1
|
Reed JR, Guidry JJ, Eyer M, Backes WL. The Influence of Lipid Microdomain Heterogeneity on Protein-Protein Interactions: Proteomic Analysis of Co-Immunoprecipitated Binding Partners of P450 1A2 and P450 3A in Rat Liver Microsomes. Drug Metab Dispos 2023; 51:1196-1206. [PMID: 37349115 PMCID: PMC10449098 DOI: 10.1124/dmd.123.001287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Liver cytochrome P450s (CYPs) of the endoplasmic reticulum (ER) are involved in the metabolism of exogenous and endogenous chemicals. The ER is not uniform, but possesses ordered lipid microdomains containing higher levels of saturated fatty acids, sphingomyelin, and cholesterol and disordered regions containing higher levels of polyunsaturated fatty acid chains. The various forms of drug-metabolizing P450s partition to either the ordered or disordered lipid microdomains with different degrees of specificity. P450s readily form complexes with ER-resident proteins, including other forms of P450. This study aims to ascertain whether lipid microdomain localization influences protein-P450 interactions in rat liver microsomes. Thus, liver microsomes were co-immunoprecipitated with CYP1A2-specific and CYP3A-specific antibodies, and the co-immunoprecipitating proteins were identified by liquid chromatography mass spectrometry proteomic analysis. These two P450s preferentially partition to ordered and disordered microdomains, respectively. More than 100 proteins were co-immunoprecipitated with each P450. Segregation of proteins into different microdomains did not preclude their interaction. However, CYP3A interacted broadly with proteins from ordered microdomains, whereas CYP1A2 reacted with a limited subset of these proteins. This is consistent with the concept of lipid raft heterogeneity and may indicate that CYP1A2 is targeted to a specific type of lipid raft. Although many of the interacting proteins for both P450s were other-drug metabolizing enzymes, other interactions were also evident. The consistent CYP3A binding partners were predominantly involved in phase I/II drug metabolism; however, CYP1A2 interacted not only with xenobiotic metabolizing enzymes, but also with enzymes involved in diverse cellular responses such as ER stress and protein folding. SIGNIFICANCE STATEMENT: This work describes the protein interactomes in rat liver microsomes of two important cytochromes P450s (CYP1A2 and CYP3A) in drug metabolism and describes the relationship of the interacting proteins to lipid microdomain distribution.
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Jessie J Guidry
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Marilyn Eyer
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana
| |
Collapse
|
2
|
Ballek O, Valečka J, Dobešová M, Broučková A, Manning J, Řehulka P, Stulík J, Filipp D. TCR Triggering Induces the Formation of Lck-RACK1-Actinin-1 Multiprotein Network Affecting Lck Redistribution. Front Immunol 2016; 7:449. [PMID: 27833610 PMCID: PMC5081367 DOI: 10.3389/fimmu.2016.00449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/10/2016] [Indexed: 02/02/2023] Open
Abstract
The initiation of T-cell signaling is critically dependent on the function of the member of Src family tyrosine kinases, Lck. Upon T-cell antigen receptor (TCR) triggering, Lck kinase activity induces the nucleation of signal-transducing hubs that regulate the formation of complex signaling network and cytoskeletal rearrangement. In addition, the delivery of Lck function requires rapid and targeted membrane redistribution, but the mechanism underpinning this process is largely unknown. To gain insight into this process, we considered previously described proteins that could assist in this process via their capacity to interact with kinases and regulate their intracellular translocations. An adaptor protein, receptor for activated C kinase 1 (RACK1), was chosen as a viable option, and its capacity to bind Lck and aid the process of activation-induced redistribution of Lck was assessed. Our microscopic observation showed that T-cell activation induces a rapid, concomitant, and transient co-redistribution of Lck and RACK1 into the forming immunological synapse. Consistent with this observation, the formation of transient RACK1-Lck complexes were detectable in primary CD4+ T-cells with their maximum levels peaking 10 s after TCR-CD4 co-aggregation. Moreover, RACK1 preferentially binds to a pool of kinase active pY394Lck, which co-purifies with high molecular weight cellular fractions. The formation of RACK1-Lck complexes depends on functional SH2 and SH3 domains of Lck and includes several other signaling and cytoskeletal elements that transiently bind the complex. Notably, the F-actin-crosslinking protein, α-actinin-1, binds to RACK1 only in the presence of kinase active Lck suggesting that the formation of RACK1-pY394Lck-α-actinin-1 complex serves as a signal module coupling actin cytoskeleton bundling with productive TCR/CD4 triggering. In addition, the treatment of CD4+ T-cells with nocodazole, which disrupts the microtubular network, also blocked the formation of RACK1-Lck complexes. Importantly, activation-induced Lck redistribution was diminished in primary CD4+ T-cells by an adenoviral-mediated knockdown of RACK1. These results demonstrate that in T cells, RACK1, as an essential component of the multiprotein complex which upon TCR engagement, links the binding of kinase active Lck to elements of the cytoskeletal network and affects the subcellular redistribution of Lck.
