1
|
Wcisel DJ, Dornburg A, McConnell SC, Hernandez KM, Andrade J, de Jong JLO, Litman GW, Yoder JA. A highly diverse set of novel immunoglobulin-like transcript (NILT) genes in zebrafish indicates a wide range of functions with complex relationships to mammalian receptors. Immunogenetics 2023; 75:53-69. [PMID: 35869336 PMCID: PMC9845131 DOI: 10.1007/s00251-022-01270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Multiple novel immunoglobulin-like transcripts (NILTs) have been identified from salmon, trout, and carp. NILTs typically encode activating or inhibitory transmembrane receptors with extracellular immunoglobulin (Ig) domains. Although predicted to provide immune recognition in ray-finned fish, we currently lack a definitive framework of NILT diversity, thereby limiting our predictions for their evolutionary origin and function. In order to better understand the diversity of NILTs and their possible roles in immune function, we identified five NILT loci in the Atlantic salmon (Salmo salar) genome, defined 86 NILT Ig domains within a 3-Mbp region of zebrafish (Danio rerio) chromosome 1, and described 41 NILT Ig domains as part of an alternative haplotype for this same genomic region. We then identified transcripts encoded by 43 different NILT genes which reflect an unprecedented diversity of Ig domain sequences and combinations for a family of non-recombining receptors within a single species. Zebrafish NILTs include a sole putative activating receptor but extensive inhibitory and secreted forms as well as membrane-bound forms with no known signaling motifs. These results reveal a higher level of genetic complexity, interindividual variation, and sequence diversity for NILTs than previously described, suggesting that this gene family likely plays multiple roles in host immunity.
Collapse
Affiliation(s)
- Dustin J Wcisel
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, and Center for Human Health and the Environment, North Carolina State University, Raleigh, 27607, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, 28223, NC, USA
| | - Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Kyle M Hernandez
- Center for Translational Data Science and Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL, USA
- Current Affiliation: Kite Pharma, Santa Monica, 90404, CA, USA
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, 33701, FL, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, and Center for Human Health and the Environment, North Carolina State University, Raleigh, 27607, NC, USA.
| |
Collapse
|
2
|
Chen Y, Sun T, Gu L, Ouyang S, Liu K, Yuan P, Liu C. Identification of hub genes and biological mechanisms underlying the pathogenesis of asthenozoospermia and chronic epididymitis. Front Genet 2023; 14:1110218. [PMID: 37152990 PMCID: PMC10160426 DOI: 10.3389/fgene.2023.1110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Objective: Asthenozoospermia (AZS) is one of the most common causes of male fertility, affecting family wellbeing and population growth. Chronic epididymitis (CE) is a common and lingering inflammatory disease in the scrotum. Inflammation in the epididymis has a severe impact on sperm motility. This study aimed to explore the genetic profile and critical pathways involved in the pathological mechanisms of AZS and CE, and discover potential biomarkers. Methods: Genomic datasets of AZS and CE were obtained from the Gene Expression Omnibus (GEO) database, and relevant differentially expressed genes (DEGs) were identified. GO and pathway enrichment analyses, construction of a protein-protein interaction network, and receiver operator characteristic curve analysis were conducted. The expression profile of hub genes was validated in immunohistochemical data and testicular cell data. Immune infiltration, miRNA-hub gene interactions, and gene-disease interactions were explored. The mRNA levels of hub genes were further measured by qRT-PCR. Results: A total of 109 DEGs were identified between the AZS/CE and healthy control groups. Pathways of the immune system, neutrophil degranulation, and interleukin-4 and interleukin-13 signaling were enriched in AZS and CE. Five hub genes (CD300LB, CMKLR1, CCR4, B3GALT5, and CTSK) were selected, and their diagnostic values were validated in AZS, CE, and independent validation sets (area under the curve >0.7). Furthermore, the five-hub gene signature was well characterized in testicular immunohistochemical staining and testicular cells from healthy controls. Immune infiltration analysis showed that infiltration of CD8+ cells and T helper cells was significantly related to the expression level of five hub genes. In addition, a miRNA-hub gene network and interaction of other diseases were displayed. The mRNA levels of hub genes (CD300LB, CMKLR1, CCR4, and B3GALT5) were significantly elevated in the patient group. The mRNA level of CTSK also showed a similar trend. Conclusion: Our study uncovered the genetic profile involved in AZS and CE, and elucidated enriched pathways and molecular associations between hub genes and immune infiltration. This finding provides novel insight into the common pathogenesis of both diseases as well as the potential biomarkers for CE-associated AZS.
