1
|
Lan J, Zeng R, Li Z, Yang X, Liu L, Chen L, Sun L, Shen Y, Zhang T, Ding Y. Biomimetic Nanomodulators With Synergism of Photothermal Therapy and Vessel Normalization for Boosting Potent Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408511. [PMID: 39180264 DOI: 10.1002/adma.202408511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Combination therapy using photothermal therapy (PTT) and immunotherapy is one of the most promising approaches for eliciting host immune responses to ablate tumors. However, its therapeutic efficacy is limited due to inefficient immune cell infiltration and cellular immune responses. In this study, a biomimetic immunostimulatory nanomodulator, Tm@PDA-GA (4T1 membrane@polydopamine-gambogic acid), with homologous targeting is developed. The 4T1 membrane (Tm) coating reduced immunogenicity and facilitated uptake of Tm@PDA-GA by tumor cells. Polydopamine (PDA) as a drug carrier can induce PTT under near-infrared ray (NIR) irradiation and immunogenic cell death (ICD) to activate dendritic cells (DCs). Moreover, Tm@PDA-GA on-demand released gambogic acid (GA) in an acidic tumor microenvironment, inhibiting the expression of heat shock proteins (HSPs) for synergetic chemo-photothermal anti-tumor activity and increasing the ICD of 4T1 cells. More importantly, GA can normalize the vessels via HIF-1α and VEGF inhibition to enhance immune infiltration and alleviate hypoxia stress. Thus, Tm@PDA-GA induced ICD, activated DCs, stimulated cytotoxic T cells, and suppressed Tregs. Moreover, Tm@PDA-GA is combined with anti-PD-L1 to further augment the tumor immune response and effectively suppress tumor growth and lung metastasis. In conclusion, biomaterial-mediated PTT combined with vessel normalization is a promising strategy for effective immunotherapy of triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuguang Yang
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- National Innovation Platform for Medical Industry-Education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
2
|
Denies S, Leyman B, Huysmans H, Combes F, Mc Cafferty S, Cicchelero L, Steppe M, De Temmerman J, Sanders NN. Evaluation of a xenogeneic vascular endothelial growth factor-2 vaccine in two preclinical metastatic tumor models in mice. Cancer Immunol Immunother 2017; 66:1545-1555. [PMID: 28776079 PMCID: PMC11029140 DOI: 10.1007/s00262-017-2046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 07/21/2017] [Indexed: 12/11/2022]
Abstract
In this study, a xenogeneic DNA vaccine encoding for human vascular endothelial growth factor receptor-2 (hVEGFR-2) was evaluated in two murine tumor models, the B16-F10 melanoma and the EO771 breast carcinoma model. The vaccine was administered by intradermal injection followed by electroporation. The immunogenicity and the biological efficacy of the vaccine were tested in (1) a prophylactic setting, (2) a therapeutic setting, and (3) a therapeutic setting combined with surgical removal of the primary tumor. The tumor growth, survival, and development of an immune response were followed. The cellular immune response was measured by a bioluminescence-based cytotoxicity assay with vascular endothelial growth factor-2 (VEGFR-2)-expressing target cells. Humoral immune responses were quantified by enzyme-linked immunosorbent assay (ELISA). Ex vivo bioluminescence imaging and immunohistological observation of organs were used to detect (micro)metastases. A cellular and humoral immune response was present in prophylactically and therapeutically vaccinated mice, in both tumor models. Nevertheless, survival in prophylactically vaccinated mice was only moderately increased, and no beneficial effect on survival in therapeutically vaccinated mice could be demonstrated. An influx of CD3+ cells and a slight decrease in VEGFR-2 were noticed in the tumors of vaccinated mice. Unexpectedly, the vaccine caused an increased quantity of early micrometastases in the liver. Lung metastases were not increased by the vaccine. These early liver micrometastases did however not grow into macroscopic metastases in either control or vaccinated mice when allowed to develop further after surgical removal of the primary tumor.