Collapse
Affiliation(s)
- Ondřej Ballek
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Jan Valečka
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Martina Dobešová
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Adéla Broučková
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Jasper Manning
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Pavel Řehulka
- Faculty of Military Health Sciences, Institute of Molecular Pathology , Hradec Králové , Czech Republic
| | - Jiří Stulík
- Faculty of Military Health Sciences, Institute of Molecular Pathology , Hradec Králové , Czech Republic
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| |
Collapse
|
3
|
The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders. Mol Neurobiol 2015; 53:4638-58. [PMID: 26310971 DOI: 10.1007/s12035-015-9392-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022]
Abstract
Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer's and Parkinson's disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.
Collapse
|
4
|
Ballek O, Valečka J, Manning J, Filipp D. The pool of preactivated Lck in the initiation of T-cell signaling: a critical re-evaluation of the Lck standby model. Immunol Cell Biol 2014; 93:384-95. [PMID: 25420722 DOI: 10.1038/icb.2014.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/23/2022]
Abstract
The initiation of T-cell receptor (TCR) signaling, based on the cobinding of TCR and CD4-Lck heterodimer to a peptide-major histocompatibility complex II on antigen presenting cells, represents a classical model of T-cell signaling. What is less clear however, is the mechanism which translates TCR engagement to the phosphorylation of immunoreceptor tyrosine-based activation motifs on CD3 chains and how this event is coupled to the delivery of Lck function. Recently proposed 'standby model of Lck' posits that resting T-cells contain an abundant pool of constitutively active Lck (pY394(Lck)) required for TCR triggering, and this amount, upon TCR engagement, remains constant. Here, we show that although maintenance of the limited pool of pY394(Lck) is necessary for the generation of TCR proximal signals in a time-restricted fashion, the total amount of this pool, ~2%, is much smaller than previously reported (~40%). We provide evidence that this dramatic discrepancy in the content of pY394(Lck)is likely the consequence of spontaneous phosphorylation of Lck that occurred after cell solubilization. Additional discrepancies can be accounted for by the sensitivity of different pY394(Lck)-specific antibodies and the type of detergents used. These data suggest that reagents and conditions used for the quantification of signaling parameters must be carefully validated and interpreted. Thus, the limited size of pY394(Lck) pool in primary T-cells invites a discussion regarding the adjustment of the quantitative parameters of the standby model of Lck and reevaluation of the mechanism by which this pool contributes to the generation of proximal TCR signaling.
Collapse
Affiliation(s)
- Ondřej Ballek
- 1] Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic [2] Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Valečka
- 1] Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic [2] Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jasper Manning
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| |
Collapse
|
5
|
Pfisterer K, Forster F, Paster W, Supper V, Ohradanova-Repic A, Eckerstorfer P, Zwirzitz A, Donner C, Boulegue C, Schiller HB, Ondrovičová G, Acuto O, Stockinger H, Leksa V. The late endosomal transporter CD222 directs the spatial distribution and activity of Lck. THE JOURNAL OF IMMUNOLOGY 2014; 193:2718-32. [PMID: 25127865 DOI: 10.4049/jimmunol.1303349] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The spatial and temporal organization of T cell signaling molecules is increasingly accepted as a crucial step in controlling T cell activation. CD222, also known as the cation-independent mannose 6-phosphate/insulin-like growth factor 2 receptor, is the central component of endosomal transport pathways. In this study, we show that CD222 is a key regulator of the early T cell signaling cascade. Knockdown of CD222 hampers the effective progression of TCR-induced signaling and subsequent effector functions, which can be rescued via reconstitution of CD222 expression. We decipher that Lck is retained in the cytosol of CD222-deficient cells, which obstructs the recruitment of Lck to CD45 at the cell surface, resulting in an abundant inhibitory phosphorylation signature on Lck at the steady state. Hence, CD222 specifically controls the balance between active and inactive Lck in resting T cells, which guarantees operative T cell effector functions.