Collapse
Affiliation(s)
- Yinwei Chen
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Longjie Gu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Song Ouyang
- Department of Urology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Penghui Yuan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Penghui Yuan, ; Chang Liu,
| | - Chang Liu
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- *Correspondence: Penghui Yuan, ; Chang Liu,
| |
Collapse
|
3
|
Zhu JJ, Stenfeldt C, Bishop EA, Canter JA, Eschbaumer M, Rodriguez LL, Arzt J. Inferred Causal Mechanisms of Persistent FMDV Infection in Cattle from Differential Gene Expression in the Nasopharyngeal Mucosa. Pathogens 2022; 11:pathogens11080822. [PMID: 35894045 PMCID: PMC9329776 DOI: 10.3390/pathogens11080822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) can persistently infect pharyngeal epithelia in ruminants but not in pigs. Our previous studies demonstrated that persistent FMDV infection in cattle was associated with under-expression of several chemokines that recruit immune cells. This report focuses on the analysis of differentially expressed genes (DEG) identified during the transitional phase of infection, defined as the period when animals diverge between becoming carriers or terminators. During this phase, Th17-stimulating cytokines (IL6 and IL23A) and Th17-recruiting chemokines (CCL14 and CCL20) were upregulated in animals that were still infected (transitional carriers) compared to those that had recently cleared infection (terminators), whereas chemokines recruiting neutrophils and CD8+ T effector cells (CCL3 and ELR+CXCLs) were downregulated. Upregulated Th17-specific receptor, CCR6, and Th17-associated genes, CD146, MIR155, and ThPOK, suggested increased Th17 cell activity in transitional carriers. However, a complex interplay of the Th17 regulatory axis was indicated by non-significant upregulation of IL17A and downregulation of IL17F, two hallmarks of TH17 activity. Other DEG suggested that transitional carriers had upregulated aryl hydrocarbon receptor (AHR), non-canonical NFκB signaling, and downregulated canonical NFκB signaling. The results described herein provide novel insights into the mechanisms of establishment of FMDV persistence. Additionally, the fact that ruminants, unlike pigs, produce a large amount of AHR ligands suggests a plausible explanation of why FMDV persists in ruminants, but not in pigs.
Collapse
Affiliation(s)
- James J. Zhu
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
- Correspondence: (J.J.Z.); (J.A.); Tel.: +1-631-323-3340 (J.J.Z.); +1-631-323-4421 (J.A.); Fax: +1-631-323-3006 (J.A.)
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Elizabeth A. Bishop
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
| | - Jessica A. Canter
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
- Plum Island Animal Disease Center Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
- Correspondence: (J.J.Z.); (J.A.); Tel.: +1-631-323-3340 (J.J.Z.); +1-631-323-4421 (J.A.); Fax: +1-631-323-3006 (J.A.)
| |
Collapse
|
4
|
Zhao J, Zhang W, Wu T, Wang H, Mao J, Liu J, Zhou Z, Lin X, Yan H, Wang Q. Efferocytosis in the Central Nervous System. Front Cell Dev Biol 2021; 9:773344. [PMID: 34926460 PMCID: PMC8678611 DOI: 10.3389/fcell.2021.773344] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effective clearance of apoptotic cells is essential for maintaining central nervous system (CNS) homeostasis and restoring homeostasis after injury. In most cases of physiological apoptotic cell death, efferocytosis prevents inflammation and other pathological conditions. When apoptotic cells are not effectively cleared, destruction of the integrity of the apoptotic cell membrane integrity, leakage of intracellular contents, and secondary necrosis may occur. Efferocytosis is the mechanism by which efferocytes quickly remove apoptotic cells from tissues before they undergo secondary necrosis. Cells with efferocytosis functions, mainly microglia, help to eliminate apoptotic cells from the CNS. Here, we discuss the impacts of efferocytosis on homeostasis, the mechanism of efferocytosis, the associations of efferocytosis failure and CNS diseases, and the current clinical applications of efferocytosis. We also identify efferocytosis as a novel potential target for exploring the causes and treatments of CNS diseases.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Anesthesia, Zhejiang Hospital, Hangzhou, China
| | - Weiqi Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyi Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Mao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ziheng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Barros SÉDL, Rocha CDS, de Moura MSB, Barcelos MP, da Silva CHTDP, Hage-Melim LIDS. Potential beneficial effects of kefir and its postbiotic, kefiran, on child food allergy. Food Funct 2021; 12:3770-3786. [PMID: 33977950 DOI: 10.1039/d0fo03182h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food allergies are known as the public health problem, affecting people of all age groups, but more commonly in babies and children, with consequences for nutritional status and quality of life. The increase in the consumption of healthy foods has consequently led to an increased demand for functional foods with specific health benefits. Thus, the pharmaceutical industry's interest in natural products has grown every time and is therefore considered as an alternative to synthetic drugs. Kefir has been outstanding for several years as promising in the manufacture of various pharmaceutical products, due to its nutritional and therapeutic properties for the treatment of many diseases. Currently, a wide variety of new functional foods are appearing on the market, representing an important segment. Postbiotics, for example, has stood out for being a product with action similar to probiotics, without offering side effects. The kefiran is the postbiotic from kefir that promotes potential beneficial effects on food allergy from the intestinal microbiome to the immune system. In this context, it is necessary to know the main promoting component of this functional effect. This review compiles the benefits that kefir, and especially its postbiotic, kefiran, can bring to food allergy. In addition, it serve as a subsidy for studies on the development of innovative nutraceutical products, including the use of kefiran as an alternative therapy in food allergy.
