1
|
Liang YY, Liao XY, Jia JJ, Yin YZ, Zhang YH, Gao FG. K33 only mutant ubiquitin augments bone marrow-derived dendritic cell-mediated CTL priming via PI3K-Akt pathway. Immunology 2024; 172:486-499. [PMID: 38547355 DOI: 10.1111/imm.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/18/2024] [Indexed: 06/15/2024] Open
Abstract
To explore the effect of K33 only mutant ubiquitin (K33O) on bone marrow-derived dendritic cells' (BMDCs') maturity, antigen uptake capability, surface molecule expressions and BMDC-mediated CTL priming, and further investigate the role of PI3K-Akt engaged in K33O-increased BMDC maturation, antigen uptake and presentation, surface molecule expressions and BMDC-based CTL priming. BMDCs were conferred K33O and other ubiquitin mutants (K33R, K48R, K63R-mutant ubiquitin) incubation or LY294002 and wortmannin pretreatment. PI3K-Akt phosphorylation, antigen uptake, antigenic presentation and CD86/MHC class I expression in BMDC were determined by western blot or flow cytometry. BMDC-based CTL proliferation and priming were determined by in vitro mixed lymphocyte reaction (MLR), ex vivo enzyme-linked immunospot assay (Elispot) and flow cytometry with intracellular staining, respectively. The treatment with K33O effectively augmented PI3K-Akt phosphorylation, BMDCs' antigen uptake, antigenic presentation, CD86/MHC class I and CD11c expressions. MLR, Elispot and flow cytometry revealed that K33O treatment obviously enhanced CTL proliferation, CTL priming and perforin/granzyme B expression. The pretreatment with PI3K-Akt inhibitors efficiently abrogated K33O's effects on BMDC. The replenishment of K33 only mutant ubiquitin augments BMDC-mediated CTL priming in bone marrow-derived dendritic cells via PI3K-Akt signalling.
Collapse
Affiliation(s)
- Yi Yun Liang
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xiao Yan Liao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jun Jun Jia
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yi Zhen Yin
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yue Hua Zhang
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Feng Guang Gao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
2
|
Elwakeel A, Bridgewater HE, Bennett J. Unlocking Dendritic Cell-Based Vaccine Efficacy through Genetic Modulation-How Soon Is Now? Genes (Basel) 2023; 14:2118. [PMID: 38136940 PMCID: PMC10743214 DOI: 10.3390/genes14122118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The dendritic cell (DC) vaccine anti-cancer strategy involves tumour-associated antigen loading and maturation of autologous ex vivo cultured DCs, followed by infusion into the cancer patient. This strategy stemmed from the idea that to induce a robust anti-tumour immune response, it was necessary to bypass the fundamental immunosuppressive mechanisms of the tumour microenvironment that dampen down endogenous innate immune cell activation and enable tumours to evade immune attack. Even though the feasibility and safety of DC vaccines have long been confirmed, clinical response rates remain disappointing. Hence, the full potential of DC vaccines has yet to be reached. Whether this cellular-based vaccination approach will fully realise its position in the immunotherapy arsenal is yet to be determined. Attempts to increase DC vaccine immunogenicity will depend on increasing our understanding of DC biology and the signalling pathways involved in antigen uptake, maturation, migration, and T lymphocyte priming to identify amenable molecular targets to improve DC vaccine performance. This review evaluates various genetic engineering strategies that have been employed to optimise and boost the efficacy of DC vaccines.
Collapse
Affiliation(s)
- Ahmed Elwakeel
- Centre for Health and Life Sciences (CHLS), Coventry University, Coventry CV1 5FB, UK; (A.E.); (H.E.B.)
| | - Hannah E. Bridgewater
- Centre for Health and Life Sciences (CHLS), Coventry University, Coventry CV1 5FB, UK; (A.E.); (H.E.B.)
| | - Jason Bennett
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
3
|
Abstract
Chronic inflammation increases the risk of several cancers, including gastric, colon, and hepatic cancers. Conversely, tumors, similar to tissue injury, trigger an inflammatory response coordinated by the innate immune system. Cellular and molecular mediators of inflammation modulate tumor growth directly and by influencing the adaptive immune response. Depending on the balance of immune cell types and signals within the tumor microenvironment, inflammation can support or restrain the tumor. Adding to the complexity, research from the past two decades has revealed that innate immune cells are highly heterogeneous and plastic, with variable phenotypes depending on tumor type, stage, and treatment. The field is now on the cusp of being able to harness this wealth of data to (a) classify tumors on the basis of their immune makeup, with implications for prognosis, treatment choice, and clinical outcome, and (b) design therapeutic strategies that activate antitumor immune responses by targeting innate immune cells.
Collapse
Affiliation(s)
- Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | | | - Lijuan Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; , ,
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; , ,
| |
Collapse
|
4
|
Zhang L, Xia H, Xia K, Liu X, Zhang X, Dai J, Zeng Z, Jia Y. Selenium Regulation of the Immune Function of Dendritic Cells in Mice Through the ERK, Akt and RhoA/ROCK Pathways. Biol Trace Elem Res 2021; 199:3360-3370. [PMID: 33107016 DOI: 10.1007/s12011-020-02449-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
Selenium levels can regulate the function of T cells, macrophages, B cells, natural killer cells and other immune cells. However, the effect of selenium on the immune function of dendritic cells (DCs) isolated from selenium-supplemented mice is unknown. In this study, C57BL/6J mice were randomly divided into three groups and fed diets containing low (0.08 ppm), medium (0.25 ppm) or high (1 ppm) selenium levels for 8 weeks. Immature (imDCs) and mature (mDCs) dendritic cells were then isolated from the bone marrow. Next, the migration, phagocytic capacity and mixed lymphocyte reaction (MLR) for imDCs and mDCs were detected by transwell and flow cytometry. The levels of C-C chemokine receptor type 7 (CCR7), major histocompatibility complex II (MHCII) and reactive oxygen species (ROS) were assayed by flow cytometry. F-actin and superoxide dismutase (SOD) activity was detected by fluorescence microscopy and SOD assay kit, respectively. In addition, the extracellular signal-regulated kinase (ERK), Akt, Ras homolog gene family member A/Rho-associated protein kinase (RhoA/ROCK) signalling, selenoprotein K (SELENOK) and glutathione peroxidase 1 (GPX1) levels were measured by western blot analysis. The results indicated that selenium deficiency enhanced the migration of imDCs by ROS and SELENOK-mediated ERK, Akt and RhoA/ROCK pathways but impaired the antigen uptake of imDCs. Although a high selenium level inhibited the migration of imDCs, it had no effect on phagocytic capacity. For mDCs, low selenium levels impaired free migration, and high levels inhibited the chemotactic migration involved in F-actin and CCR7, respectively. Low and high selenium levels impaired the MLR by inhibiting MHCII surface localisation, which might be related to ROS- and SELENOK-mediated ERK, Akt and RhoA/ROCK signalling pathways. In summary, selenium may regulate the immune function of mouse DCs through the ROS- and SELENOK-mediated ERK, Akt and RhoA/ROCK signalling.
