1
|
Novel biomarkers useful in surveillance of graft rejection after heart transplantation. Transpl Immunol 2021; 67:101406. [PMID: 33975013 DOI: 10.1016/j.trim.2021.101406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023]
Abstract
Heart transplantation (HTx) is considered the gold-standard therapy for the treatment of advanced heart failure (HF). The long-term survival in HTx is hindered by graft failure which represents one of the major limitations of the long-term efficacy of HTx. Endomyocardial biopsy (EMB) and the evaluation of donor-specific antibodies (DSA) are currently considered the essential diagnostic tools for surveillance of graft rejection. Recently, new molecular biomarkers (including cell-free DeoxyriboNucleic Acid, exosomes, gene profiling microarray, nanostring, reverse transcriptase multiplex ligation-dependent probe amplification, proteomics and immune profiling by quantitative multiplex immunofluorescence) provide useful information on mechanisms of graft rejection. The ambitious role of a similar change of perspective is aimed at a better and longer graft preservation.
Collapse
|
2
|
Bacal DC, Fernandes-Silva MM, Mangini S, de Jesus MS, Bacal F. C-Reactive protein level and left ventricular mass are associated with acute cellular rejection after heart transplant. Clinics (Sao Paulo) 2021; 76:e3020. [PMID: 34878028 PMCID: PMC8610219 DOI: 10.6061/clinics/2021/e3020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Acute cellular rejection (ACR) remains a major complication of heart transplant (HT). The gold standard for its diagnosis is endomyocardial biopsy (EMB), whereas the role of non-invasive biomarkers for detecting ACR is unclear. This study aimed to identify non-invasive biomarkers for the diagnosis of ACR in patients undergoing HT and presenting with normal left ventricular function. METHODS We evaluated patients who underwent HT at a single center between January 2010 and June 2019. Patients were enrolled after HT, and those with left ventricular (LV) systolic dysfunction before EMB were excluded. We included only the results of the first EMB performed at least 30 days after HT (median, 90 days). Troponin, B-type natriuretic peptide (BNP), and C-reactive protein (CRP) levels were measured and echocardiography was performed up to 7 days before EMB. ACR was defined as International Society for Heart and Lung Transplantation grade 2R or 3R on EMB. We performed logistic regression analysis to identify the non-invasive predictors of ACR (2R or 3R) and evaluated the accuracy of each using area under the receiver operator characteristic curve analysis. RESULTS We analyzed 72 patients after HT (51.31±13.63 years; 25 [34.7%] women); of them, 9 (12.5%) developed ACR. Based on multivariate logistic regression analysis, we performed forward stepwise selection (entry criteria, p<0.05). The only independent predictors that remained in the model were CRP level and LV mass index. The optimal cut-off point for CRP level was ≥15.9 mg/L (odds ratio [OR], 11.7; p=0.007) and that for LV mass index was ≥111 g/m2 (OR, 13.6; p=0.003). The area under the receiver operating characteristic curve derived from this model was 0.87 (95% confidence interval [CI], 0.75-0.99), with sensitivity of 85.7% (95% CI, 42.1%-99.6%), specificity of 78.4% (95% CI, 64.7%-88.7%), positive predictive value of 35.3% (95% CI, 14.3%-61.7%), and negative predictive value of 97.6% (95% CI, 87.1%-99.9%). CONCLUSIONS Among patients undergoing HT, CRP level and LV mass were directly associated with ACR, but troponin and BNP levels were not.
