1
|
Liu Q, Wu P, Lei J, Bai P, Zhong P, Yang M, Wei P. Old concepts, new tricks: How peptide vaccines are reshaping cancer immunotherapy? Int J Biol Macromol 2024; 279:135541. [PMID: 39270889 DOI: 10.1016/j.ijbiomac.2024.135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Over the past few decades, research on cancer immunotherapy has firmly established immune cells as key players in effective cancer treatment. Peptide vaccines directly targeting immune cells have demonstrated immense potential due to their specificity and applicability. However, developing peptide vaccines to generate tumor-reactive T cells remains challenging, primarily due to suboptimal immunogenicity and overcoming the immunosuppressive tumor microenvironment (TME). In this review, we discuss various elements of effective peptide vaccines, including antigen selection, peptide epitope optimization, vaccine adjuvants, and the combination of multiple immunotherapies, in addition to recent advances in tumor neoantigens as well as epitopes bound by non-classical human leukocyte antigen (HLA) molecules, to increase the understanding of cancer peptide vaccines and provide multiple references for the design of subsequent T cell-based peptide vaccines.
Collapse
Affiliation(s)
- Qingyang Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Peihua Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Jun Lei
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Laboratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Peng Bai
- In Vivo Pharmacology Unit, WuXi AppTec, Nantong, Jiangsu, China
| | - Peiluan Zhong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Min Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Iwasaki T, Yazaki Y, Myojo T, Masuko T, Nishimura T. Complete Cure of Inoperable Stage IV Locally Advanced Hypopharyngeal Squamous Cell Carcinoma by an Innovative Combination Cancer Immunotherapy Consisting of Radiation, Immune Checkpoint Inhibitors, and Dendritic Cell Vaccine. Cureus 2024; 16:e69429. [PMID: 39411614 PMCID: PMC11474011 DOI: 10.7759/cureus.69429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2024] [Indexed: 10/19/2024] Open
Abstract
We report the case of a 68-year-old man with locally advanced (LA) head and neck cancer (HNC) (LA-HNC). The patient was diagnosed with inoperable stage IVA hypopharyngeal squamous cell carcinoma with 2 cm primary and three lymph node metastatic cancers. The patient was treated with an innovative combination cancer immunotherapy (iCCI) consisting of radiotherapy, immune checkpoint inhibitors, and helper/killer-hybrid epitope long peptides (H/K-HELP)-pulsed dendritic cell vaccine. These three treatments constituting iCCI are known to show an immunomodulating effect on tumor-draining lymph nodes (TDLNs) and improve antitumor immunity in tumor microenvironments (TMEs) to reduce tumor growth. Surprisingly, the patient treated with iCCI showed a complete cure for all the cancers including primary and lymph node-metastatic cancers without standard chemotherapy. The patient is still cancer-free for almost two years. Although the destruction mechanism of cancer is not determined, we speculate this iCCI might improve the patient's antitumor immune capability around tumor sites including TDLNs and TME. Our developed iCCI will become a promising strategy to overcome inoperable cancers in the future.