Collapse
Affiliation(s)
- Liangliang Zhang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huan Xia
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Kaide Xia
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xianmei Liu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin Zhang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Dai
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhu Zeng
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Jia
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China.
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
5
|
Bouzeyen R, Chugh S, Gosain TP, Barbouche MR, Haoues M, Rao KVS, Essafi M, Singh R. Co-Administration of Anticancer Candidate MK-2206 Enhances the Efficacy of BCG Vaccine Against Mycobacterium tuberculosis in Mice and Guinea Pigs. Front Immunol 2021; 12:645962. [PMID: 34122406 PMCID: PMC8190480 DOI: 10.3389/fimmu.2021.645962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/29/2021] [Indexed: 01/19/2023] Open
Abstract
The failure of M. bovis BCG to induce long-term protection has been endowed to its inability to escape the phagolysosome, leading to mild activation of CD8+ mediated T cell response. Induction of apoptosis in host cells plays an important role in potentiating dendritic cells-mediated priming of CD8+ T cells, a process defined as “cross-priming.” Moreover, IL-10 secretion by infected cells has been reported to hamper BCG-induced immunity against Tuberculosis (TB). Previously, we have reported that apoptosis of BCG-infected macrophages and inhibition of IL-10 secretion is FOXO3 dependent, a transcription factor negatively regulated by the pro-survival activated threonine kinase, Akt. We speculate that FOXO3-mediated induction of apoptosis and abrogation of IL-10 secretion along with M. bovis BCG immunization might enhance the protection imparted by BCG. Here, we have assessed whether co-administration of a known anti-cancer Akt inhibitor, MK-2206, enhances the protective efficacy of M. bovis BCG in mice model of infection. We observed that in vitro MK-2206 treatment resulted in FOXO3 activation, enhanced BCG-induced apoptosis of macrophages and inhibition of IL-10 secretion. Co-administration of M. bovis BCG along with MK-2206 also increased apoptosis of antigen-presenting cells in draining lymph nodes of immunized mice. Further, MK-2206 administration improved BCG-induced CD4+ and CD8+ effector T cells responses and its ability to induce both effector and central memory T cells. Finally, we show that co-administration of MK-2206 enhanced the protection imparted by M. bovis BCG against Mtb in aerosol infected mice and guinea pigs. Taken together, we provide evidence that MK-2206-mediated activation of FOXO3 potentiates BCG-induced immunity and imparts protection against Mtb through enhanced innate immune response.
Collapse
Affiliation(s)
- Rania Bouzeyen
- Institut Pasteur de Tunis, LTCII, LR11 IPT02, Tunis, Tunisia
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | - Meriam Haoues
- Institut Pasteur de Tunis, LTCII, LR11 IPT02, Tunis, Tunisia
| | - Kanury V S Rao
- Translational Health Science and Technology Institute, Faridabad, India
| | - Makram Essafi
- Institut Pasteur de Tunis, LTCII, LR11 IPT02, Tunis, Tunisia
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
6
|
Datta N, Chakraborty S, Basu M, Ghosh MK. Tumor Suppressors Having Oncogenic Functions: The Double Agents. Cells 2020; 10:cells10010046. [PMID: 33396222 PMCID: PMC7824251 DOI: 10.3390/cells10010046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer progression involves multiple genetic and epigenetic events, which involve gain-of-functions of oncogenes and loss-of-functions of tumor suppressor genes. Classical tumor suppressor genes are recessive in nature, anti-proliferative, and frequently found inactivated or mutated in cancers. However, extensive research over the last few years have elucidated that certain tumor suppressor genes do not conform to these standard definitions and might act as “double agents”, playing contrasting roles in vivo in cells, where either due to haploinsufficiency, epigenetic hypermethylation, or due to involvement with multiple genetic and oncogenic events, they play an enhanced proliferative role and facilitate the pathogenesis of cancer. This review discusses and highlights some of these exceptions; the genetic events, cellular contexts, and mechanisms by which four important tumor suppressors—pRb, PTEN, FOXO, and PML display their oncogenic potentials and pro-survival traits in cancer.
Collapse
Affiliation(s)
- Neerajana Datta
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
| | - Shrabastee Chakraborty
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal PIN-743372, India;
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
- Correspondence:
| |
Collapse
|
7
|
PTEN Function at the Interface between Cancer and Tumor Microenvironment: Implications for Response to Immunotherapy. Int J Mol Sci 2020; 21:ijms21155337. [PMID: 32727102 PMCID: PMC7432882 DOI: 10.3390/ijms21155337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Mounting preclinical and clinical evidence indicates that rewiring the host immune system in favor of an antitumor microenvironment achieves remarkable clinical efficacy in the treatment of many hematological and solid cancer patients. Nevertheless, despite the promising development of many new and interesting therapeutic strategies, many of these still fail from a clinical point of view, probably due to the lack of prognostic and predictive biomarkers. In that respect, several data shed new light on the role of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN) in affecting the composition and function of the tumor microenvironment (TME) as well as resistance/sensitivity to immunotherapy. In this review, we summarize current knowledge on PTEN functions in different TME compartments (immune and stromal cells) and how they can modulate sensitivity/resistance to different immunological manipulations and ultimately influence clinical response to cancer immunotherapy.