Collapse
Affiliation(s)
- Débora Cestari Bacal
- Programa de Transplante Cardiaco, Hospital Israelita Albert Einstein (HIAE), Sao Paulo, SP, BR
| | | | - Sandrigo Mangini
- Programa de Transplante Cardiaco, Hospital Israelita Albert Einstein (HIAE), Sao Paulo, SP, BR
| | - Marcia Santos de Jesus
- Programa de Transplante Cardiaco, Hospital Israelita Albert Einstein (HIAE), Sao Paulo, SP, BR
| | - Fernando Bacal
- Programa de Transplante Cardiaco, Hospital Israelita Albert Einstein (HIAE), Sao Paulo, SP, BR
- Corresponding author. E-mails: /
| |
Collapse
|
3
|
Qasim M, Arunkumar P, Powell HM, Khan M. Current research trends and challenges in tissue engineering for mending broken hearts. Life Sci 2019; 229:233-250. [PMID: 31103607 PMCID: PMC6799998 DOI: 10.1016/j.lfs.2019.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is among the leading causes of mortality worldwide. The shortage of donor hearts to treat end-stage heart failure patients is a critical problem. An average of 3500 heart transplant surgeries are performed globally, half of these transplants are performed in the US alone. Stem cell therapy is growing rapidly as an alternative strategy to repair or replace the damaged heart tissue after a myocardial infarction (MI). Nevertheless, the relatively poor survival of the stem cells in the ischemic heart is a major challenge to the therapeutic efficacy of stem-cell transplantation. Recent advancements in tissue engineering offer novel biomaterials and innovative technologies to improve upon the survival of stem cells as well as to repair the damaged heart tissue following a myocardial infarction (MI). However, there are several limitations in tissue engineering technologies to develop a fully functional, beating cardiac tissue. Therefore, the main goal of this review article is to address the current advancements and barriers in cardiac tissue engineering to augment the survival and retention of stem cells in the ischemic heart.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Pala Arunkumar
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Heather M Powell
- Department of Materials Science and Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States; Research Department, Shriners Hospitals for Children, Cincinnati, OH, United States
| | - Mahmood Khan
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| |
Collapse
|
4
|
Effect on Long-Term Mortality of HLA-DR Matching in Heart Transplantation. J Card Fail 2019; 25:409-411. [DOI: 10.1016/j.cardfail.2019.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 11/17/2022]
|
5
|
Picascia A, Pagliuca C, Sommese L, Colicchio R, Casamassimi A, Labonia F, Pastore G, Pagliarulo C, Cicatiello AG, Castaldo F, Schiano C, Maiello C, Mezza E, D'Armiento FP, Salvatore P, Napoli C. Seroprevalence of Bartonella henselae in patients awaiting heart transplant in Southern Italy. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:239-244. [PMID: 26051222 DOI: 10.1016/j.jmii.2015.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Bartonella henselae is the etiologic agent of cat-scratch disease. B. henselae infections are responsible for a widening spectrum of human diseases, although often symptomless, ranging from self-limited to life-threatening and show different courses and organ involvement due to the balance between host and pathogen. The role of the host immune response to B. henselae is critical in preventing progression to systemic disease. Indeed in immunocompromised patients, such as solid organ transplant patients, B. henselae results in severe disseminated disease and pathologic vasoproliferation. The purpose of this study was to determine the seroprevalence of B. henselae in patients awaiting heart transplant compared to healthy individuals enrolled in the Regional Reference Laboratory of Transplant Immunology of Second University of Naples. METHODS Serum samples of 38 patients awaiting heart transplant in comparison to 50 healthy donors were examined using immunfluorescence assay. RESULTS We found a B. henselae significant antibody positivity rate of 21% in patients awaiting heart transplant (p = 0.002). There was a positive rate of 8% (p > 0.05) for immunoglobulin (Ig)M and a significant value of 13% (p = 0.02) for IgG, whereas controls were negative both for IgM and IgG antibodies against B. henselae. The differences in comorbidity between cases and controls were statistically different (1.41 ± 0.96 vs 0.42 ± 0.32; p = 0.001). CONCLUSIONS Although this study was conducted in a small number of patients, we suggest that the identification of these bacteria should be included as a routine screening analysis in pretransplant patients.
Collapse
Affiliation(s)
- Antonietta Picascia
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy; U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Second University of Naples, Naples, Italy.
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy; Department of Integrated Activities of Laboratory Medicine, Federico II University Medical School, Naples, Italy
| | - Linda Sommese
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Second University of Naples, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy; Institute of Diagnostic and Nuclear Development (SDN), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Naples, Italy
| | - Amelia Casamassimi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Francesco Labonia
- Department of Integrated Activities of Laboratory Medicine, Federico II University Medical School, Naples, Italy
| | - Gabiria Pastore
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Caterina Pagliarulo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | | | - Francesco Castaldo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Concetta Schiano
- Institute of Diagnostic and Nuclear Development (SDN), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Naples, Italy
| | - Ciro Maiello
- Department of Cardiothoracic Sciences, Monaldi Hospital, Second University of Naples, Naples, Italy
| | - Ernesto Mezza
- Department of Advanced Biomedical Sciences, Section of Pathology, Federico II University Medical School, Naples, Italy
| | - Francesco Paolo D'Armiento
- Department of Advanced Biomedical Sciences, Section of Pathology, Federico II University Medical School, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Claudio Napoli
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Second University of Naples, Naples, Italy; Institute of Diagnostic and Nuclear Development (SDN), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Naples, Italy
| |
Collapse
|
6
|
Targeting the Innate Immune Response to Improve Cardiac Graft Recovery after Heart Transplantation: Implications for the Donation after Cardiac Death. Int J Mol Sci 2016; 17:ijms17060958. [PMID: 27322252 PMCID: PMC4926491 DOI: 10.3390/ijms17060958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
Heart transplantation (HTx) is the ultimate treatment for end-stage heart failure. The number of patients on waiting lists for heart transplants, however, is much higher than the number of available organs. The shortage of donor hearts is a serious concern since the population affected by heart failure is constantly increasing. Furthermore, the long-term success of HTx poses some challenges despite the improvement in the management of the short-term complications and in the methods to limit graft rejection. Myocardial injury occurs during transplantation. Injury initiated in the donor as result of brain or cardiac death is exacerbated by organ procurement and storage, and is ultimately amplified by reperfusion injury at the time of transplantation. The innate immune system is a mechanism of first-line defense against pathogens and cell injury. Innate immunity is activated during myocardial injury and produces deleterious effects on the heart structure and function. Here, we briefly discuss the role of the innate immunity in the initiation of myocardial injury, with particular focus on the Toll-like receptors and inflammasome, and how to potentially expand the donor population by targeting the innate immune response.
