1
|
Jiang C, Li J, Zhang W, Zhuang Z, Liu G, Hong W, Li B, Zhang X, Chao CC. Potential association factors for developing effective peptide-based cancer vaccines. Front Immunol 2022; 13:931612. [PMID: 35967400 PMCID: PMC9364268 DOI: 10.3389/fimmu.2022.931612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Peptide-based cancer vaccines have been shown to boost immune systems to kill tumor cells in cancer patients. However, designing an effective T cell epitope peptide-based cancer vaccine still remains a challenge and is a major hurdle for the application of cancer vaccines. In this study, we constructed for the first time a library of peptide-based cancer vaccines and their clinical attributes, named CancerVaccine (https://peptidecancervaccine.weebly.com/). To investigate the association factors that influence the effectiveness of cancer vaccines, these peptide-based cancer vaccines were classified into high (HCR) and low (LCR) clinical responses based on their clinical efficacy. Our study highlights that modified peptides derived from artificially modified proteins are suitable as cancer vaccines, especially for melanoma. It may be possible to advance cancer vaccines by screening for HLA class II affinity peptides may be an effective therapeutic strategy. In addition, the treatment regimen has the potential to influence the clinical response of a cancer vaccine, and Montanide ISA-51 might be an effective adjuvant. Finally, we constructed a high sensitivity and specificity machine learning model to assist in designing peptide-based cancer vaccines capable of providing high clinical responses. Together, our findings illustrate that a high clinical response following peptide-based cancer vaccination is correlated with the right type of peptide, the appropriate adjuvant, and a matched HLA allele, as well as an appropriate treatment regimen. This study would allow for enhanced development of cancer vaccines.
Collapse
Affiliation(s)
- Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| | - Jianrong Li
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Wei Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | | | - Geng Liu
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Wei Hong
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Bo Li
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Xiuqing Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Cheng-Chi Chao
- Department of Pipeline Development, Biomap, Inc, San Francisco, CA, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| |
Collapse
|
2
|
Held G, Luescher IF, Neumann F, Papaioannou C, Schirrmann T, Sester M, Smola S, Pfreundschuh M. MHC/Peptide-Specific Interaction of the Humoral Immune System: A New Category of Antibodies. THE JOURNAL OF IMMUNOLOGY 2015; 195:4210-7. [PMID: 26416277 DOI: 10.4049/jimmunol.1402902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 08/26/2015] [Indexed: 11/19/2022]
Abstract
Abs bind to unprocessed Ags, whereas cytotoxic CD8(+) T cells recognize peptides derived from endogenously processed Ags presented in the context of class I MHC complexes. We screened, by ELISA, human sera for Abs reacting specifically with the influenza matrix protein (IMP)-derived peptide(58-66) displayed by HLA-A*0201 complexes. Among 653 healthy volunteers, blood donors, and women on delivery, high-titered HLA-A*0201/IMP(58-66) complex-specific IgG Abs were detected in 11 females with a history of pregnancies and in 1 male, all HLA-A*0201(-). These Abs had the same specificity as HLA-A*0201/IMP(58-66)-specific cytotoxic T cells and bound neither to HLA-A*0201 nor the peptide alone. No such Abs were detected in HLA-A*0201(+) volunteers. These Abs were not cross-reactive to other self-MHC class I alleles displaying IMP(58-66), but bound to MHC class I complexes of an HLA nonidentical offspring. HLA-A*0201/IMP(58-66) Abs were also detected in the cord blood of newborns, indicating that HLA-A*0201/IMP(58-66) Abs are produced in HLA-A*0201(-) mothers and enter the fetal blood system. That Abs can bind to peptides derived from endogenous Ags presented by MHC complexes opens new perspectives on interactions between the cellular and humoral immune system.
