MJ, Rosand J, Daly MJ, Myers AJ, Reiman EM, Bennett DA, Evans DA. A genome-wide scan for common variants affecting the rate of age-related cognitive decline. Neurobiol Aging 2011; 33:1017.e1-15. [PMID: 22054870 DOI: 10.1016/j.neurobiolaging.2011.09.033] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/09/2011] [Accepted: 09/16/2011] [Indexed: 11/24/2022]
Abstract
Age-related cognitive decline is likely promoted by accumulated brain injury due to chronic conditions of aging, including neurodegenerative and vascular disease. Because common neuronal mechanisms may mediate the adaptation to diverse cerebral insults, we hypothesized that susceptibility for age-related cognitive decline may be due in part to a shared genetic network. We have therefore performed a genome-wide association study using a quantitative measure of global cognitive decline slope, based on repeated measures of 17 cognitive tests in 749 subjects from the Religious Orders Study. Top results were evaluated in 3 independent replication cohorts, consisting of 2279 additional subjects with repeated cognitive testing. As expected, we find that the Alzheimer's disease (AD) susceptibility locus, APOE, is strongly associated with rate of cognitive decline (P(DISC) = 5.6 × 10(-9); P(JOINT)= 3.7 × 10(-27)). We additionally discover a variant, rs10808746, which shows consistent effects in the replication cohorts and modestly improved evidence of association in the joint analysis (P(DISC) = 6.7 × 10(-5); P(REP) = 9.4 × 10(-3); P(JOINT) = 2.3 × 10(-5)). This variant influences the expression of 2 adjacent genes, PDE7A and MTFR1, which are potential regulators of inflammation and oxidative injury, respectively. Using aggregate measures of genetic risk, we find that known susceptibility loci for cardiovascular disease, type 2 diabetes, and inflammatory diseases are not significantly associated with cognitive decline in our cohort. Our results suggest that intermediate phenotypes, when coupled with larger sample sizes, may be a useful tool to dissect susceptibility loci for age-related cognitive decline and uncover shared molecular pathways with a role in neuronal injury.
Collapse
Affiliation(s)
- Philip L De Jager
- Institute for the Neurosciences, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gewald R, Rueger C, Grunwald C, Egerland U, Hoefgen N. Synthesis and structure–activity relationship studies of dihydronaphthyridinediones as a novel structural class of potent and selective PDE7 inhibitors. Bioorg Med Chem Lett 2011; 21:6652-6. [DOI: 10.1016/j.bmcl.2011.09.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
28
|
Lugnier C. PDE inhibitors: a new approach to treat metabolic syndrome? Curr Opin Pharmacol 2011; 11:698-706. [PMID: 22018840 DOI: 10.1016/j.coph.2011.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/27/2011] [Indexed: 01/16/2023]
Abstract
About one third of people in the world suffer from metabolic syndrome (MetS), with symptoms such as hypertension and elevated blood cholesterol, and with increased risk of developing additional diseases such as diabetes mellitus and heart disease. The progression of this multifactorial pathology, which targets various tissues and organs, might necessitate a renewal in therapeutic approaches. Since cyclic nucleotide phosphodiesterases (PDEs), enzymes which hydrolyze cyclic AMP and cyclic GMP, play a crucial role in regulating endocrine and cardiovascular functions, inflammation, oxidative stress, and cell proliferation, all of which contribute to MetS, we wonder whether PDE inhibitors might represent new therapeutic approaches for preventing and treating MetS.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
29
|
Francis SH, Blount MA, Corbin JD. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol Rev 2011; 91:651-90. [DOI: 10.1152/physrev.00030.2010] [Citation(s) in RCA: 451] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.
Collapse
Affiliation(s)
- Sharron H. Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Mitsi A. Blount
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Jackie D. Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
30
|
Giembycz MA, Newton R. Harnessing the clinical efficacy of phosphodiesterase 4 inhibitors in inflammatory lung diseases: dual-selective phosphodiesterase inhibitors and novel combination therapies. Handb Exp Pharmacol 2011:415-446. [PMID: 21695651 DOI: 10.1007/978-3-642-17969-3_18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Phosphodiesterase (PDE) 4 inhibitors have been in development as a novel anti-inflammatory therapy for more than 20 years, with asthma and chronic obstructive pulmonary disease (COPD) being primary indications. Despite initial optimism, only one selective PDE4 inhibitor, roflumilast (Daxas (®)), has been approved for use in humans and available in Canada and the European Union in 2011 for the treatment of a specific population of patients with severe COPD. In many other cases, the development of PDE4 inhibitors of various structural classes has been discontinued due to lack of efficacy and/or dose-limiting adverse events. Indeed, for many of these compounds, it is likely that the maximum tolerated dose is either subtherapeutic or at the very bottom of the efficacy dose-response curve. Thus, a significant ongoing challenge that faces the pharmaceutical industry is to synthesize compounds with therapeutic ratios that are superior to roflumilast. Several strategies are being considered, but clinically effective compounds with an optimal pharmacophore have not, thus far, been reported. In this chapter, alternative means of harnessing the clinical efficacy of PDE4 inhibitors are described. These concepts are based on the assumption that additive or synergistic anti-inflammatory effects can be produced with inhibitors that target either two or more PDE families or with a PDE4 inhibitor in combination with other anti-inflammatory drugs such as a glucocorticoid.