Collapse
|
7
|
McMinn JF, Lang NN, McPhadden A, Payne JR, Petrie MC, Gardner RS. Biomarkers of acute rejection following cardiac transplantation. Biomark Med 2015; 8:815-32. [PMID: 25224938 DOI: 10.2217/bmm.14.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiac transplantation can be a life-saving treatment for selected patients with heart failure. However, despite advances in immunosuppressive therapy, acute allograft rejection remains a significant cause of morbidity and mortality. The current 'gold standard' for rejection surveillance is endomyocardial biopsy, which aims to identify episodes of rejection prior to development of clinical manifestations. This is an invasive technique with a risk of false-positive and false-negative results. Consequently, a wide variety of noninvasive alternatives have been investigated for their potential role as biomarkers of rejection. This article reviews the evidence behind proposed alternatives such as imaging techniques, electrophysiological parameters and peripheral blood markers, and highlights the potential future role for biomarkers in cardiac transplantation as an adjunct to biopsy.
Collapse
Affiliation(s)
- Jenna F McMinn
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Clydebank, UK
| | | | | | | | | | | |
Collapse
|
8
|
Picascia A, Grimaldi V, Casamassimi A, De Pascale MR, Schiano C, Napoli C. Human leukocyte antigens and alloimmunization in heart transplantation: an open debate. J Cardiovasc Transl Res 2014; 7:664-75. [PMID: 25190542 DOI: 10.1007/s12265-014-9587-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
Considerable advances in heart transplantation outcome have been achieved through the improvement of donor-recipient selection, better organ preservation, lower rates of perioperative mortality and the use of innovative immunosuppressive protocols. Nevertheless, long-term survival is still influenced by late complications. We support the introduction of HLA matching as an additional criterion in the heart allocation. Indeed, allosensitization is an important factor affecting heart transplantation and the presence of anti-HLA antibodies causes an increased risk of antibody-mediated rejection and graft failure. On the other hand, the rate of heart-immunized patients awaiting transplantation is steadily increasing due to the limited availability of organs and an increased use of ventricular assist devices. Significant benefits may result from virtual crossmatch approach that prevents transplantation in the presence of unacceptable donor antigens. A combination of both virtual crossmatch and a tailored desensitization therapy could be a good compromise for a favorable outcome in highly sensitized patients. Here, we discuss the unresolved issue on the clinical immunology of heart transplantation.
Collapse
Affiliation(s)
- Antonietta Picascia
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Piazza L. Miraglia 2, 80138, Naples, Italy,
| | | | | | | | | | | |
Collapse
|
9
|
Crudele V, Cacciatore F, Grimaldi V, Maiello C, Romano G, Amarelli C, Picascia A, Abete P, Napoli C. Human Leukocyte Antigen-DR Mismatch Is Associated With Increased In-Hospital Mortality After a Heart Transplant. EXP CLIN TRANSPLANT 2013; 11:346-51. [DOI: 10.6002/ect.2012.0276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Resse M, Maiello C, Cacciatore F, Romano G, Sabia C, Picascia A, Ursomando F, Napoli C. Heart Transplant with Donor-Specific Antibody after Immunoadsorption plus Rituximab: A Case Report. Prog Transplant 2013; 23:128-31. [DOI: 10.7182/pit2013454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Different desensitization strategies are available for treating patients with preformed human leukocyte antigen (HLA) antibodies. A highly presensitized heart recipient received immunoadsorption and rituximab therapy. The patient, with end-stage heart failure, was positive only for antibodies of HLA class I (anti-A2, A10, B17), and Luminex platform (One Lambda kit) showed a panel-reactive antibody score of 64%. The patient's serum was tested repeatedly in both complement-dependent cytotoxicity and flow-cytometry crossmatches against cells from different potential organ donors. The results of these crossmatches were positive on flow cytometry when tested with HLA-A2, A10, and B17 but were still negative on cytotoxicity. The patient was treated with a desensitization regimen; this treatment immediately decreased antibody levels of 70% and the patient subsequently received a transplant with donor-specific HLA antibody (HLA-A2). After more than 2 years, graft function remains normal and the clinical status of the patient is stable.