Collapse
Affiliation(s)
- Karin Pfisterer
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Florian Forster
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Wolfgang Paster
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Verena Supper
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Anna Ohradanova-Repic
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Paul Eckerstorfer
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Alexander Zwirzitz
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Clemens Donner
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Cyril Boulegue
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany; and
| | - Herbert B Schiller
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria; Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany; and
| | - Gabriela Ondrovičová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 84551 Bratislava, Slovak Republic
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Hannes Stockinger
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria;
| | - Vladimir Leksa
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria; Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 84551 Bratislava, Slovak Republic
| |
Collapse
|
6
|
Cellular signaling in the aging immune system. Curr Opin Immunol 2014; 29:105-11. [PMID: 24934647 DOI: 10.1016/j.coi.2014.05.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022]
Abstract
Causes for immunosenescence and inflamm-aging have to be established. Efficient function of the immune system requires homeostatic regulation from receptor recognition of antigenic challenge to cell responses and adaptation to its changing environment. It is reasonable to assume that one of the most important molecular causes of immunosenescence is alteration in the regulation of signaling pathways. Indeed, alterations in feed-forward and negative feedback (inhibitory) signaling have been highlighted in all cells involved in the immune response including short-lived (neutrophils) and long-lived (T lymphocytes) cells. These dysregulations tip the balance in favor of altered (less efficient) function of the immune system. In this review, we summarize our knowledge on signal transduction changes in the aging immune system and propose a unifying mechanism as one of the causes of immunosenescence. Modulation of these pathways with aging represents a major challenge to restore the immune response to functional levels.
Collapse
|
7
|
Horejsi V, Hrdinka M. Membrane microdomains in immunoreceptor signaling. FEBS Lett 2014; 588:2392-7. [DOI: 10.1016/j.febslet.2014.05.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 11/26/2022]
|
8
|
Abstract
Tyrosine phosphorylation is one of the key covalent modifications that occur in multicellular organisms. Since its discovery more than 30 years ago, tyrosine phosphorylation has come to be understood as a fundamentally important mechanism of signal transduction and regulation in all eukaryotic cells. The tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase) plays a crucial role in the T-cell response by transducing early activation signals triggered by TCR (T-cell receptor) engagement. These signals result in the phosphorylation of immunoreceptor tyrosine-based activation motifs present within the cytosolic tails of the TCR-associated CD3 subunits that, once phosphorylated, serve as scaffolds for the assembly of a large supramolecular signalling complex responsible for T-cell activation. The existence of membrane nano- or micro-domains or rafts as specialized platforms for protein transport and cell signalling has been proposed. The present review discusses the signals that target Lck to membrane rafts and the importance of these specialized membranes in the transport of Lck to the plasma membrane, the regulation of Lck activity and the phosphorylation of the TCR.
Collapse
|
9
|
Pan X, Geist MM, Rudolph JM, Nickel W, Fackler OT. HIV-1 Nef disrupts membrane-microdomain-associated anterograde transport for plasma membrane delivery of selected Src family kinases. Cell Microbiol 2013; 15:1605-21. [DOI: 10.1111/cmi.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyu Pan
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| | - Miriam M. Geist
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| | - Jochen M. Rudolph
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| | - Walter Nickel
- Biochemistry Center; Heidelberg University; INF 328; 69120; Heidelberg; Germany
| | - Oliver T. Fackler
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| |
Collapse
|
10
|
Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol 2012; 3:155. [PMID: 22701458 PMCID: PMC3372939 DOI: 10.3389/fimmu.2012.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR Prague, Czech Republic
| | | | | |
Collapse
|