Collapse
Affiliation(s)
- Sofie Denies
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
- iTeos Therapeutics, Rue Clément Ader 16, 6041, Gosselies, Belgium
| | - Bregje Leyman
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Hanne Huysmans
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Séan Mc Cafferty
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Laetitia Cicchelero
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
- Bimetra, Clinical Research Centre Ghent, De Pintelaan 185, 9000, Ghent, Belgium
| | - Marjan Steppe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Joyca De Temmerman
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Denies S, Cicchelero L, Polis I, Sanders NN. Immunogenicity and safety of xenogeneic vascular endothelial growth factor receptor-2 DNA vaccination in mice and dogs. Oncotarget 2017; 7:10905-16. [PMID: 26871296 PMCID: PMC4905448 DOI: 10.18632/oncotarget.7265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) is an attractive target in oncology due to its crucial role in angiogenesis. In this study a DNA vaccine coding for human VEGFR-2 was evaluated in healthy mice and dogs, administered by intradermal injection and electroporation. In mice, three doses and vaccination schedules were evaluated. Cellular immune responses were measured by intracellular IFN-gamma staining and a cytotoxicity assay and antibodies by ELISA. Safety was assessed by measuring regulatory T cells and myeloid derived suppressor cells and a wound healing assay. The vaccine was subsequently evaluated in dogs, which were vaccinated three times with 100μg. Cellular immune responses were measured by intracellular IFN-gamma staining and antibodies by a flow cytometric assay. In mice, maximal cellular responses were observed after two vaccinations with 5μg. Humoral responses continued to increase with higher dose and number of vaccinations. No abnormalities in the measured safety parameters were observed. The vaccine was also capable of eliciting a cellular and humoral immune response in dogs. No adverse effects were observed, but tolerability of the electroporation was poor. This study will facilitate the evaluation of the vaccine in tumor bearing animals, ranging from rodent models to dogs with spontaneous tumors.
Collapse
Affiliation(s)
- Sofie Denies
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Laetitia Cicchelero
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingeborgh Polis
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol Ther 2016; 165:32-49. [DOI: 10.1016/j.pharmthera.2016.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Yin X, Wang W, Zhu X, Wang Y, Wu S, Wang Z, Wang L, Du Z, Gao J, Yu J. Synergistic antitumor efficacy of combined DNA vaccines targeting tumor cells and angiogenesis. Biochem Biophys Res Commun 2015; 465:239-44. [PMID: 26253468 DOI: 10.1016/j.bbrc.2015.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 01/12/2023]
Abstract
To further enhance the antitumor efficacy of DNA vaccine, we proposed a synergistic strategy that targeted tumor cells and angiogenesis simultaneously. In this study, a Semliki Forest Virus (SFV) replicon DNA vaccine expressing 1-4 domains of murine VEGFR2 and IL12 was constructed, and was named pSVK-VEGFR2-GFc-IL12 (CAVE). The expression of VEGFR2 antigen and IL12 adjuvant molecule in 293T cells in vitro were verified by western blot and enzyme-linked immune sorbent assay (ELISA). Then CAVE was co-immunized with CAVA, a SFV replicon DNA vaccine targeting survivin and β-hCG antigens constructed previously. The antitumor efficacy of our combined replicon vaccines was evaluated in mice model and the possible mechanism was further investigated. The combined vaccines could elicit efficient humoral and cellular immune responses against survivin, β-hCG and VEGFR2 simultaneously. Compared with CAVE or CAVA vaccine alone, the combined vaccines inhibited the tumor growth and improved the survival rate in B16 melanoma mice model more effectively. Furthermore, the intratumoral microvessel density was lowest in combined vaccines group than CAVE or CAVA alone group. Therefore, this synergistic strategy of DNA vaccines for tumor treatment results in an increased antitumor efficacy, and may be more suitable for translation to future research and clinic.