Collapse
Affiliation(s)
- Gerhard Held
- Department of Internal Medicine I, Saarland University Medical School, 66421 Homburg/Saar, Germany
| | - Immanuel F Luescher
- Ludwig Center for Cancer Research, Lausanne Branch, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Frank Neumann
- Department of Internal Medicine I, Saarland University Medical School, 66421 Homburg/Saar, Germany
| | - Chrysostomos Papaioannou
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Saarland University Medical School, 66421 Homburg/Saar, Germany
| | - Thomas Schirrmann
- Institute of Biochemistry and Biotechnology, University of Braunschweig, 38106 Braunschweig, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University Medical School, 66421 Homburg/Saar, Germany; and
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical School, 66421 Homburg/Saar, Germany
| | - Michael Pfreundschuh
- Department of Internal Medicine I, Saarland University Medical School, 66421 Homburg/Saar, Germany;
| |
Collapse
|
3
|
Neumann F, Pfreundschuh M, Preuss KD, Schormann C, Zwick C, Murawski N, Kubuschok B. CD4⁺ T cells in chronic autoantigenic stimulation in MGUS, multiple myeloma and Waldenström's macroglobulinemia. Int J Cancer 2015; 137:1076-84. [PMID: 25677163 DOI: 10.1002/ijc.29478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/04/2015] [Indexed: 11/11/2022]
Abstract
Hyperphosphorylated paratarg-7 (pP-7) carrier state is the strongest and most frequent molecular risk factor for MGUS, multiple myeloma (MM) and Waldenström's macroglobulinemia (WM), inherited autosomal-dominantly and, depending on the ethnic background, found in up to one third of patients with MGUS/MM. Since P-7 is the antigenic target of paraproteins that do not distinguish between wtP-7 and pP-7, we investigated CD4(+) T-cell responses in pP-7(+) patients and controls. Peptides spanning amino acids 1-35 or 4-31 containing phosphorylated or nonphosphorylated serine17 were used for stimulation. CD4(+) cells from 9/14 patients (65%) showed a pP-7 specific HLA-DR restricted response. These results demonstrate that pP-7 specific CD4(+) cells can mediate help for pP-7 specific chronic antigenic stimulation of P-7 specific B cells, which might ultimately result in the clonal evolution of a B cell into MGUS/MM/WM producing a P-7 specific paraprotein. Prerequisites for pP-7 specific stimulation of CD4(+) cells appear to be both a pP-7 carrier state and an HLA-DR subtype able to present and recognize pP-7. Our results serve as an explanation for the exclusive autoimmunogenicity of the hyperphosphorylated variant of P-7 and for the different hazard ratios of pP-7 carriers from different ethnic origins to develop MGUS/MM/WM.
Collapse
Affiliation(s)
- Frank Neumann
- José Carreras Center for Immuno and Gene Therapy, Department of Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| | - Michael Pfreundschuh
- José Carreras Center for Immuno and Gene Therapy, Department of Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| | - Klaus D Preuss
- José Carreras Center for Immuno and Gene Therapy, Department of Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| | - Claudia Schormann
- José Carreras Center for Immuno and Gene Therapy, Department of Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| | - Carsten Zwick
- José Carreras Center for Immuno and Gene Therapy, Department of Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| | - Niels Murawski
- José Carreras Center for Immuno and Gene Therapy, Department of Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| | - Boris Kubuschok
- José Carreras Center for Immuno and Gene Therapy, Department of Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| |
Collapse
|
4
|
Abstract
Peptide antibodies recognize epitopes with amino acid residues adjacent in sequence ("linear" epitopes). Such antibodies can be made to virtually any sequence and have been immensely important in all areas of molecular biology and diagnostics due to their versatility and to the rapid growth in protein sequence information. Today, peptide antibodies can be routinely and rapidly made to large numbers of peptides, including peptides with posttranslationally modified residues, and are used for immunoblotting, immunocytochemistry, immunohistochemistry, and immunoassays. In the future, peptide antibodies will continue to be immensely important for molecular biology, TCR- and MHC-like peptide antibodies may be produced routinely, peptide antibodies with predetermined conformational specificities may be designed, and peptide-based vaccines may become part of vaccination programs.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| |
Collapse
|
5
|
Dunbar J, Knapp B, Fuchs A, Shi J, Deane CM. Examining variable domain orientations in antigen receptors gives insight into TCR-like antibody design. PLoS Comput Biol 2014; 10:e1003852. [PMID: 25233457 PMCID: PMC4168974 DOI: 10.1371/journal.pcbi.1003852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
The variable domains of antibodies and T-Cell receptors (TCRs) share similar structures. Both molecules act as sensors for the immune system but recognise their respective antigens in different ways. Antibodies bind to a diverse set of antigenic shapes whilst TCRs only recognise linear peptides presented by a major histocompatibility complex (MHC). The antigen specificity and affinity of both receptors is determined primarily by the sequence and structure of their complementarity determining regions (CDRs). In antibodies the binding site is also known to be affected by the relative orientation of the variable domains, VH and VL. Here, the corresponding property for TCRs, the Vβ-Vα orientation, is investigated and compared with that of antibodies. We find that TCR and antibody orientations are distinct. General antibody orientations are found to be incompatible with binding to the MHC in a canonical TCR-like mode. Finally, factors that cause the orientation of TCRs and antibodies to be different are investigated. Packing of the long Vα CDR3 in the domain-domain interface is found to be influential. In antibodies, a similar packing affect can be achieved using a bulky residue at IMGT position 50 on the VH domain. Along with IMGT VH 50, other positions are identified that may help to promote a TCR-like orientation in antibodies. These positions should provide useful considerations in the engineering of therapeutic TCR-like antibodies. The immune system needs to be able to sense molecules that might be harmful to the organism. Such harmful molecules are known as antigens. Two classes of receptor proteins that mediate antigen recognition are antibodies and T-Cell receptors (TCRs). Antibodies are able to bind a diverse range of antigen shapes whilst TCRs are specialised to recognise a cell-surface protein, the pMHC. Antibodies that bind the pMHC are rarely created naturally. However, such TCR-like antibodies are of therapeutic importance. The binding regions of the TCR and the antibody have very similar three dimensional structures. Both consist of two independent units, domains, which associate and form the antigen binding site between them. This work examines how the two domains orientate with respect to one another in TCRs and antibodies. Our results show that the conformations that exist in TCRs and antibodies are distinct. Consequently it is difficult for an antibody to bind to a pMHC in the same way a TCR would. However, a similar conformation can be achieved in antibodies as in TCRs by the presence of certain amino-acids in the domain interface. This knowledge should aid the development of therapeutic TCR-like antibodies.