Collapse
|
8
|
Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun 2019; 10:5408. [PMID: 31776331 PMCID: PMC6881351 DOI: 10.1038/s41467-019-13368-y] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
At the interface between the innate and adaptive immune system, dendritic cells (DCs) play key roles in tumour immunity and hold a hitherto unrealized potential for cancer immunotherapy. Here we review the role of distinct DC subsets in the tumour microenvironment, with special emphasis on conventional type 1 DCs. Integrating new knowledge of DC biology and advancements in cell engineering, we provide a blueprint for the rational design of optimized DC vaccines for personalized cancer medicine. Dendritic cells (DCs) have been explored as a promising strategy for cancer immunotherapy. In this Perspective, the authors discuss the different types of DCs and their therapeutic potential in the context of vaccines for personalized cancer therapy.
Collapse
Affiliation(s)
- Caleb R Perez
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Tobacco smoke and nicotine suppress expression of activating signaling molecules in human dendritic cells. Toxicol Lett 2018; 299:40-46. [PMID: 30227238 DOI: 10.1016/j.toxlet.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 09/11/2018] [Indexed: 12/26/2022]
Abstract
Cigarette smoke has significant toxic effects on the immune system, and increases the risk of developing autoimmune diseases; one immunosuppressive effect of cigarette smoke is that it inhibits the T cell-stimulating, immunogenic properties of myeloid dendritic cells (DCs). As the functions of DCs are regulated by intra-cellular signaling pathways, we investigated the effects of cigarette smoke extract (CSE) and nicotine on multiple signaling molecules and other regulatory proteins in human DCs to elucidate the molecular basis of the inhibition of DC maturation and function by CSE and nicotine. Maturation of monocyte-derived DCs was induced with the TLR3-agonist poly I:C or with the TLR4-agonist lipopolysaccharide, in the absence or presence of CSE or nicotine. Reverse-phase protein microarray was used to quantify multiple signaling molecules and other proteins in cell lysates. Particularly in poly I:C-matured DCs, cigarette smoke constituents and nicotine suppressed the expression of signaling molecules associated with DC maturation and T cell stimulation, cell survival and cell migration. In conclusion, constituents of tobacco smoke suppress the immunogenic potential of DCs at the signaling pathway level.
Collapse
|
10
|
Lazăr DC, Avram MF, Romoșan I, Cornianu M, Tăban S, Goldiș A. Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer. World J Gastroenterol 2018; 24:3583-3616. [PMID: 30166856 PMCID: PMC6113718 DOI: 10.3748/wjg.v24.i32.3583] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Despite a decrease in gastric cancer incidence, the development of novel biologic agents and combined therapeutic strategies, the prognosis of gastric cancer remains poor. Recently, the introduction of modern immunotherapy, especially using immune checkpoint inhibitors, led to an improved prognosis in many cancers. The use of immunotherapy was also associated with manageable adverse event profiles and promising results in the treatment of patients with gastric cancer, especially in heavily pretreated patients. These data have led to an accelerated approval of some checkpoint inhibitors in this setting. Understanding the complex relationship between the host immune microenvironment and tumor and the immune escape phenomenon leading to cancer occurrence and progression will subsequently lead to the identification of prognostic immune markers. Furthermore, this understanding will result in the discovery of both new mechanisms for blocking tumor immunosuppressive signals and pathways to stimulate the local immune response by targeting and modulating different subsets of immune cells. Due to the molecular heterogeneity of gastric cancers associated with different clinico-biologic parameters, immune markers expression and prognosis, novel immunotherapy algorithms should be personalized and addressed to selected subsets of gastric tumors, which have been proven to elicit the best clinical responses. Future perspectives in the treatment of gastric cancer include tailored dual immunotherapies or a combination of immunotherapy with other targeted agents with synergistic antitumor effects.
Collapse
Affiliation(s)
- Daniela Cornelia Lazăr
- Department of Internal Medicine I, University Medical Clinic, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Mihaela Flavia Avram
- Department of Surgery X, 1st Surgery Clinic, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Ioan Romoșan
- Department of Internal Medicine I, University Medical Clinic, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Mărioara Cornianu
- Department of Pathology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Sorina Tăban
- Department of Pathology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Adrian Goldiș
- Department of Gastroenterology and Hepatology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| |
Collapse
|
11
|
Cornel AM, van Til NP, Boelens JJ, Nierkens S. Strategies to Genetically Modulate Dendritic Cells to Potentiate Anti-Tumor Responses in Hematologic Malignancies. Front Immunol 2018; 9:982. [PMID: 29867960 PMCID: PMC5968097 DOI: 10.3389/fimmu.2018.00982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC) vaccination has been investigated as a potential strategy to target hematologic malignancies, while generating sustained immunological responses to control potential future relapse. Nonetheless, few clinical trials have shown robust long-term efficacy. It has been suggested that a combination of surmountable shortcomings, such as selection of utilized DC subsets, DC loading and maturation strategies, as well as tumor-induced immunosuppression may be targeted to maximize anti-tumor responses of DC vaccines. Generation of DC from CD34+ hematopoietic stem and progenitor cells (HSPCs) may provide potential in patients undergoing allogeneic HSPC transplantations for hematologic malignancies. CD34+ HSPC from the graft can be genetically modified to optimize antigen presentation and to provide sufficient T cell stimulatory signals. We here describe beneficial (gene)-modifications that can be implemented in various processes in T cell activation by DC, among which major histocompatibility complex (MHC) class I and MHC class II presentation, DC maturation and migration, cross-presentation, co-stimulation, and immunosuppression to improve anti-tumor responses.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niek P van Til