Collapse
Affiliation(s)
- Xiaotao Yin
- Department of Urology, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, China; Beijing Institute of Basic Medical Sciences, 27 Tai Ping Road, Beijing 100850, China
| | - Wei Wang
- Beijing Institute of Basic Medical Sciences, 27 Tai Ping Road, Beijing 100850, China; Department of Urology, No. 261 Hospital of PLA, Beijing, China
| | - Xiaoming Zhu
- Beijing Institute of Basic Medical Sciences, 27 Tai Ping Road, Beijing 100850, China
| | - Yu Wang
- Beijing Institute of Basic Medical Sciences, 27 Tai Ping Road, Beijing 100850, China
| | - Shuai Wu
- Beijing Institute of Basic Medical Sciences, 27 Tai Ping Road, Beijing 100850, China
| | - Zicheng Wang
- Beijing Institute of Basic Medical Sciences, 27 Tai Ping Road, Beijing 100850, China
| | - Lin Wang
- Department of Internal Medicine, No. 316 Hospital of PLA, Beijing, China
| | - Zhiyan Du
- Beijing Institute of Basic Medical Sciences, 27 Tai Ping Road, Beijing 100850, China
| | - Jiangping Gao
- Department of Urology, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, China.
| | - Jiyun Yu
- Beijing Institute of Basic Medical Sciences, 27 Tai Ping Road, Beijing 100850, China.
| |
Collapse
|
6
|
Ciliberto D, Staropoli N, Caglioti F, Gualtieri S, Fiorillo L, Chiellino S, De Angelis AM, Mendicino F, Botta C, Caraglia M, Tassone P, Tagliaferri P. A systematic review and meta-analysis of randomized trials on the role of targeted therapy in the management of advanced gastric cancer: Evidence does not translate? Cancer Biol Ther 2015; 16:1148-59. [PMID: 26061272 PMCID: PMC4623405 DOI: 10.1080/15384047.2015.1056415] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/12/2015] [Accepted: 05/24/2015] [Indexed: 12/15/2022] Open
Abstract
It is still uncertain if targeted therapy-based regimens in advanced gastric cancer actually produce survival benefit. To shed light on this important question, we performed a systematic review and meta-analyses on each relevant targeted-pathway. By searching literature databases and proceedings of major cancer meetings in the time-frame 2005-2014, 22 randomized clinical trials exploring targeted therapy for a total of 7022 advanced gastric cancer patients were selected and included in the final analysis. Benefit was demonstrated for antiangiogenic agents in terms of overall survival (HR 0.759; 95%CI 0.655-0.880; p < 0.001). Conversely no benefit was found for EGFR pathway (HR 1.077; 95%CI 0.847-1.370; p = 0.543). Meta-analysis of HER-2 pathway confirmed improvement in terms of survival outcome, already known for this class of drugs (HR 0.823; 95%CI 0.722-0.939; p = 0.004). Pooled analysis demonstrated a significant survival benefit (OS: HR 0.823; PFS: HR 0.762) with acceptable tolerability profile for targeted-based therapies as compared to conventional treatments. This finding conflicts with the outcome of most individual studies, probably due to poor trial design or patients selection. In conclusion, our findings demonstrate a significant survival benefit for targeted therapy in its whole, which can be ascribed to anti-angiogenic and anti-HER2 agents.