Collapse
Affiliation(s)
- Marianna Resse
- Second University of Naples, Italy (MR, CM, GR, CS, AP, FU, CN), Institute of Telese, Benevento, Italy (FC)
| | - Ciro Maiello
- Second University of Naples, Italy (MR, CM, GR, CS, AP, FU, CN), Institute of Telese, Benevento, Italy (FC)
| | - Francesco Cacciatore
- Second University of Naples, Italy (MR, CM, GR, CS, AP, FU, CN), Institute of Telese, Benevento, Italy (FC)
| | - Gianpaolo Romano
- Second University of Naples, Italy (MR, CM, GR, CS, AP, FU, CN), Institute of Telese, Benevento, Italy (FC)
| | - Chiara Sabia
- Second University of Naples, Italy (MR, CM, GR, CS, AP, FU, CN), Institute of Telese, Benevento, Italy (FC)
| | - Antonietta Picascia
- Second University of Naples, Italy (MR, CM, GR, CS, AP, FU, CN), Institute of Telese, Benevento, Italy (FC)
| | - Fabio Ursomando
- Second University of Naples, Italy (MR, CM, GR, CS, AP, FU, CN), Institute of Telese, Benevento, Italy (FC)
| | - Claudio Napoli
- Second University of Naples, Italy (MR, CM, GR, CS, AP, FU, CN), Institute of Telese, Benevento, Italy (FC)
| |
Collapse
|
11
|
Taccone FS, Crimi E, Anstey J, Infante T, Donadello K, Scolletta S, Al-Omran M, Napoli C. Endothelium and Regulatory Inflammatory Mechanisms During Organ Rejection. Angiology 2013; 65:379-87. [DOI: 10.1177/0003319713485282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endothelial integrity is mandatory for physiologic organ function; however, endothelium dysfunction can be caused by systemic inflammation, occurring during sepsis or organ rejection after transplantation. This article will address our current understanding of endothelial involvement in organ transplantation and rejection. Overall, more detailed studies focusing on the endothelial modulation after organ transplantation would be necessary to investigate the role of endothelium activation during organ rejection.
Collapse
Affiliation(s)
- Fabio Silvio Taccone
- Department of Intensive Care Route de Lennik, Erasme Hospital, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Ettore Crimi
- Department of Anesthesia and Critical Care Medicine, Shands Hospital, University of Florida, Gainesville, FL, USA
| | - James Anstey
- Department of Intensive Care Route de Lennik, Erasme Hospital, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Teresa Infante
- Fondazione-SDN (Institute of Diagnostic and Nuclear Development), IRCCS, Via E. Gianturco, Naples, Italy
| | - Katia Donadello
- Department of Intensive Care Route de Lennik, Erasme Hospital, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Sabino Scolletta
- Department of Intensive Care Route de Lennik, Erasme Hospital, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | | | - Claudio Napoli
- Fondazione-SDN (Institute of Diagnostic and Nuclear Development), IRCCS, Via E. Gianturco, Naples, Italy
- Division of Immunohematology and Transplantation Centre, Department of General Pathology and Excellence Research, Center on Cardiovascular Disease, Second University of Naples, School of Medicine, Naples, Italy
| |
Collapse
|
12
|
Picascia A, Grimaldi V, Zullo A, Infante T, Maiello C, Crudele V, Sessa M, Mancini FP, Napoli C. Current Concepts in Histocompatibility During Heart Transplant. EXP CLIN TRANSPLANT 2012; 10:209-18. [DOI: 10.6002/ect.2011.0185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Zhang X, Xiao Y, Ran Q, Liu Y, Duan Q, Duan H, Ye X, Li Z. Clinical observation of factors in the efficacy of blood component transfusion in patients following hematopoietic stem cell transplantation. PLoS One 2012; 7:e36912. [PMID: 22701516 PMCID: PMC3365127 DOI: 10.1371/journal.pone.0036912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/10/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Factors affecting the efficacy of platelet and red blood cell (RBC) transfusion in patients undergoing hematopoietic stem cell transplantation (HSCT) have not been studied extensively. We aimed to evaluate platelet and RBC transfusion efficacy by measuring the platelet corrected count increment and the hemoglobin increment, respectively, 24 h after transfusion in 105 patients who received HSCT. METHODOLOGY/PRINCIPAL FINDINGS Using retrospective analysis, we studied whether factors, including gender, time of transplantation, the compatibility of ABO group between HSC donors and recipients, and autologous or allogenic transplantation, influence the efficacy of blood component transfusion. We found that the infection rate of HSCT patients positively correlated