Collapse
Affiliation(s)
- James Dunbar
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Bernhard Knapp
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Angelika Fuchs
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Informatics, Penzberg, Germany
| | - Jiye Shi
- Informatics, UCB Pharma, Slough, United Kingdom
| | - Charlotte M. Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment. PLoS One 2012; 7:e43746. [PMID: 22916301 PMCID: PMC3423377 DOI: 10.1371/journal.pone.0043746] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/23/2012] [Indexed: 11/20/2022] Open
Abstract
A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR) binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC) molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab) library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu) peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2), with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with 64Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT) imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer.
Collapse
|
7
|
Tassev DV, Cheng M, Cheung NKV. Retargeting NK92 cells using an HLA-A2-restricted, EBNA3C-specific chimeric antigen receptor. Cancer Gene Ther 2011; 19:84-100. [PMID: 21979579 DOI: 10.1038/cgt.2011.66] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in adoptive cell immunotherapy have led to several promising options for cancer patients. Single-chain variable fragments (scFvs) were isolated from a human phage display library by panning on recombinant human leukocyte antigen (HLA)-A2-peptide complexes. A scFv (EBNA Clone 315) specific for HLA-A2 carrying a 10 amino acid peptide (LLDFVRFMGV) derived from the Epstein-Barr virus latent protein EBNA3C was fully characterized. EBNA Clone 315 displayed exquisite specificity toward its targeted T-cell epitope (TCE) and did not cross-react with the free peptide, HLA-A2 complexes, which carried irrelevant peptides, or HLA-A2(-) cells. Furthermore, after engineering into a scFv-Fc fusion protein, we were able to determine its affinity, detection sensitivity, and ability to induce antibody-dependent cellular cytotoxicity (ADCC). As a proof-of-principle, a chimeric antigen receptor (CAR) version of EBNA Clone 315 was used to reprogram NK92MI cells. CAR-expressing NK92MI cells showed highly specific and potent cytotoxicity toward the targeted TCE, with detection sensitivity of approximately 25 molecules and cytolytic capacity threefold greater than scFv-Fc-mediated ADCC. For the first time, we show the successful reprogramming of non-T cells toward a specific TCE using a CAR.
Collapse
Affiliation(s)
- D V Tassev
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
8
|
Edidin M. Class I MHC molecules as probes of membrane patchiness: from biophysical measurements to modulation of immune responses. Immunol Res 2010; 47:265-72. [PMID: 20077159 DOI: 10.1007/s12026-009-8159-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Here I summarize decades of work using the biophysics of class I MHC molecules to probe the patchiness and heterogeneity of cell surfaces. This program began as a study of membranes generally. MHC molecules were a convenient probe. However, in recent years, it has become clear that the lateral distribution, clustering, of class I MHC molecules in the membrane affects their recognition by effector CTL. This offers the possibility of enhancing or reducing T-cell recognition of targets by altering the clustering of their membrane proteins.
Collapse
Affiliation(s)
- Michael Edidin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
9
|
Alahmad A, Preuss KD, Schenk J, Füreder W, Schrezenmeier H, Müller-Lantzsch N, Schubert J, Pfreundschuh M. Desmoplakin and KIF20B as target antigens in patients with paroxysmal nocturnal haemoglobinuria. Br J Haematol 2010; 151:273-80. [DOI: 10.1111/j.1365-2141.2010.08345.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:384-93. [PMID: 20588116 DOI: 10.1097/med.0b013e32833c4b2b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|