Collapse
Affiliation(s)
| | | | | | - Takashi Masuko
- Pharmacy, Kindai University, Higashiosaka, JPN
- Tumor and Gene Regulation, Oncology Innovation Center, Fujita Health University, Nagoya, JPN
| | - Takashi Nishimura
- Cancer Immunotherapy, Precision Clinic Group, Tokyo, JPN
- Tumor and Gene Regulation, Oncology Innovation Center, Fujita Health University, Nagoya, JPN
| |
Collapse
|
3
|
Yajima Y, Kosaka A, Ohkuri T, Hirohashi Y, Li D, Nagasaki T, Nagato T, Torigoe T, Kobayashi H. SARS-CoV-2 spike protein-derived immunogenic peptides that are promiscuously presented by several HLA-class II molecules and their potential for inducing acquired immunity. Heliyon 2023; 9:e20192. [PMID: 37809871 PMCID: PMC10559948 DOI: 10.1016/j.heliyon.2023.e20192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/26/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic that is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a significant threat to public health. Although vaccines based on the mRNA of the SARS-CoV-2 spike protein have been developed to induce both cellular and humoral immunity against SARS-CoV-2, there have been some concerns raised about their high cost, particularly in developing countries. In the present study, we aim to identify an immunogenic peptide in the SARS-CoV-2 spike protein to activate cellular immunity, particularly CD4+ helper T lymphocytes (Th cells), which are a commander of immune system. SARS-CoV-2 spike protein-derived peptides Spike448-477 and Spike489-513(N501Y)-specific CD4+ Th cell lines were generated by repetitive stimulation of healthy donor-derived CD4+T-cells with each peptide. Their HLA-restrictions were addressed by using blocking antibodies against HLA and HLA-transfected L-cells. The epitopes of Spike448-477-specific CD4+ Th cell lines were defined using a series of 7-14-mer overlapping truncated peptides and alanine-substituted epitope peptides. To address responsiveness of these CD4+ Th cell lines to several SARS-CoV-2 variants, we stimulated the CD4+ Th cell lines with mutated peptides. We addressed whether these identified peptides were useful for monitoring T-cell-based immune responses in vaccinated donors using the IFN-γ ELISpot assay. The Spike448-477 peptide was found to be a promiscuous peptide presented by HLA- DRB1*08:02, DR53, and DPB1*02:02. Although HLA-DPB1*02:02-restricted CD4+ Th cells did not response to some peptides with the L452R and L452Q mutations, the other CD4+ Th cells were not affected by any mutant peptides. We developed two tetramers to detect HLA-DRB1*08:02/Spike449-463- and Spike449-463(L452R/Y453F)-recognizing CD4+ Th cells. Spike489-513(N501Y) peptide was also a promiscuously presented to HLA-DRB1*09:01 and DRB1*15:02. The T-cell responses specific to both peptides Spike448-477 and Spike489-513 were detected in PBMCs after vaccinations. In addition, we observed that the Spike448-477 peptide activated both CD8+ T-cells and CD4+ Th cells in individuals receiving mRNA vaccines. SARS-CoV-2 spike protein-derived peptides, Spike448-477 and Spike489-513, include several epitopes that are presented by multiple HLA-class II alleles to activate CD4+ Th cells, which are considered useful for monitoring the establishment of acquired immunity after vaccination.
Collapse
Affiliation(s)
- Yuki Yajima
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Dongliang Li
- Tsukuba Laboratory, Medical & Biological Laboratories Co., Ltd., Ina, Japan
| | - Takeshi Nagasaki
- Tsukuba Laboratory, Medical & Biological Laboratories Co., Ltd., Ina, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
4
|
Nordin ML, Azemi AK, Nordin AH, Nabgan W, Ng PY, Yusoff K, Abu N, Lim KP, Zakaria ZA, Ismail N, Azmi F. Peptide-Based Vaccine against Breast Cancer: Recent Advances and Prospects. Pharmaceuticals (Basel) 2023; 16:923. [PMID: 37513835 PMCID: PMC10386531 DOI: 10.3390/ph16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is considered the second-leading cancer after lung cancer and is the most prevalent cancer among women globally. Currently, cancer immunotherapy via vaccine has gained great attention due to specific and targeted immune cell activity that creates a potent immune response, thus providing long-lasting protection against the disease. Despite peptides being very susceptible to enzymatic degradation and poor immunogenicity, they can be easily customized with selected epitopes to induce a specific immune response and particulate with carriers to improve their delivery and thus overcome their weaknesses. With advances in nanotechnology, the peptide-based vaccine could incorporate other components, thereby modulating the immune system response against breast cancer. Considering that peptide-based vaccines seem to show remarkably promising outcomes against cancer, this review focuses on and provides a specific view of peptide-based vaccines used against breast cancer. Here, we discuss the benefits associated with a peptide-based vaccine, which can be a mainstay in the prevention and recurrence of breast cancer. Additionally, we also report the results of recent trials as well as plausible prospects for nanotechnology against breast cancer.