with the transfusion amount, and the length of stay in the laminar flow room was associated with transfusion. We found that platelet transfusion performed during HSCT showed significantly better efficacy than that performed before HSCT. The effect of platelet transfusion in auto-transplantation was significantly better than that in allo-transplantation. The efficacy of RBC transfusion during HSCT was significantly lower than that performed before HSCT. The efficacy of RBC transfusion in auto-transplantation was significantly higher than that in allo-transplantation. Allo-transplantation patients who received HSCs from compatible ABO groups showed significantly higher efficacy during both platelet and RBC transfusion. CONCLUSIONS We conclude that the efficacy of platelet and RBC transfusions does not correlate with the gender of patients, while it significantly correlates with the time of transplantation, type of transplantation, and ABO compatibility between HSC donors and recipients. During HSCT, the infection rate of patients positively correlates with the transfusion amount of RBCs and platelets. The total volume of RBC units transfused positively correlates with the length of the patients' stay in the laminar flow room.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Hematology, Xinqiao Affiliated Hospital of the Third Military Medical University, Chongqing, China
| | - Yanni Xiao
- Department of Blood Transfusion, Xinqiao Affiliated Hospital of the Third Military Medical University, Chongqing, China
| | - Qian Ran
- Department of Blood Transfusion, Xinqiao Affiliated Hospital of the Third Military Medical University, Chongqing, China
| | - Yao Liu
- Department of Hematology, Xinqiao Affiliated Hospital of the Third Military Medical University, Chongqing, China
| | - Qianbi Duan
- Department of Blood Transfusion, Xinqiao Affiliated Hospital of the Third Military Medical University, Chongqing, China
| | - Huiling Duan
- Department of Blood Transfusion, Xinqiao Affiliated Hospital of the Third Military Medical University, Chongqing, China
| | - Xingde Ye
- Department of Blood Transfusion, Xinqiao Affiliated Hospital of the Third Military Medical University, Chongqing, China
| | - Zhongjun Li
- Department of Blood Transfusion, Xinqiao Affiliated Hospital of the Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
14
|
Gareau AJ, Nashan B, Hirsch GM, Lee TDG. Cyclosporine immunosuppression does not prevent the production of donor-specific antibody capable of mediating allograft vasculopathy. J Heart Lung Transplant 2012; 31:874-80. [PMID: 22554675 DOI: 10.1016/j.healun.2012.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/11/2012] [Accepted: 03/31/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Late cardiac graft rejection, primarily mediated by allograft vasculopathy (AV), remains a major limitation to cardiac transplantation, even in the face of significant calcineurin inhibitor (CNI) immunosuppression. The role played by alloantibody in AV is unclear. Evidence that CNI immunosuppression suppresses CD4(+) T-cell function would suggest that antibody production and effector function would be severely limited in CNI-treated patients. In this study we examine the capacity of CNI-treated animals to develop effective alloantibody that can mediate AV. METHODS Wild-type (WT) B6 mice were alloimmunized using donor splenocytes or a fully major histocompatibility complex-mismatched allogeneic abdominal aortic graft in the presence of CNI immunosuppression (30 or 50 mg/kg/day cyclosporine A). Anti-serum was harvested and tested using complement-dependent in vitro cytotoxicity assays. Anti-serum was passively transferred to immunodeficient RAG1(-/-) recipients of allogeneic grafts. C4d deposition was quantified in the allografts from WT recipients. RESULTS CNI immunosuppression did not prevent the development of alloantibody in response to either immunization method (p < 0.05). Passive transfer of anti-serum generated AV lesions in immunodeficient graft recipients and mediated complement-dependent destruction of donor cells (p < 0.05). C4d deposition was localized to the media of grafts of CNI treated animals. CONCLUSIONS CNI therapy does not prevent the production of alloantibody with the capacity to mediate AV. C4d deposition in the media suggests a role for medial smooth muscle cell loss in antibody-mediated AV lesion development in our model.
Collapse
Affiliation(s)
- Alison J Gareau
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|