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap Jan Boelens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, Netherlands.,Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
12
|
Qin S, Gao Z, Liu Y, Liu C, Wang J, Zou LL. Silencing of suppressor of cytokine signaling 1 enhances the immunological effect of mucin 1-calreticulin-primed 4T1 cell-treated dendritic cells in breast cancer treatment. Oncol Lett 2017; 15:1630-1638. [PMID: 29434859 PMCID: PMC5774391 DOI: 10.3892/ol.2017.7477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
In cancer immunotherapy, dendritic cell (DC)-based vaccines represent a promising, yet challenging, treatment method. In addition to overcoming the low expression levels of antigenic epitopes on cancer cells, it is also necessary to overcome the inhibitory effect of suppressor of cytokine signaling 1 (SOCS1) on DC self-antigen presentation. Our group previously demonstrated that calreticulin (CRT) translocated type I transmembrane glycoprotein mucin 1 (MUC1), a breast cancer antigen, to the surface of 4T1 cells, and that treatment with MUC1-CRT-primed 4T1 cell-treated DCs induced apoptosis in a breast cancer cell line. In the present study, cell penetrate peptide, hpp10-DRBD was successfully used to deliver siRNAs into bone marrow-derived (BM) DCs to construct SOCS1-silenced DCs, which were incubated with MUC1-CRT-primed 4T1 cells, and antigen-specific antitumor immunity was markedly enhanced in vitro and in vivo. These results demonstrated that SOCS1-silencing, combined with MUC1-CRT-primed 4T1 cell treatment, may induce increased cytokine production and T cell proliferation by DCs. Furthermore, the in vivo experimental data demonstrated that the silencing of SOCS1 combined with MUC1-CRT-primed 4T1 treatment of BMDCs may induce enhanced immunological effects. The results of the present study have implications for the development of more effective DC-based tumor vaccines, suggesting that the combination of high tumor-associated antigen expression levels on cancer cells with the silencing of a critical inhibitor of DC antigen presentation may be beneficial.
Collapse
Affiliation(s)
- Song Qin
- Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Zhipeng Gao
- Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Yu Liu
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Department of Oncology, Gong'an County Hospital, Yichang, Hubei 434300, P.R. China
| | - Changbai Liu
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jun Wang
- Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Li Li Zou
- Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
13
|
Pan YG, Yu YL, Lin CC, Lanier LL, Chu CL. FcεRI γ-Chain Negatively Modulates Dectin-1 Responses in Dendritic Cells. Front Immunol 2017; 8:1424. [PMID: 29163499 PMCID: PMC5663849 DOI: 10.3389/fimmu.2017.01424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/13/2017] [Indexed: 12/15/2022] Open
Abstract
The inhibitory effect of immunoreceptor tyrosine-based activation motif (ITAM)-containing adapters DAP12 and FcεRI γ-chain (FcRγ) has been found in many immune functions. Herein, we have further explored the role of these adapters in C-type lectin receptors response. We identified that FcRγ, but not DAP12, could negatively regulate the Dectin-1 responses in dendritic cells (DCs). Loss of FcRγ or both DAP12 and FcRγ enhanced the maturation and cytokine production in DCs upon Dectin-1 activation compared to normal cells, whereas DCs lacking only DAP12 showed little changes. In addition, increments of T cell activation and T helper 17 polarization induced by FcRγ-deficient DCs were observed both in vitro and in vivo. Examining the Dectin-1 signaling, we revealed that the activations of several signaling molecules were augmented in FcRγ-deficient DCs stimulated with Dectin-1 ligands. Furthermore, we demonstrated that the association of phosphatases SHP-1 and PTEN with FcRγ may contribute to the negative regulation of FcRγ in Dectin-1 activation in DCs. These results extend the inhibitory effect of ITAM-containing adapters to Dectin-1 response in immune functions, even though Dectin-1 contains an ITAM-like intracellular domain. According to the role of Dectin-1 in responding to microbes and tumor cells, our finding may have applications in the development of vaccine and cancer therapy.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Yu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Sciences, National Chung Hsin University, Taichung, Taiwan
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, United States.,The Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA, United States
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Abraham RS, Mitchell DA. Gene-modified dendritic cell vaccines for cancer. Cytotherapy 2017; 18:1446-1455. [PMID: 27745604 DOI: 10.1016/j.jcyt.2016.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
Dendritic cell (DC) vaccines are an immunotherapeutic approach to cancer treatment that use the antigen-presentation machinery of DCs to activate an endogenous anti-tumor response. In this treatment strategy, DCs are cultured ex vivo, exposed to tumor antigens and administered to the patient. The ex vivo culturing provides a unique and powerful opportunity to modify and enhance the DCs. As such, a variety of genetic engineering approaches have been employed to optimize DC vaccines, including the introduction of messenger RNA and small interfering RNA, viral gene transduction, and even fusion with whole tumor cells. In general, these modifications aim to improve targeting, enhance immunogenicity, and reduce susceptibility to the immunosuppressive tumor microenvironment. It has been demonstrated that several of these modifications can be employed in tandem, allowing for fine-tuning and optimization of the DC vaccine across multiple metrics. Thus, the application of genetic engineering techniques to the dendritic cell vaccine platform has the potential to greatly enhance its efficacy in the clinic.
Collapse
Affiliation(s)
- Rebecca S Abraham
- UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Department of Neurosurgery, University of Florida, Gainesville, FL 32605
| | - Duane A Mitchell
- UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Department of Neurosurgery, University of Florida, Gainesville, FL 32605.