Collapse
Affiliation(s)
- Mark A Giembycz
- Airways Inflammation Research Group, Departments of Physiology and Pharmacology, Institute of Infection, Immunity and Inflammation, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | | |
Collapse
|
31
|
Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. Handb Exp Pharmacol 2011:447-85. [PMID: 21695652 DOI: 10.1007/978-3-642-17969-3_19] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes that are involved in the regulation of the intracellular second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) by controlling their rates of hydrolysis. There are 11 different PDE families and each family typically has multiple isoforms and splice variants. The PDEs differ in their structures, distribution, modes of regulation, and sensitivity to inhibitors. Since PDEs have been shown to play distinct roles in processes of emotion and related learning and memory processes, selective PDE inhibitors, by preventing the breakdown of cAMP and/or cGMP, modulate mood and related cognitive activity. This review discusses the current state and future development in the burgeoning field of PDEs in the central nervous system. It is becoming increasingly clear that PDE inhibitors have therapeutic potential for the treatment of neuropsychiatric disorders involving disturbances of mood, emotion, and cognition.
Collapse
|
32
|
Goto M, Kadoshima-Yamaoka K, Murakawa M, Yoshioka R, Tanaka Y, Inoue H, Murafuji H, Kanki S, Hayashi Y, Nagahira K, Ogata A, Nakatsuka T, Fukuda Y. Phosphodiesterase 7A inhibitor ASB16165 impairs proliferation of keratinocytes in vitro and in vivo. Eur J Pharmacol 2010; 633:93-7. [PMID: 20132810 DOI: 10.1016/j.ejphar.2010.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/24/2009] [Accepted: 01/20/2010] [Indexed: 12/01/2022]
Abstract
Excessive proliferation of epidermal keratinocytes is a typical aspect of chronic skin diseases such as psoriasis. In the present study, the effect of phosphodiesterase 7A (PDE7A) inhibitor ASB16165 on proliferation of keratinocytes was investigated to examine the role of PDE7A in keratinocyte proliferation and the possible therapeutic relevance of PDE7A inhibition in psoriasis. Topical application of ASB16165 inhibited the increase of thickness of skin as well as epidermis in a skin inflammation model induced by repeated painting of 12-O-tetradecanoylphorbol-13-acetate (TPA) in a concentration-dependent manner. The ASB16165 treatment also suppressed the increase in the number of Ki67-positive keratinocytes in the model, showing the disturbance of keratinocyte proliferation by the treatment. In addition, both ASB16165 and dibutyryl cAMP significantly decreased the proliferation of human keratinocytes in vitro, suggesting that PDE7A participates in keratinocyte proliferation probably by controlling intracellular cAMP, while the contribution of other mechanism(s) is not completely denied. The findings in the present study indicate that the effect of ASB16165 on skin and epidermal hyperplasia in the TPA-induced skin inflammation is mediated, at least in part, by the inhibition of keratinocyte proliferation. The inhibitors for PDE7A including ASB16165 might be useful for the treatment of psoriasis.
Collapse
Affiliation(s)
- Megumi Goto
- Biomedical Research Laboratories, Asubio Pharma Co., Limited, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Goto M, Tanaka Y, Murakawa M, Kadoshima-Yamaoka K, Inoue H, Murafuji H, Nagahira A, Kanki S, Hayashi Y, Nagahira K, Ogata A, Miura K, Nakatsuka T, Chamoto K, Fukuda Y, Nishimura T. Inhibition of phosphodiesterase 7A ameliorates Concanavalin A-induced hepatitis in mice. Int Immunopharmacol 2009; 9:1347-51. [DOI: 10.1016/j.intimp.2009.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 07/25/2009] [Accepted: 08/03/2009] [Indexed: 11/28/2022]
|
34
|
Dong H, Zitt C, Auriga C, Hatzelmann A, Epstein PM. Inhibition of PDE3, PDE4 and PDE7 potentiates glucocorticoid-induced apoptosis and overcomes glucocorticoid resistance in CEM T leukemic cells. Biochem Pharmacol 2009; 79:321-9. [PMID: 19737543 DOI: 10.1016/j.bcp.2009.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 11/26/2022]
Abstract
Stimulation of the cAMP signaling pathway has been shown to induce apoptosis and augment the effects of glucocorticoids in inducing apoptosis in leukemic cells. We recently reported that in primary B cell chronic lymphocytic leukemic (B-CLL) cells, apoptosis could be induced by stimulating the cAMP signaling pathway with a phosphodiesterase4 (PDE4) inhibitor alone; while in contrast, in the CEM T leukemic cell line, PDE4 inhibitors alone were ineffective, and concurrent stimulation of adenylyl cyclase was required to see effects [Tiwari et al. (2005)]. We report here that in the CEM and Jurkat T leukemic cell lines, the most abundantly expressed PDEs are PDE3B, PDE4A, PDE4D, PDE7A, and PDE8A. Selective inhibition of PDE3, PDE4 or PDE7 alone produces little effect on cell viability, but inhibition of all three of these PDEs together dramatically enhances glucocorticoid-induced apoptosis in CEM cells, and overcomes glucocorticoid resistance in a glucocorticoid-resistant CEM cell line. These studies indicate that for some leukemic cell types, a desired therapeutic effect may be achieved by inhibiting more than one form of PDE.
Collapse
Affiliation(s)
- Hongli Dong
- Signal Transduction Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-6125, USA
| | | | | | | | | |
Collapse
|
35
|
Kadoshima-Yamaoka K, Goto M, Murakawa M, Yoshioka R, Tanaka Y, Inoue H, Murafuji H, Kanki S, Hayashi Y, Nagahira K, Ogata A, Nakatsuka T, Fukuda Y. ASB16165, a phosphodiesterase 7A inhibitor, reduces cutaneous TNF-α level and ameliorates skin edema in phorbol ester 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation model in mice. Eur J Pharmacol 2009; 613:163-6. [DOI: 10.1016/j.ejphar.2009.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 04/01/2009] [Accepted: 04/08/2009] [Indexed: 11/30/2022]
|