Collapse
Affiliation(s)
- Susy Érika de Lima Barros
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Macapá, Brazil.
| | - Caique Dos Santos Rocha
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Macapá, Brazil.
| | | | - Mariana Pegrucci Barcelos
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Science of Riberão Preto, Univerisity of São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
6
|
Cao Y, Ao T, Wang X, Wei W, Fan J, Tian X. CD300a and CD300f molecules regulate the function of leukocytes. Int Immunopharmacol 2021; 93:107373. [PMID: 33548578 DOI: 10.1016/j.intimp.2021.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The CD300 molecule family is a type I transmembrane glycoprotein expressed on cell membrane of human and other mammals, and of its eight members, only CD300a and CD300f are classified as inhibitory receptors. CD300a and CD300f play an important role in regulating the function of leukocytes, such as activation, proliferation, differentiation, migration and immunity function. They are considered as potential targets for studying the development and progression of inflammation, infection and other diseases. Here, we review the expression and regulatory mechanisms of CD300a and CD300f on leukocytes, as well as their effects on relevant diseases.
Collapse
Affiliation(s)
- Yue Cao
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Tianrang Ao
- Department of Cardiology, Peking Union Medical College Hospital, Tsinghua University, Beijing 100730, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Wumei Wei
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
7
|
Vitallé J, Terrén I, Orrantia A, Bilbao A, Gamboa PM, Borrego F, Zenarruzabeitia O. The Expression and Function of CD300 Molecules in the Main Players of Allergic Responses: Mast Cells, Basophils and Eosinophils. Int J Mol Sci 2020; 21:ijms21093173. [PMID: 32365988 PMCID: PMC7247439 DOI: 10.3390/ijms21093173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Allergy is the host immune response against non-infectious substances called allergens. The prevalence of allergic diseases is increasing worldwide. However, while some drugs counteract the symptomatology caused by allergic reactions, no completely effective treatments for allergic diseases have been developed yet. In this sense, the ability of surface activating and inhibitory receptors to modulate the function of the main effector cells of allergic responses makes these molecules potential pharmacological targets. The CD300 receptor family consists of members with activating and inhibitory capabilities mainly expressed on the surface of immune cells. Multiple studies in the last few years have highlighted the importance of CD300 molecules in several pathological conditions. This review summarizes the literature on CD300 receptor expression, regulation and function in mast cells, basophils and eosinophils, the main players of allergic responses. Moreover, we review the involvement of CD300 receptors in the pathogenesis of certain allergic diseases, as well as their prospective use as therapeutic targets for the treatment of IgE-dependent allergic responses.
Collapse
Affiliation(s)
- Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Agurtzane Bilbao
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Pediatrics Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Pedro M. Gamboa
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Allergology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Correspondence: ; Tel.: +34-699-227-735
| |
Collapse
|
8
|
Alkie TN, Yitbarek A, Hodgins DC, Kulkarni RR, Taha-Abdelaziz K, Sharif S. Development of innate immunity in chicken embryos and newly hatched chicks: a disease control perspective. Avian Pathol 2019; 48:288-310. [PMID: 31063007 DOI: 10.1080/03079457.2019.1607966] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Newly hatched chickens are confronted by a wide array of pathogenic microbes because their adaptive immune defences have limited capabilities to control these pathogens. In such circumstances, and within this age group, innate responses provide a degree of protection. Moreover, as the adaptive immune system is relatively naïve to foreign antigens, synergy with innate defences is critical. This review presents knowledge on the ontogeny of innate immunity in chickens pre-hatch and early post-hatch and provides insights into possible interventions to modulate innate responses early in the life of the bird. As in other vertebrate species, the chicken innate immune system which include cellular mediators, cytokine and chemokine repertoires and molecules involved in antigen detection, develop early in life. Comparison of innate immune systems in newly hatched chickens and mature birds has revealed differences in magnitude and quality, but responses in younger chickens can be boosted using innate immune system modulators. Functional expression of pattern recognition receptors and several defence molecules by innate immune system cells of embryos and newly hatched chicks suggests that innate responses can be modulated at this stage of development to combat pathogens. Improved understanding of innate immune system ontogeny and functionality in chickens is critical for the implementation of sound and safe interventions to provide long-term protection against pathogens. Next-generation tools for studying genetic and epigenetic regulation of genes, functional metagenomics and gene knockouts can be used in the future to explore and dissect the contributions of signalling pathways of innate immunity and to devise more efficacious disease control strategies.