| |
Collapse
|
15
|
Han Z, Chen Y, Zhang Y, Wei A, Zhou J, Li Q, Guo L. MiR‐21/PTEN Axis Promotes Skin Wound Healing by Dendritic Cells Enhancement. J Cell Biochem 2017; 118:3511-3519. [PMID: 28374893 DOI: 10.1002/jcb.26026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Zhaofeng Han
- Department of Burn and Reconstruction The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| | - Ya Chen
- Department of Burn and Reconstruction The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| | - Yile Zhang
- Reproductive Medical Center The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| | - Aizhou Wei
- Department of Burn and Reconstruction The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| | - Jian Zhou
- Department of Burn and Reconstruction The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| | - Qian Li
- Department of Burn and Reconstruction The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| | - Lili Guo
- Department of Plastic Surgery The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| |
Collapse
|
16
|
Seyfizadeh N, Muthuswamy R, Mitchell DA, Nierkens S, Seyfizadeh N. Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses. Crit Rev Oncol Hematol 2016; 107:100-110. [PMID: 27823637 DOI: 10.1016/j.critrevonc.2016.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
Better prognoses associated with increased T cell infiltration of tumors, as seen with chimeric antigen receptor (CAR) T cell therapies and immune checkpoint inhibitors, portray the importance and potential of the immune system in controlling tumors. This has rejuvenated the field of cancer immunotherapy leading to an increasing number of immunotherapies developed for cancer patients. Dendritic Cells (DCs) vaccines represent an appealing option for cancer immunotherapy since DCs have the ability to circumvent tolerance to tumors by its adjuvant properties and to induce memory T cells that can become persistent after initial tumor clearance to engage potential metastatic tumors. In the past, DC-based cancer vaccines have elicited only poor clinical response in cancer patients, which can be attributed to complex and a multitude of issues associated with generation, implementing, delivery of DC vaccine and their potential interaction with effector cells. The current review mainly focuses on migration/trafficking of DCs, as one of the key issues that affect the success of DC-based cancer vaccines, and discusses strategies to enhance it for cancer immunotherapy. Additionally, impact of maturation, route of DC delivery and negative effects of tumor microenvironment (TME) on DC homing to LN are reviewed. Moreover, strategies to increase the expression of genes involved in Lymph node homing, preconditioning of the vaccination site, enhancing lymph node ability to attract and receive DCs, while limiting negative impact of TME on DC migration are discussed.
Collapse
Affiliation(s)
- Narges Seyfizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Duane A Mitchell
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Stefan Nierkens
- Laboratory of Translational Immunology, U-DAIR, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nayer Seyfizadeh
- Umbilical Cord Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Kim JH, Kim BJ, Kim HS, Kim JH. Current Status and Perspective of Immunotherapy in Gastrointestinal Cancers. J Cancer 2016; 7:1599-1604. [PMID: 27698896 PMCID: PMC5039380 DOI: 10.7150/jca.16208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/09/2016] [Indexed: 12/17/2022] Open
Abstract
Cancer immunotherapy is at dawn of the Renaissance after the Medieval Dark Ages. Recent advances of understanding tumor immunology and molecular drug development are leading us to the epoch of cancer immunotherapy. Some types of immunotherapy have shown to provide survival benefit for patients with solid tumors such as malignant melanoma, renal cell carcinoma, or non-small cell lung cancer. Several studies have suggested that immune checkpoint inhibition might be effective in some patients with gastrointestinal cancers. However, the era of cancer immunotherapy in gastrointestinal cancers is still in an inchoate stage. Here we briefly review the current status and perspective of immunotherapeutic approaches in patients with gastrointestinal cancers.
Collapse
Affiliation(s)
- Jung Hoon Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon, South Korea
| | - Bum Jun Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon, South Korea
| | - Hyeong Su Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jung Han Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon, South Korea
| |
Collapse
|
18
|
Strategies and Advancements in Harnessing the Immune System for Gastric Cancer Immunotherapy. J Immunol Res 2015; 2015:308574. [PMID: 26579545 PMCID: PMC4633567 DOI: 10.1155/2015/308574] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
In cancer biology, cells and molecules that form the fundamental components of the tumor microenvironment play a major role in tumor initiation, and progression as well as responses to therapy. Therapeutic approaches that would enable and harness the immune system to target tumor cells mark the future of anticancer therapy as it could induce an immunological memory specific to the tumor type and further enhance tumor regression and relapse-free survival in cancer patients. Gastric cancer is one of the leading causes of cancer-related mortalities that has a modest survival benefit from existing treatment options. The advent of immunotherapy presents us with new approaches in gastric cancer treatment where adaptive cell therapies, cancer vaccines, and antibody therapies have all been used with promising outcomes. In this paper, we review the current advances and prospects in the gastric cancer immunotherapy. Special focus is laid on new strategies and clinical trials that attempt to enhance the efficacy of various immunotherapeutic modalities in gastric cancer.
Collapse
|
19
|
Langellotti C, Cesar G, Soria I, Quattrocchi V, Jancic C, Zamorano P, Vermeulen M. Foot-and-mouth disease virus infection of dendritic cells triggers phosphorylation of ERK1/2 inducing class I presentation and apoptosis. Vaccine 2015. [PMID: 26212005 DOI: 10.1016/j.vaccine.2015.07.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals. This pathology is caused by foot-and-mouth disease virus (FMDV). Over time, the development of vaccines to prevent the spread of this illness became essential. Vaccines currently used contain the inactivated form of the virus. However, vaccination generates an immune response different to that induced by the infection. We investigated whether these differences are related to intracellular mechanisms on dendritic cells (DCs). As a result, we demonstrated that the internalization of infective virus triggered the phosphorylation of ERK1/2, which was involved in the activation of caspase-9, the intrinsic pathway of apoptosis and the delivery of viral peptides on MHC class I molecules. While, inactivated virus (iFMDV) did not affect this pathway or any function mediated by its activation. As described, infectious virus in DCs was also associated to autophagy LC3 protein and was associated to lysosomal protein Lamp-2; contrary to observe for the iFMDV. Strikingly, the processing of viral antigens to accommodate in class I molecules does not appear to involve the proteasome. Finally, this increased presentation promotes a specific cytotoxic response against infectious virus.