Collapse
Key Words
- ADME, absorption, distribution, metabolism, and excretion
- Ab, monoclonal antibody
- BSC, best supportive care
- CHT, chemotherapy
- EGFR, epidermal growth factor receptor
- GC, gastric cancer
- HER2, human epidermal growth factor receptor 2
- HER3, human epidermal growth factor receptor 3
- MET, mesenchymal epithelial transition factor
- NGS, next generation sequencing
- NSCLC, non-small cell lung cancer
- OR, odds-ratio
- OS, overall survival
- PARP, poly ADP ribose polymerase
- PFS, progression free survival
- PI3K, phosphatidylinositide 3-kinases
- PRISMA, preferred reporting items for systematic reviews and meta-analyses
- RAF, rapidly accelerated fibrosarcoma
- RAS, rat sarcoma viral oncogene homolog
- RCTs, randomized clinical trials
- RR, response rate
- TKI, tyrosine kinase inhibitor
- VEGF, vascular endothelial growth factor
- VEGFR: VEGF receptor
- aGC, advanced gastric cancer
- angiogenesis
- gastric cancer
- mTOR, mammalian target of rapamycin
- mTORC, mTOR complex
- meta-analysis
- randomized clinical trials
- systemic chemotherapy
- targeted pathways
- targeted therapy
Collapse
Affiliation(s)
- Domenico Ciliberto
- Department of Experimental and Clinical Medicine; Magna Græcia University; Campus Salvatore Venuta; Catanzaro, Italy
| | - Nicoletta Staropoli
- Department of Experimental and Clinical Medicine; Magna Græcia University; Campus Salvatore Venuta; Catanzaro, Italy
| | - Francesca Caglioti
- Department of Experimental and Clinical Medicine; Magna Græcia University; Campus Salvatore Venuta; Catanzaro, Italy
| | - Simona Gualtieri
- Department of Experimental and Clinical Medicine; Magna Græcia University; Campus Salvatore Venuta; Catanzaro, Italy
| | - Lucia Fiorillo
- Department of Experimental and Clinical Medicine; Magna Græcia University; Campus Salvatore Venuta; Catanzaro, Italy
| | - Silvia Chiellino
- Department of Experimental and Clinical Medicine; Magna Græcia University; Campus Salvatore Venuta; Catanzaro, Italy
| | - Antonina Maria De Angelis
- Department of Experimental and Clinical Medicine; Magna Græcia University; Campus Salvatore Venuta; Catanzaro, Italy
| | - Francesco Mendicino
- Department of Experimental and Clinical Medicine; Magna Græcia University; Campus Salvatore Venuta; Catanzaro, Italy
| | - Cirino Botta
- Department of Experimental and Clinical Medicine; Magna Græcia University; Campus Salvatore Venuta; Catanzaro, Italy
| | - Michele Caraglia
- Department of Biochemistry; Biophysics and General Pathology; Second University of Naples; Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; College of Science and Technology; Temple University; Philadelphia, PA USA
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine; Magna Græcia University; Campus Salvatore Venuta; Catanzaro, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; College of Science and Technology; Temple University; Philadelphia, PA USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine; Magna Græcia University; Campus Salvatore Venuta; Catanzaro, Italy
| |
Collapse
|
7
|
Ichim TE, Li S, Ma H, Yurova YV, Szymanski JS, Patel AN, Kesari S, Min WP, Wagner SC. Induction of tumor inhibitory anti-angiogenic response through immunization with interferon Gamma primed placental endothelial cells: ValloVax™. J Transl Med 2015; 13:90. [PMID: 25889119 PMCID: PMC4363400 DOI: 10.1186/s12967-015-0441-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/18/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND While the concept of angiogenesis blockade as a therapeutic intervention for cancer has been repeatedly demonstrated, the full promise of this approach has yet to be realized. Specifically, drugs such as VEGF-blocking antibodies or kinase inhibitors suffer from the drawbacks of resistance development, as well as off-target toxicities. Previous studies have demonstrated feasibility of specifically inducing immunity towards tumor endothelium without consequences of systemic autoimmunity in both animal models and clinical settings. METHOD Placenta-derived endothelial cells were isolated and pretreated with interferon gamma to enhance immunogenicity. Syngeneic mice received subcutaneous administration of B16 melanoma, 4 T1 mammary carcinoma, and Lewis Lung Carcinoma (LLC), followed by administration of control saline, control placental endothelial cells, and interferon gamma primed endothelial cells (ValloVax™). Tumor volume was quantified. An LLC metastasis model was also established and treated under similar conditions. Furthermore, a safety analysis in non-tumor bearing mice bracketing the proposed clinical dose was conducted. RESULTS ValloVax™ immunization led to significant reduction of tumor growth and metastasis as compared to administration of non-treated placental endothelial cells. Mitotic inactivation by formalin fixation or irradiation preserved tumor inhibitory activity. Twenty-eight day evaluation of healthy male and female mice immunized with ValloVax™ resulted in no abnormalities or organ toxicities. CONCLUSION Given the established rationale behind the potential therapeutic benefit of inhibiting tumor angiogenesis as a treatment for cancer, immunization against a variety of endothelial cell antigens may produce the best clinical response, enhancing efficacy and reducing the likelihood of the development of treatment resistance. These data support the clinical evaluation of irradiated ValloVax™ as an anti-angiogenic cancer vaccine.