Collapse
Affiliation(s)
- Tamiru N Alkie
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Alexander Yitbarek
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Douglas C Hodgins
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Raveendra R Kulkarni
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Khaled Taha-Abdelaziz
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada.,b Pathology Department, Faculty of Veterinary Medicine , Beni-Suef University , Beni-Suef , Egypt
| | - Shayan Sharif
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| |
Collapse
|
9
|
Hey YY, O'Neill TJ, O'Neill HC. A novel myeloid cell in murine spleen defined through gene profiling. J Cell Mol Med 2019; 23:5128-5143. [PMID: 31210415 PMCID: PMC6653018 DOI: 10.1111/jcmm.14382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
A novel myeloid antigen presenting cell can be generated through in vitro haematopoiesis in long‐term splenic stromal cocultures. The in vivo equivalent subset was recently identified as phenotypically and functionally distinct from the spleen subsets of macrophages, conventional (c) dendritic cells (DC), resident monocytes, inflammatory monocytes and eosinophils. This novel subset which is myeloid on the basis of cell surface phenotype, but dendritic‐like on the basis of cell surface marker expression and antigen presenting function, has been tentatively labelled “L‐DC.” Transcriptome analysis has now been employed to determine the lineage relationship of this cell type with known splenic cDC and monocyte subsets. Principal components analysis showed separation of “L‐DC” and monocytes from cDC subsets in the second principal component. Hierarchical clustering then indicated a close lineage relationship between this novel subset, resident monocytes and inflammatory monocytes. Resident monocytes were the most closely aligned, with no genes specifically expressed by the novel subset. This subset, however, showed upregulation of genes reflecting both dendritic and myeloid lineages, with strong upregulation of several genes, particularly CD300e. While resident monocytes were found to be dependent on Toll‐like receptor signalling for development and were reduced in number in Myd88‐/‐ and Trif‐/‐ mutant mice, both the novel subset and inflammatory monocytes were unaffected. Here, we describe a novel myeloid cell type closely aligned with resident monocytes in terms of lineage but distinct in terms of development and functional capacity.
Collapse
Affiliation(s)
- Ying-Ying Hey
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, Australia
| | | | - Helen C O'Neill
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, Australia
| |
Collapse
|
10
|
Clark GJ, Silveira PA, Hogarth PM, Hart DNJ. The cell surface phenotype of human dendritic cells. Semin Cell Dev Biol 2018; 86:3-14. [PMID: 29499385 DOI: 10.1016/j.semcdb.2018.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DC) are bone marrow derived leucocytes that are part of the mononuclear phagocytic system. These are surveillance cells found in all tissues and, as specialised antigen presenting cells, direct immune responses. Membrane molecules on the DC surface form a landscape that defines them as leucocytes and part of the mononuclear phagocytic system, interacts with their environment and directs interactions with other cells. This review describes the DC surface landscape, reflects on the different molecules confirmed to be on their surface and how they provide the basis for manipulation and translation of the potent functions of these cells into new diagnostics and immune therapies for the clinic.