Collapse
Affiliation(s)
- Muhammad Luqman Nordin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Khatijah Yusoff
- National Institutes of Biotechnology, Malaysia Genome and Vaccine Institute, Jalan Bangi, Kajang 43000, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kue Peng Lim
- Cancer Immunology & Immunotherapy Unit, Cancer Research Malaysia, No. 1 Jalan SS12/1A, Subang Jaya 47500, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
5
|
Survivin (BIRC5) Peptide Vaccine in the 4T1 Murine Mammary Tumor Model: A Potential Neoadjuvant T Cell Immunotherapy for Triple Negative Breast Cancer: A Preliminary Study. Vaccines (Basel) 2023; 11:vaccines11030644. [PMID: 36992227 DOI: 10.3390/vaccines11030644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
A triple negative breast cancer model using the murine 4T1 tumor cell line was used to explore the efficacy of an adjuvanted survivin peptide microparticle vaccine using tumor growth as the outcome metric. We first performed tumor cell dose titration studies to determine a tumor cell dose that resulted in sufficient tumor takes but allowed multiple serial measurements of tumor volumes, yet with minimal morbidity/mortality within the study period. Later, in a second cohort of mice, the survivin peptide microparticle vaccine was administered via intraperitoneal injection at the study start with a second dose given 14 days later. An orthotopic injection of 4T1 cells into the mammary tissue was performed on the same day as the administration of the second vaccine dose. The mice were followed for up to 41 days with subcutaneous measurements of tumor volume made every 3–4 days. Vaccination with survivin peptides was associated with a peptide antigen-specific gamma interferon enzyme-linked immunosorbent spot response in the murine splenocyte population but was absent from the control microparticle group. At the end of the study, we found that vaccination with adjuvanted survivin peptide microparticles resulted in statistically significant slower primary tumor growth rates in BALB/c mice challenged with 4T1 cells relative to the control peptideless vaccination group. These studies suggest that T cell immunotherapy specifically targeting survivin might be an applicable neoadjuvant immunotherapy therapy for triple negative breast cancer. More preclinical studies and clinical trials are needed to explore this concept further.
Collapse
|
6
|
Cancer Vaccines for Triple-Negative Breast Cancer: A Systematic Review. Vaccines (Basel) 2023; 11:vaccines11010146. [PMID: 36679991 PMCID: PMC9866612 DOI: 10.3390/vaccines11010146] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the subtype of breast cancer with the poorest outcomes, and is associated with a high risk of relapse and metastasis. The treatment choices for this malignancy have been confined to conventional chemotherapeutic agents, due to a lack of expression of the canonical molecular targets. Immunotherapy has been recently changing the treatment paradigm for many types of tumors, and the approach of evoking active immune responses in the milieu of breast tumors through cancer vaccines has been introduced as one of the most novel immunotherapeutic approaches. Accordingly, a number of vaccines for the treatment or prevention of recurrence have been developed and are currently being studied in TNBC patients, while none have yet received any approvals. To elucidate the efficacy and safety of these vaccines, we performed a systematic review of the available literature on the topic. After searching the PubMed, Scopus, Web of Science, Embase, Cochrane CENTRAL, and Google Scholar databases, a total of 5701 results were obtained, from which 42 clinical studies were eventually included based on the predefined criteria. The overall quality of the included studies was acceptable. However, due to a lack of reporting outcomes of survival or progression in some studies (which were presented as conference abstracts) as well as the heterogeneity of the reported outcomes and study designs, we were not able to carry out a meta-analysis. A total of 32 different vaccines have so far been evaluated in TNBC patients, with the majority belonging to the peptide-based vaccine type. The other vaccines were in the cell or nucleic acid (RNA/DNA)-based categories. Most vaccines proved to be safe with low-grade, local adverse events and could efficiently evoke cellular immune responses; however, most trials were not able to demonstrate significant improvements in clinical indices of efficacy. This is in part due to the limited number of randomized studies, as well as the limited TNBC population of each trial. However, due to the encouraging results of the currently published trials, we anticipate that this strategy could show its potential through larger, phase III randomized studies in the near future.