Collapse
Affiliation(s)
- Cecilia Langellotti
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gonzalo Cesar
- Laboratorio de Inmunología, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina
| | - Carolina Jancic
- Laboratorio de Inmunología, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricia Zamorano
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mónica Vermeulen
- Laboratorio de Inmunología, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
20
|
Niccolai E, Taddei A, Prisco D, Amedei A. Gastric cancer and the epoch of immunotherapy approaches. World J Gastroenterol 2015; 21:5778-5793. [PMID: 26019442 PMCID: PMC4438012 DOI: 10.3748/wjg.v21.i19.5778] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/05/2014] [Accepted: 04/17/2015] [Indexed: 02/06/2023] Open
Abstract
The incidence of gastric cancer (GC) fell dramatically over the last 50 years, but according to IARC-Globocan 2008, it is the third most frequent cause of cancer-related deaths with a case fatality GC ratio higher than other common malignancies. Surgical resection is the primary curative treatment for GC though the overall 5-year survival rate remains poor (approximately 20%-25%). To improve the outcome of resectable gastric cancer, different treatment strategies have been evaluated such as adjuvant or perioperative chemotherapy. In resected gastric cancer, the addition of radiotherapy to chemotherapy does not appear to provide any additional benefit. Moreover, in metastatic patients, chemotherapy is the mainstay of palliative therapy with a median overall survival of 8-10 mo and objective response rates of merely 20%-40%. Therefore, the potential for making key beneficial progress is to investigate the GC molecular biology to realize innovative therapeutic strategies, such as specific immunotherapy. In this review, we provide a panoramic view of the different immune-based strategies used for gastric cancer treatment and the results obtained in the most significant clinical trials. In detail, firstly we describe the therapeutic approaches that utilize the monoclonal antibodies while in the second part we analyze the cell-based immunotherapies.
Collapse
|
21
|
Ahn YH, Hong SO, Kim JH, Noh KH, Song KH, Lee YH, Jeon JH, Kim DW, Seo JH, Kim TW. The siRNA cocktail targeting interleukin 10 receptor and transforming growth factor-β receptor on dendritic cells potentiates tumour antigen-specific CD8(+) T cell immunity. Clin Exp Immunol 2015; 181:164-78. [PMID: 25753156 DOI: 10.1111/cei.12620] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are promising therapeutic agents in the field of cancer immunotherapy due to their intrinsic immune-priming capacity. The potency of DCs, however, is readily attenuated immediately after their administration in patients as tumours and various immune cells, including DCs, produce various immunosuppressive factors such as interleukin (IL)-10 and transforming growth factor (TGF)-β that hamper the function of DCs. In this study, we used small interfering RNA (siRNA) to silence the expression of endogenous molecules in DCs, which can sense immunosuppressive factors. Among the siRNAs targeting various immunosuppressive molecules, we observed that DCs transfected with siRNA targeting IL-10 receptor alpha (siIL-10RA) initiated the strongest antigen-specific CD8(+) T cell immune responses. The potency of siIL-10RA was enhanced further by combining it with siRNA targeting TGF-β receptor (siTGF-βR), which was the next best option during the screening of this study, or the previously selected immunoadjuvant siRNA targeting phosphatase and tensin homologue deleted on chromosome 10 (PTEN) or Bcl-2-like protein 11 (BIM). In the midst of sorting out the siRNA cocktails, the cocktail of siIL-10RA and siTGF-βR generated the strongest antigen-specific CD8(+) T cell immunity. Concordantly, the knock-down of both IL-10RA and TGF-βR in DCs induced the strongest anti-tumour effects in the TC-1 P0 tumour model, a cervical cancer model expressing the human papillomavirus (HPV)-16 E7 antigen, and even in the immune-resistant TC-1 (P3) tumour model that secretes more IL-10 and TGF-β than the parental tumour cells (TC-1 P0). These results provide the groundwork for future clinical development of the siRNA cocktail-mediated strategy by co-targeting immunosuppressive molecules to enhance the potency of DC-based vaccines.
Collapse
Affiliation(s)
- Y-H Ahn
- Division of Infection and Immunology, Graduate School of Medicine, Korea University.,Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
| | - S-O Hong
- Division of Infection and Immunology, Graduate School of Medicine, Korea University.,Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
| | - J H Kim
- Division of Infection and Immunology, Graduate School of Medicine, Korea University.,Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
| | - K H Noh
- Division of Infection and Immunology, Graduate School of Medicine, Korea University.,Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea.,Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - K-H Song
- Division of Infection and Immunology, Graduate School of Medicine, Korea University.,Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
| | - Y-H Lee
- Division of Infection and Immunology, Graduate School of Medicine, Korea University.,Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
| | | | - D-W Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Korea
| | - J H Seo
- Division of Oncology, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - T W Kim
- Division of Infection and Immunology, Graduate School of Medicine, Korea University.,Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
A polymeric conjugate foreignizing tumor cells for targeted immunotherapy in vivo. J Control Release 2014; 199:98-105. [PMID: 25499555 DOI: 10.1016/j.jconrel.2014.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 11/21/2022]
Abstract
Antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) are key elements of immunological rejection in transplantation as well as cancer immunotherapy. Most tumors, however, are not immunologically rejected because they have self antigens, which are not recognized as the foreigner by CTLs. In this study, we hypothesized that "foreignizing" tumor cells by delivering non-self foreign antigens into the tumors would result in rejection by foreign antigen-reactive CTLs. As the model system to foreignize the tumors, we prepared a polymeric conjugate consisting of hyaluronic acid as the CD44(+) tumor-targeting ligand and ovalbumin (OVA) as a foreign antigen. When the conjugate was treated with CD44(high) TC-1 tumor cells, it was effectively taken up and allowed for displaying of antigenic OVA257-264 peptide at MHC class I on the surface of the cells. In addition, the conjugate was effectively accumulated into tumor tissue after its systemic administration to mice which are immunized with a vaccine for a vaccinia virus expressing OVA to generate OVA257-264 specific CTLs, resulting in substantial inhibition of tumor growth. Overall, these results suggest that the polymeric conjugates bearing foreign antigens may be innovative and promising cancer immunotherapeutic agents by foreignizing tumor cells, leading to immunological rejection.