Collapse
Affiliation(s)
- Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| | - Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - P Mark Hogarth
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Inflammation, Cancer and Infection, Burnet Institute, Melbourne, VIC, Australia
| | - Derek N J Hart
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Tomov VT, Palko O, Lau CW, Pattekar A, Sun Y, Tacheva R, Bengsch B, Manne S, Cosma GL, Eisenlohr LC, Nice TJ, Virgin HW, Wherry EJ. Differentiation and Protective Capacity of Virus-Specific CD8 + T Cells Suggest Murine Norovirus Persistence in an Immune-Privileged Enteric Niche. Immunity 2017; 47:723-738.e5. [PMID: 29031786 DOI: 10.1016/j.immuni.2017.09.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 05/30/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Abstract
Noroviruses can establish chronic infections with active viral shedding in healthy humans but whether persistence is associated with adaptive immune dysfunction is unknown. We used genetically engineered strains of mouse norovirus (MNV) to investigate CD8+ T cell differentiation during chronic infection. We found that chronic infection drove MNV-specific tissue-resident memory (Trm) CD8+ T cells to a differentiation state resembling inflationary effector responses against latent cytomegalovirus with only limited evidence of exhaustion. These MNV-specific Trm cells remained highly functional yet appeared ignorant of ongoing viral replication. Pre-existing MNV-specific Trm cells provided partial protection against chronic infection but largely ceased to detect virus within 72 hours of challenge, demonstrating rapid sequestration of viral replication away from T cells. Our studies revealed a strategy of immune evasion by MNV via the induction of a CD8+ T cell program normally reserved for latent pathogens and persistence in an immune-privileged enteric niche.
Collapse
Affiliation(s)
- Vesselin T Tomov
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Olesya Palko
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chi Wai Lau
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ajinkya Pattekar
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yuhang Sun
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ralitza Tacheva
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bertram Bengsch
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Gabriela L Cosma
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Pertussis toxin targets the innate immunity through DAP12, FcRγ, and MyD88 adaptor proteins. Immunobiology 2017; 222:664-671. [DOI: 10.1016/j.imbio.2016.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 11/22/2022]
|
13
|
Hey YY, O’Neill HC. Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen. PLoS One 2016; 11:e0162358. [PMID: 27654936 PMCID: PMC5031434 DOI: 10.1371/journal.pone.0162358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/22/2016] [Indexed: 12/02/2022] Open
Abstract
This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named “L-DC” since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.
Collapse
Affiliation(s)
- Ying-ying Hey
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Helen C. O’Neill
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
14
|
Haseda F, Imagawa A, Nishikawa H, Mitsui S, Tsutsumi C, Fujisawa R, Sano H, Murase-Mishiba Y, Terasaki J, Sakaguchi S, Hanafusa T. Antibody to CMRF35-Like Molecule 2, CD300e A Novel Biomarker Detected in Patients with Fulminant Type 1 Diabetes. PLoS One 2016; 11:e0160576. [PMID: 27513516 PMCID: PMC4981355 DOI: 10.1371/journal.pone.0160576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Aims/Hypothesis Fulminant type 1 diabetes (FT1D) is a distinct subtype of type 1 diabetes and is fatal without immediate diagnosis and treatment. At present, there are no biomarkers for early and predictive detection of FT1D. Methods First, we analyzed a total of 6 serum samples from 3 patients with FT1D (1 sample in the acute and 1 in the sub-acute phases from each patient) by seromic analysis. Second, titres of the antibody were measured by ELISA in sera from 30 patients with FT1D (both in the acute and sub-acute phases), 13 patients with FT1D in the chronic phase, 32 patients with autoimmune type 1 (type 1A) diabetes (T1AD), 30 patients with type 2 diabetes (T2D), 23 patients with autoimmune thyroid disease (AITD) and 31 healthy control subjects (HC). Results Seromic analysis revealed 9 antibodies which showed high signals from all 3 patients with FT1D in the acute phase. Among them, the titre of anti-CD300e antibody was significantly higher in FT1D patients in the acute phase than that in T1AD, T2D, AITD patients and HC, as determined by ELISA (P<0.01, respectively). The titre of anti-CD300e antibody was also higher in FT1D in the acute phase than that in the sub-acute phase (P = 0.0018, Wilcoxon signed-rank test). The titre of anti-LGALS3 antibody in FT1D patients in the acute phase did not differ from that in patients with FT1D in the sub-acute phase, T1AD, T2D, AITD and HC. Conclusion/Interpretation The titre of a novel antibody, anti-CD300e, was high in sera from patients with FT1D. This antibody might be a diagnostic marker and provide new insight into the pathogenesis of FT1D.