Collapse
Affiliation(s)
- Thomas E Ichim
- Batu Biologics Inc, San Diego, 9255 Towne Centre Drive, Suite 450, San Diego, CA, 92121, USA.
| | - Shuang Li
- Department of Endocrinology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Hong Ma
- Batu Biologics Inc, San Diego, 9255 Towne Centre Drive, Suite 450, San Diego, CA, 92121, USA.
| | - Yuliya V Yurova
- Nova Southeastern University, Fort Lauderdale, Florida, USA.
| | - Julia S Szymanski
- Batu Biologics Inc, San Diego, 9255 Towne Centre Drive, Suite 450, San Diego, CA, 92121, USA.
| | - Amit N Patel
- Department of Surgery, University of Utah, Salt Lake City, Utah.
| | - Santosh Kesari
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., MSC 0752, La Jolla, San Diego, CA, 92093-0752, USA. .,Translational Neuro-Oncology Laboratories, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr., MSC 0819, La Jolla, San Diego, CA, 92093-0819, USA.
| | - Wei-Ping Min
- Department of Immunology, University of Western Ontario, London, Ontario, Canada.
| | - Samuel C Wagner
- Batu Biologics Inc, San Diego, 9255 Towne Centre Drive, Suite 450, San Diego, CA, 92121, USA.
| |
Collapse
|
8
|
Schadler KL, Crosby EJ, Zhou AY, Bhang DH, Braunstein L, Baek KH, Crawford D, Crawford A, Angelosanto J, Wherry EJ, Ryeom S. Immunosurveillance by antiangiogenesis: tumor growth arrest by T cell-derived thrombospondin-1. Cancer Res 2014; 74:2171-81. [PMID: 24590059 DOI: 10.1158/0008-5472.can-13-0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent advances in cancer immunotherapy suggest that manipulation of the immune system to enhance the antitumor response may be a highly effective treatment modality. One understudied aspect of immunosurveillance is antiangiogenic surveillance, the regulation of tumor angiogenesis by the immune system, independent of tumor cell lysis. CD4(+) T cells can negatively regulate angiogenesis by secreting antiangiogenic factors such as thrombospondin-1 (TSP-1). In tumor-bearing mice, we show that a Th1-directed viral infection that triggers upregulation of TSP-1 in CD4(+) and CD8(+) T cells can inhibit tumor angiogenesis and suppress tumor growth. Using bone marrow chimeras and adoptive T-cell transfers, we demonstrated that TSP-1 expression in the T-cell compartment was necessary and sufficient to inhibit tumor growth by suppressing tumor angiogenesis after the viral infection. Our results establish that tumorigenesis can be stanched by antiangiogenic surveillance triggered by an acute viral infection, suggesting novel immunologic approaches to achieve antiangiogenic therapy.