Collapse
|
23
|
PI3K-PKB hyperactivation augments human plasmacytoid dendritic cell development and function. Blood 2012; 120:4982-91. [PMID: 23091295 DOI: 10.1182/blood-2012-02-413229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are considered potential tools or targets for immunotherapy. However, current knowledge concerning methodologies to manipulate their development or function remains limited. Here, we investigated the role of the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)-mammalian target of rapamycin (mTOR) axis in human pDC development, survival, and function. In vitro pDC generation from human cord blood-derived CD34(+) hematopoietic progenitors was reduced by pharmacologic inhibition of PI3K, PKB, or mTOR activity, and peripheral blood pDCs required PI3K-PKB-mTOR signaling to survive. Accordingly, activity of this pathway in circulating pDCs correlated with their abundance in peripheral blood. Importantly, introduction of constitutively active PKB or pharmacologic inhibition of negative regulator phosphatase and tensin homolog (PTEN) resulted in increased pDC numbers in vitro and in vivo. Furthermore, MHC class II and costimulatory molecule expression, and production of IFN-α and TNF-α, were augmented, which could be explained by enhanced IRF7 and NF-κB activation. Finally, the numerically and functionally impaired pDCs of chronic hepatitis B patients demonstrated reduced PI3K-PKB-mTOR activity. In conclusion, intact PI3K-PKB-mTOR signaling regulates development, survival, and function of human pDCs, and pDC development and functionality can be promoted by PI3K-PKB hyperactivation. Manipulation of this pathway or its downstream targets could be used to improve the generation and function of pDCs to augment immunity.
Collapse
|
24
|
Lin J, Xu J, Albers AE, Kaufmann AM. New Developments in Therapeutic HPV Vaccines. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2012. [DOI: 10.1007/s13669-012-0015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Amiel E, Everts B, Freitas TC, King IL, Curtis JD, Pearce EL, Pearce EJ. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:2151-8. [PMID: 22826320 PMCID: PMC3424310 DOI: 10.4049/jimmunol.1103741] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dendritic cells (DCs) are potent inducers of T cell immunity, and autologous DC vaccination holds promise for the treatment of cancers and chronic infectious diseases. In practice, however, therapeutic vaccines of this type have had mixed success. In this article, we show that brief exposure to inhibitors of mechanistic target of rapamycin (mTOR) in DCs during the period that they are responding to TLR agonists makes them particularly potent activators of naive CD8+ T cells and able to enhance control of B16 melanoma in a therapeutic autologous vaccination model in the mouse. The improved performance of DCs in which mTOR has been inhibited is correlated with an extended life span after activation and prolonged, increased expression of costimulatory molecules. Therapeutic autologous vaccination with DCs treated with TLR agonists plus the mTOR inhibitor rapamycin results in improved generation of Ag-specific CD8+ T cells in vivo and improved antitumor immunity compared with that observed with DCs treated with TLR agonists alone. These findings define mTOR as a molecular target for augmenting DC survival and activation, and document a novel pharmacologic approach for enhancing the efficacy of therapeutic autologous DC vaccination.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/therapeutic use
- Animals
- Cells, Cultured
- Coculture Techniques
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Humans
- Immunotherapy, Adoptive/methods
- Lipopolysaccharides/physiology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Transgenic
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/physiology
- Transplantation, Autologous
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Eyal Amiel
- Trudeau Institute, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Tewari M, Sahai S, Mishra RR, Shukla SK, Shukla HS. Dendritic cell therapy in advanced gastric cancer: a promising new hope? Surg Oncol 2012; 21:164-71. [PMID: 22521560 DOI: 10.1016/j.suronc.2012.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/02/2012] [Accepted: 03/27/2012] [Indexed: 01/28/2023]
Abstract
Advanced gastric cancer carries a very poor prognosis when the tumor becomes unresectable. Even with the best currently available chemotherapy regimens the survival rate remains dismal. A recent breakthrough in the treatment paradigm has been the approval of trastuzumab, a monoclonal antibody, in HER2-positive metastatic gastric cancer. A large number of trials are underway using dendritic cells (DCs) in a number of human malignancies and do show a ray of hope in management of these patients. This review attempts to summarize tumor immunology and the current data regarding use of DCs in gastric cancer therapy.
Collapse
Affiliation(s)
- Mallika Tewari
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, 7 SKG Colony, Lanka, Varanasi 221005, U.P., India
| | | | | | | | | |
Collapse
|
27
|
Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 2012; 119:3383-93. [PMID: 22323450 DOI: 10.1182/blood-2011-11-370130] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Dendritic cells (DCs) represent a small and heterogeneous fraction of the hematopoietic system, specialized in antigen capture, processing, and presentation. The different DC subsets act as sentinels throughout the body and perform a key role in the induction of immunogenic as well as tolerogenic immune responses. Because of their limited lifespan, continuous replenishment of DC is required. Whereas the importance of GM-CSF in regulating DC homeostasis has long been underestimated, this cytokine is currently considered a critical factor for DC development under both steady-state and inflammatory conditions. Regulation of cellular actions by GM-CSF depends on the activation of intracellular signaling modules, including JAK/STAT, MAPK, PI3K, and canonical NF-κB. By directing the activity of transcription factors and other cellular effector proteins, these pathways influence differentiation, survival and/or proliferation of uncommitted hematopoietic progenitors, and DC subset–specific precursors, thereby contributing to specific aspects of DC subset development. The specific intracellular events resulting from GM-CSF–induced signaling provide a molecular explanation for GM-CSF–dependent subset distribution as well as clues to the specific characteristics and functions of GM-CSF–differentiated DCs compared with DCs generated by fms-related tyrosine kinase 3 ligand. This knowledge can be used to identify therapeutic targets to improve GM-CSF–dependent DC-based strategies to regulate immunity.