Collapse
Affiliation(s)
- Fumitaka Haseda
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Akihisa Imagawa
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroyoshi Nishikawa
- Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shinobu Mitsui
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Chiharu Tsutsumi
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Reiko Fujisawa
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Hiroyuki Sano
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Yuko Murase-Mishiba
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Jungo Terasaki
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Toshiaki Hanafusa
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
- * E-mail:
| |
Collapse
|
15
|
Evidence for TLR4 and FcRγ-CARD9 activation by cholera toxin B subunit and its direct bindings to TREM2 and LMIR5 receptors. Mol Immunol 2015; 66:463-71. [PMID: 26021803 DOI: 10.1016/j.molimm.2015.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/08/2015] [Accepted: 05/10/2015] [Indexed: 11/23/2022]
Abstract
Cholera toxin (CTX) is a virulent factor of Vibrio cholerae that causes life-threatening diarrheal disease. Its non-toxic subunit CTB has been extensively studied for vaccine delivery. In immune cells, CTB induces a number of signaling molecules related to cellular activation and cytokine production. The mechanisms by which CTB exerts its immunological effects are not understood. We report here the immunological targets of CTB. The unexpected finding that GM1 ganglioside inhibited NF-κB activation in human monocytes stimulated with CTX and agonists of Toll-like receptors (TLR) suggests the possibility of CTX-TLR interaction. Indeed, CTX-induced IL-6 production was substantially reduced in MyD88(-/-) or TLR4(-/-) macrophages. Ectopic expression of TLR4 was required for CTX-induced NF-κB activation in HEK 293 cells. Furthermore, the inflammatory capacity of CTB was lost in the absence of TLR4, adaptor protein FcRγ, or its downstream signaling molecule CARD9. Attempts have been made to identify CTB-binding targets from various C-type lectin and immunoglobulin-like receptors. CTB targeted not only GM1 and TLR4 but also TREM2 and LMIR5/CD300b. CTB-TREM2 interaction initiated signal transduction through adaptor protein DAP12. The binding of CTB inhibited LMIR5 activation induced by its endogenous ligand 3-O-sulfo-β-d-galactosylceramide C24:1. In summary, CTB targets TLR4, FcRγ-CARD9, TREM2, and LMIR5. These findings provide new insights into the immunobiology of cholera toxin.
Collapse
|
16
|
RNA-Seq Analysis of the Host Response to Staphylococcus aureus Skin and Soft Tissue Infection in a Mouse Model. PLoS One 2015; 10:e0124877. [PMID: 25901897 PMCID: PMC4406450 DOI: 10.1371/journal.pone.0124877] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/18/2015] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTI), which are primarily self-limiting. We conducted a comprehensive analysis of the host transcriptome during a S. aureus SSTI to provide insight on the protective mechanisms that thwart these infections. We utilized a murine SSTI model in which one ear is epicutaneously challenged while the other is not. We then harvested these infected and uninfected ears, as well as ears from naïve mice, at one, four, and seven days post-challenge, and performed RNA sequencing (RNA-seq) using the Illumina platform. RNA-seq data demonstrated a robust response at the site of infection. Comparison of gene expression profiles between infected ears and the non-infected ears of challenged mice defined the local response to infection, while comparisons of expression profiles of non-infected ears from challenged mice to ears of naïve mice revealed changes in gene expression levels away from the site indicative of a systemic response. Over 1000 genes exhibited increased expression locally at all tested time points. The local response was more robust than the systemic response. Through evaluation of the RNA-seq data using the Upstream Regulator Analytic as part of the Ingenuity Pathway Analysis software package, we found that changes in the activation and inhibition of regulatory pathways happen first locally, and lag behind systemically. The activated pathways are highly similar at all three time points during SSTI, suggesting a stable global response over time. Transcript increases and pathway activation involve pro- and anti-inflammatory mediators, chemotaxis, cell signaling, keratins, and TH1/TH17 cytokines. Transcript decreases and pathway inhibition demonstrate that metabolic genes and anti-inflammatory pathways are repressed. These data provide insight on the host responses that may aid in resolution of this self-limited S. aureus infection, and may shed light on potential immune correlates of protection for staphylococcal SSTI.