Collapse
Affiliation(s)
- Keri L Schadler
- Authors' Affiliations: Department of Cancer Biology, Abramson Family Cancer Research Institute; Department of Microbiology, Institute for Immunology, Perelman School of Medicine; Department of Pathobiology, Veterinary School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Children's Hospital, Boston, Massachusetts; and Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang J, Wang Y, Wu Y, Ding ZY, Luo XM, Zhong WN, Liu J, Xia XY, Deng GH, Deng YT, Wei YQ, Jiang Y. Mannan-modified adenovirus encoding VEGFR-2 as a vaccine to induce anti-tumor immunity. J Cancer Res Clin Oncol 2014; 140:701-12. [PMID: 24525706 DOI: 10.1007/s00432-014-1606-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/02/2014] [Indexed: 02/05/2023]
Abstract
PURPOSE Dendritic cell (DC) vaccines are a promising immunotherapeutic approach for treatment and prevention of cancer. While this methodology is widely accepted, it also has some limitations. Antigen-presenting cells including DCs express the mannan receptor (MR). The delivery of a mannan-modified tumor antigen to the MR has been demonstrated to be efficient. Vascular endothelial growth factor receptor-2 (VEGFR-2) is mainly responsible for angiogenesis and tumor growth. The goal of our study was to deliver VEGFR-2 to DCs by means of mannan-modified adenovirus. METHODS VEGFR-2 recombinant adenovirus modified with oxidized mannan was constructed as a tumor vaccine to immunize mice in vivo. IFN-γ in mouse sera and spleen was detected by ELISA and ELISPOT. The killing activity of cytotoxic T lymphocyte (CTL) against VEGFR-2 was measured with a lactate dehydrogenase assay. Vessel densities in tumor tissues were detected by immunohistochemistry. Flow cytometry was used to test CD4(+) and CD8(+) T-cell counts in tumor tissues. RESULTS The vaccine exhibited both protective and therapeutic efficacy in the inhibition of tumor growth and markedly prolonged survival in mice. Protection against metastasis was also observed. Furthermore, vaccination led to greater IFN-γ and VEGFR-2-specific CTLs. The specific immunity resulted in the suppression of angiogenesis and an increase in CD8(+) cells in tumor tissues. CONCLUSION Oxidized mannan-modified adenovirus expressing VEGFR-2 could extraordinarily stimulate both protective and therapeutic immune response in a mice model. Our data suggest that the combination of cancer immunity and anti-angiogenesis via modified mannan is a promising strategy in tumor prophylaxis and therapy.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Warram JM, Sorace AG, Saini R, Umphrey HR, Zinn KR, Hoyt K. A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2011; 30:921-31. [PMID: 21705725 PMCID: PMC3140433 DOI: 10.7863/jum.2011.30.7.921] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
OBJECTIVES Actively targeting ultrasound contrast agents to tumor vasculature improves contrast-enhanced sonography of tumor angiogenesis. This report summarizes an evaluation of multitargeted microbubbles, comparing single-, dual-, and triple-targeted motifs. METHODS Microbubbles were avidin-biotin linked to antibodies against mouse α(V)β(3)-integrin, P-selectin, and vascular endothelial growth factor receptor 2. These receptors are constitutively overexpressed in tumor vasculature. Binding comparisons between targeted microbubble groups were evaluated on mouse SVR angiosarcoma endothelial cells. Levels of the targeted receptors were characterized with flow cytometry. Targeted microbubble groups were administered to human MDA-MB-231 breast cancer tumor-bearing mice (n = 3) followed by contrast-enhanced sonography in a microbubble-sensitive harmonic imaging mode implemented on an ultrasound scanner equipped with a linear array transducer (5 MHz transmit and 10 MHz receive) to evaluate differences in microbubble accumulation in the tumor vasculature. RESULTS In vitro analysis showed a 50% increase (P < .001) in triple-targeted microbubble binding over dual-targeted microbubble groups in mouse SVR cells. Mice bearing MDA-MB-231 tumors showed a 40% increase in tumor image intensity after dosing with triple-targeted microbubbles compared with single- and dual-targeted microbubbles (P = .006). Histologic staining confirmed the presence of α(V)β(3)-integrin, P-selectin, and vascular endothelial growth factor receptor 2 in the tumors. CONCLUSIONS Microbubble accumulation in the tumor vasculature was improved using a triple-targeted microbubble approach.
Collapse
Affiliation(s)
- Jason M Warram
- University of Alabama at Birmingham, G082 Volker Hall, 1670 University Blvd, Birmingham, AL 35294 USA
| | | | | | | | | | | |
Collapse
|
11
|
Guo S, Colbert LS, Fuller M, Zhang Y, Gonzalez-Perez RR. Vascular endothelial growth factor receptor-2 in breast cancer. Biochim Biophys Acta Rev Cancer 2010; 1806:108-21. [PMID: 20462514 DOI: 10.1016/j.bbcan.2010.04.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 12/31/2022]
Abstract
Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR was structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival.
Collapse
Affiliation(s)
- Shanchun Guo
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | |
Collapse
|