Collapse
|
28
|
Pathak SK, Sköld AE, Mohanram V, Persson C, Johansson U, Spetz AL. Activated apoptotic cells induce dendritic cell maturation via engagement of Toll-like receptor 4 (TLR4), dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN), and β2 integrins. J Biol Chem 2012; 287:13731-42. [PMID: 22396536 DOI: 10.1074/jbc.m111.336545] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells playing a central role in connecting innate and adaptive immunity. Maturation signals are, however, required for DCs to undergo phenotypic and functional changes to acquire a fully competent antigen-presenting capacity. We previously reported that activated apoptotic peripheral lymphocytes (ActApo) provide activation/maturation signals to human monocyte-derived DCs. In this paper, we have characterized the signaling pathways and molecules involved in ActApo-mediated DC maturation. We found that both cellular and supernatant fractions from ActApo are required for DC maturation signaling. ActApoSup-induced CD80 and CD86 expression was significantly blocked in the presence of neutralizing antibodies against tumor necrosis factor-α (TNF-α). Cell-cell contact-dependent signaling involved β2 integrins, dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), and TLR4 because ActApo-induced up-regulation of the maturation markers CD80 and CD86 was significantly inhibited in the presence of neutralizing antibodies against CD18, CD11a, CD11b, and DC-SIGN as well as TLR4. The role of TLR4 was further confirmed by silencing of TLR4 in DCs. In addition, the endogenous adjuvant effect exerted by activated apoptotic splenocytes (ActApoSp) was reduced after immunization with human serum albumin in TLR4(-/-) mice. We detected activation of multiple signaling pathways and transcription factors in DCs upon co-culture with ActApo, including p38, JNK, PI3K-Akt, Src family kinases, NFκB p65, and AP1 transcription factor family members c-Jun and c-Fos, demonstrating the complex interactions occurring between ActApo and DCs. These studies provide important mechanistic insight into the responses of DCs during encounter with cells undergoing immunogenic cell death.
Collapse
Affiliation(s)
- Sushil Kumar Pathak
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Novel immunotherapeutic strategies of gastric cancer treatment. J Biomed Biotechnol 2011; 2011:437348. [PMID: 22253528 PMCID: PMC3255571 DOI: 10.1155/2011/437348] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/26/2011] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer and the second most frequent cause of cancer-related deaths, accounting for 10.4% of cancer deaths worldwide. Despite the improvements, estimated cure rates for patients with advanced stages remain poor, and in the metastatic setting, chemotherapy is the mainstay of palliative therapy and results in objective response rates (ORRs) of only 20-40% and median overall survivals (OS) of 8-10 months. Therefore, many investigators believe that the potential for making significant progress lies in understanding and exploiting the molecular biology of these tumors to investigate new therapeutic strategies to combat GC, such as specific immunotherapy. In this paper, we analyze the different approaches used for immune-based (especially dendritic and T cells) therapies to gastric cancer treatment and discuss the results obtained in preclinical models as in clinical trials.
Collapse
|
30
|
A novel vaccine containing EphA2 epitope and LIGHT plasmid induces robust cellular immunity against glioma U251 cells. Cell Immunol 2011; 272:102-6. [PMID: 22032907 DOI: 10.1016/j.cellimm.2011.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/30/2011] [Accepted: 08/15/2011] [Indexed: 01/13/2023]
Abstract
EphA2 is a receptor tyrosine kinase and can be acted as an attractive antigen for glioma vaccines. In addition, LIGHT plays an important role on enhancing T cell proliferation and cytokine production. To improve the CTL mediated immune response against glioma cells, we prepared the novel vaccine containing EphA2(883-891) peptide (TLADFDPRV) and LIGHT plasmid and utilized it to immunize the HLA-A2 transgenic HHD mice. In addition, trimera mice were immunized with the novel vaccine to elicit the antitumor immune response. The results demonstrated that the novel vaccine could induce robust cellular immunity against glioma U251 cells without lysing autologous lymphocytes. Moreover, the novel vaccine could significantly inhibit the tumor growth and prolong the life span of tumor bearing mice. These findings suggested that the novel vaccine containing EphA2 epitope and LIGHT plasmid could induce anti-tumor immunity against U251 cells expressing EphA2, and provided a promising strategy for glioma immunotherapy.
Collapse
|
31
|
Kim JH, Kang TH, Noh KH, Bae HC, Ahn YH, Lee YH, Choi EY, Chun KH, Lee SJ, Kim TW. Blocking the immunosuppressive axis with small interfering RNA targeting interleukin (IL)-10 receptor enhances dendritic cell-based vaccine potency. Clin Exp Immunol 2011; 165:180-9. [PMID: 21592111 DOI: 10.1111/j.1365-2249.2011.04410.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Improving dendritic cell (DC) functions is highly promising for therapeutic intervention of diverse diseases, including cancer. Immunosuppressive cytokines such as interleukin (IL)-10 produced by DCs themselves (autocrine) and other regulatory immune cells (paracrine) down-regulate functional profiles of DCs through specific cell surface receptors such as IL-10R. Here, we tried to improve DC functions using small interfering RNA (siRNA) technology to block an IL-10R-mediated immunosuppressive axis. DCs modified with siRNA targeting against IL-10R or IL-10 (DC/siIL-10R or DC/siIL-10) led to up-regulation of major histocompatibility complex (MHC) class II, CD40 co-stimulatory molecule, and IL-12 proinflammatory cytokine after lipopolysacharide (LPS) stimulation compared to DC/siGFP. Notably, the LPS-induced functional profiles of DC/siIL-10R were strongly resistant to the addition of recombinant IL-10, which mimicked paracrine IL-10. In contrast, those of DC/siIL-10 were reversed by adding exogenous IL-10. Consistently, DC/siIL-10R generated more human papilloma virus (HPV) E7-specific CD8(+) T cells and stronger anti-tumour effects against E7-expressing TC-1 tumour cells in vaccinated mice than DC/siGFP, as well as DC/siIL-10. Taken together, these results provide the groundwork for future clinical translation of siRNA-mediated strategy targeting IL-10R to enhance DC-based vaccine potency.
Collapse
Affiliation(s)
- J H Kim
- Division of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen J, Gu W, Zhao K. The role of PI3K/Akt pathway in β-glucan-induced dendritic cell maturation. Int Immunopharmacol 2011; 11:529; author reply 530-1. [DOI: 10.1016/j.intimp.2011.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/26/2011] [Indexed: 11/16/2022]
|