Collapse
|
17
|
Phongsisay V. Campylobacter jejuni targets immunoglobulin-like receptor LMIR5. Mol Immunol 2015; 63:574-8. [DOI: 10.1016/j.molimm.2014.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 01/28/2023]
|
18
|
Phongsisay V, Iizasa E, Hara H, Yamasaki S. 3-O-sulfo-β-d-galactose moiety of endogenous sulfoglycolipids is a potential ligand for immunoglobulin-like receptor LMIR5. Mol Immunol 2015; 63:595-9. [DOI: 10.1016/j.molimm.2014.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 11/25/2022]
|
19
|
Zhao M, Liu S, Luo S, Wu H, Tang M, Cheng W, Zhang Q, Zhang P, Yu X, Xia Y, Yi N, Gao F, Wang L, Yung S, Chan TM, Sawalha AH, Richardson B, Gershwin ME, Li N, Lu Q. DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype. J Autoimmun 2014; 54:127-36. [PMID: 25091625 DOI: 10.1016/j.jaut.2014.07.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease well known for its clinical heterogeneity, and its etiology secondary to a cross-talk involving genetic predisposition and environmental stimuli. Although genome-wide analysis has contributed greatly to our understanding of the genetic basis of SLE, there is increasing evidence for a role of epigenetics. Indeed, recent data have demonstrated that in patients with SLE, there are striking alterations of DNA methylation, histone modifications, and deregulated microRNA expression, the sum of which contribute to over-expression of select autoimmune-related genes and loss of tolerance. To address this issue at the level of clinical phenotype, we performed DNA methylation, mRNA and microRNA expression screening using high-throughput sequencing of purified CD4+ T cells from patients with SLE, compared to age and sex matched controls. In particular, we studied 42 patients with SLE and divided this group into three clinical phenotypes: a) the presence of skin lesions without signs of systemic pathology; b) skin lesions but also chronic renal pathology; and c) skin lesions, chronic renal pathology and polyarticular disease. Interestingly, and as expected, sequencing data revealed changes in DNA methylation in SLE compared to controls. However, and more importantly, although there were common methylation changes found in all groups of SLE compared to controls, there was specific DNA methylation changes that correlated with clinical phenotype. These included changes in the novel key target genes NLRP2, CD300LB and S1PR3, as well as changes in the critical pathways, including the adherens junction and leukocyte transendothelial migration. We also noted that a significant proportion of genes undergoing DNA methylation changes were inversely correlated with gene expression and that miRNA screening revealed the existence of subsets with changes in expression. Integrated analysis of this data highlights specific sets of miRNAs controlled by DNA methylation, and genes that are altered by methylation and targeted by miRNAs. In conclusion, our findings suggest select epigenetic mechanisms that contribute to clinical phenotypes and further shed light on a new venue for basic SLE research.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Siyang Liu
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Shuangyan Luo
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Honglong Wu
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Meini Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Wenjing Cheng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qing Zhang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Peng Zhang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Xinhai Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Yudong Xia
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Na Yi
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Fei Gao
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Li Wang
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Susan Yung
- Division of Nephrology, Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Tak Mao Chan
- Division of Nephrology, Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bruce Richardson
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Ning Li
- Beijing Genomics Institute at Shenzhen, Shenzhen, China.
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
20
|
LMIR5 extracellular domain activates myeloid cells through toll-like receptor 4. Mol Immunol 2014; 62:169-77. [PMID: 25004110 DOI: 10.1016/j.molimm.2014.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/16/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022]
Abstract
LMIR5/CD300b is an activating immunoglobulin-like receptor whose extracellular domain (LMIR5-Fc) is constitutively released from immune cells. The release of LMIR5-Fc is augmented upon stimulation with TLR agonists. LMIR5-Fc is reported to possess inflammatory activity and amplify LPS-induced lethal inflammation; however, its action mechanism has not been clarified. This study was aimed to identify receptors for LMIR5-Fc. Using NF-κB reporter cells in human monocytes THP1, LMIR5-Fc was solely found to trigger NF-κB activation among various signaling receptors examined. In addition, an injection of LMIR5-Fc into the mouse peritoneal resulted in a rapid production of inflammatory mediators and an amplification of LPS activity. Moreover, LMIR5-Fc-induced cytokine production was markedly reduced in TLR4-deficient mouse macrophages. Using TLR4 reporter cells, the LMIR5-Fc sample that contained a trace amount of endotoxin under the sensitivity of reporter cells triggered a potent NF-κB activation. Furthermore, the inflammatory activity of LMIR5-Fc was completely lost by heating but unchanged by polymyxin B pretreatment. Using TLR4 fusion protein, TLR4 was found to interact specifically with LMIR5-overexpressing cells. Therefore, LMIR5-Fc is new inflammatory mediator and endogenous ligand of TLR4. This study provides an insight into the positive feedback mechanism of inflammation through TLR4-LMIR5-Fc axis.
Collapse
|
21
|
Kortum AN, Rodriguez-Nunez I, Yang J, Shim J, Runft D, O'Driscoll ML, Haire RN, Cannon JP, Turner PM, Litman RT, Kim CH, Neely MN, Litman GW, Yoder JA. Differential expression and ligand binding indicate alternative functions for zebrafish polymeric immunoglobulin receptor (pIgR) and a family of pIgR-like (PIGRL) proteins. Immunogenetics 2014; 66:267-79. [PMID: 24469064 DOI: 10.1007/s00251-014-0759-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/10/2014] [Indexed: 01/17/2023]
Abstract
The polymeric immunoglobulin (Ig) receptor (pIgR) is an integral transmembrane glycoprotein that plays an important role in the mammalian immune response by transporting soluble polymeric Igs across mucosal epithelial cells. Single pIgR genes, which are expressed in lymphoid organs including mucosal tissues, have been identified in several teleost species. A single pigr gene has been identified on zebrafish chromosome 2 along with a large multigene family consisting of 29 pigr-like (PIGRL) genes. Full-length transcripts from ten different PIGRL genes that encode secreted and putative inhibitory membrane-bound receptors have been characterized. Although PIGRL and pigr transcripts are detected in immune tissues, only PIGRL transcripts can be detected in lymphoid and myeloid cells. In contrast to pIgR which binds Igs, certain PIGRL proteins bind phospholipids. PIGRL transcript levels are increased after infection with Streptococcus iniae, suggesting a role for PIGRL genes during bacterial challenge. Transcript levels of PIGRL genes are decreased after infection with Snakehead rhabdovirus, suggesting that viral infection may suppress PIGRL function.
Collapse
Affiliation(s)
- Amanda N Kortum
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Raggi F, Blengio F, Eva A, Pende D, Varesio L, Bosco MC. Identification of CD300a as a new hypoxia-inducible gene and a regulator of CCL20 and VEGF production by human monocytes and macrophages. Innate Immun 2013; 20:721-34. [PMID: 24131792 DOI: 10.1177/1753425913507095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Peripheral blood monocytes are recruited to inflammatory and tumor lesions where they undergo terminal differentiation into macrophages. Monocytes/macrophages integrate stimulatory and inhibitory signals present in the pathologic microenvironment through a defined repertoire of cell surface receptors, and deregulated expression of these molecules may result in amplification of inflammation or establishment of immune escape mechanisms. Characterization of the expression and function of these receptors is required for a better understanding of the regulation of monocyte/macrophage activity at pathologic sites. Hypoxia is a common feature of many pathological situations and an important regulator of monocyte/macrophage pro-inflammatory responses. In this study, we identify the leukocyte membrane antigen, CD300a, a member of the CD300 superfamily of immunoregulatory receptors, as a new hypoxia-inducible gene in primary human monocytes and monocyte-derived macrophages. CD300a mRNA up-regulation by hypoxia was rapid and reversible, paralleled by increased surface protein expression, and mediated by hypoxia-inducible factor-1α. CD300a induction was also triggered by the hypoxia-mimetic agent, desferrioxamine. CD300a exhibited both activating and inhibitory potential, differentially regulating CCL20 and vascular endothelial growth factor pro-inflammatory cytokine production by monocytes/macrophages upon triggering by an agonist Ab. These results suggest that CD300a induction by the hypoxic environment represents a mechanism of regulation of monocyte/macrophage pro-inflammatory responses at pathologic sites.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| | - Fabiola Blengio
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| | | | - Luigi Varesio
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
23
|
Simhadri VR, Mariano JL, Gil-Krzewska A, Zhou Q, Borrego F. CD300c is an activating receptor expressed on human monocytes. J Innate Immun 2013; 5:389-400. [PMID: 23571507 DOI: 10.1159/000350523] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/07/2013] [Indexed: 12/13/2022] Open
Abstract
Human CD300 molecules comprise a family of receptors that regulate many immune cell processes. They are mostly expressed on myeloid cells, although expression of two members, CD300a and CD300c, has also been described on lymphocytes. However, due to the lack of specific antibodies that distinguish between these two receptors, it has been difficult to determine the expression pattern and function of CD300a and CD300c in primary cells. Here, we have identified a specific monoclonal antibody, clone TX45, that recognizes only CD300c and show that within freshly isolated blood leukocytes, monocytes are the only cells that express CD300c on the cell surface. In vitro differentiation experiments revealed that CD300c is differentially expressed on different monocyte-derived cells, including macrophages and dendritic cells. Furthermore, TLR ligands LPS and flagellin dynamically regulate the expression of CD300c. Cross-linking of this receptor with clone TX45 monoclonal antibody induced calcium mobilization, upregulation of the costimulatory molecule CD86 and the production of inflammatory cytokines. Importantly, LPS-mediated production of inflammatory cytokines by monocytes was further enhanced if CD300c was simultaneously engaged by the agonist antibody. Altogether, our results show that human CD300c is an activating receptor expressed on monocytes and that it has a potential role in inflammatory responses.
Collapse
Affiliation(s)
- Venkateswara R Simhadri
- Laboratory of Molecular and Developmental Immunology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|