Collapse
|
7
|
Hua Z, Han Y, Liu K, Yang H, Zhou C, Chen F, Nie S, Li M, Yu Q, Wei Y, Wu CCN, Wang X. Antitumor effect and mechanism of FZD7 polypeptide vaccine. Front Oncol 2022; 12:925495. [PMID: 36276155 PMCID: PMC9579692 DOI: 10.3389/fonc.2022.925495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The resistant cells that proliferate after radiotherapy and chemotherapy are primarily tumor stem cells with high stem marker expression, and their presence is the primary cause of tumor dispersion. The Wnt signaling receptor Frizzled family receptor 7 (FZD7) is linked to the maintenance of stem cell features as well as cancer progression. Frizzled-7 (FZD7), a key receptor for Wnt/-catenin signaling, is overexpressed in TNBC, suggesting that it could be a viable target for cancer therapy. We employed bioinformatics to find the best-scoring peptide, chemically synthesized FZD7 epitope antigen, and binding toll-like receptor 7 agonists (T7). Under GMP conditions, peptides for vaccines were produced and purified (>95%). In vivo and vitro tests were used to assess tumor cell inhibition. In vitro, the FZD7-T7 vaccination can boost the maturity of BMDC cells considerably. In mice, the FZD7 - T7 vaccine elicited the greatest immunological response. Significant tumor development inhibition was seen in BALB/c mice treated with FZD7 - T7 in prevention experiments (P < 0.01). Multiple cytokines that promote cellular immune responses, such as interferon (IFN)-γ (P < 0.05), interleukin (IL)-12 (P < 0.05), and IL-2 (P < 0.01), were shown to be considerably elevated in mice inoculated with FZD7- T7. Furthermore, we evaluated safety concerns in terms of vaccine composition to aid in the creation of successful next-generation vaccines. In conclusion, the FZD7-T7 vaccine can activate the immune response in vivo and in vitro, and play a role in tumor suppression. Our findings reveal a unique tumor-suppressive role for the FZD7 peptide in TNBC.
Collapse
Affiliation(s)
- Zhongke Hua
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Han
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Kan Liu
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Hua Yang
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Cai Zhou
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Fengyi Chen
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Shenglan Nie
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Mengqing Li
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Qinyao Yu
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Yunpeng Wei
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Christina C. N. Wu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Xiaomei Wang, ; Christina C. N. Wu,
| | - Xiaomei Wang
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
- *Correspondence: Xiaomei Wang, ; Christina C. N. Wu,
| |
Collapse
|
8
|
Yajima Y, Kosaka A, Ishibashi K, Yasuda S, Komatsuda H, Nagato T, Oikawa K, Kitada M, Takekawa M, Kumai T, Ohara K, Ohkuri T, Kobayashi H. A tumor metastasis-associated molecule TWIST1 is a favorable target for cancer immunotherapy due to its immunogenicity. Cancer Sci 2022; 113:2526-2535. [PMID: 35579200 PMCID: PMC9357613 DOI: 10.1111/cas.15429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Although neoantigens are one of the most favorable targets in cancer immunotherapy, it is less versatile and costly to apply neoantigen-derived cancer vaccines to patients due to individual variation. It is, therefore, important to find highly immunogenic antigens among tumor-specific or associated antigens, which are shared among patients. Considering the cancer immunoediting theory, immunogenic tumor cells cannot survive in early phase of tumor progression including two processes: elimination and equilibrium. We hypothesized that highly immunogenic molecules are allowed to be expressed in tumor cells after immune suppressive tumor microenvironment was established, if these molecules contribute to tumor survival. In the current study, we focused on TWIST1 as a candidate of highly immunogenic antigens because it is upregulated in tumor cells under hypoxia and promotes tumor metastasis, which are observed in late phase of tumor progression. We demonstrated that TWIST1 had an immunogenic peptide sequence TWIST1140-162 , which effectively activated TWIST1-specific CD4+ T-cells. In a short-term culture system, we detected more TWIST1-specific responses in breast cancer patients than in healthy donors. Vaccination with the TWIST1 peptide also showed efficient expansion of TWIST1-reactive HTLs in humanized mice. These findings indicate that TWIST1 is a highly immunogenic shared antigen and a favorable target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuki Yajima
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kei Ishibashi
- Breast Center, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Shunsuke Yasuda
- Breast Center, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hiroki Komatsuda
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Masahiro Kitada
- Breast Center, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Masanori Takekawa
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takumi Kumai
- Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kenzo Ohara
- Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
9
|
Branched Multipeptide-combined Adjuvants Potentially Improve the Antitumor Effects on Glioblastoma. J Immunother 2021; 44:151-161. [PMID: 33512855 DOI: 10.1097/cji.0000000000000359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022]
Abstract
The promising immunotherapy effects of a multiple antigenic peptide on glioblastoma (GBM) in a previous study encourage the use of adjuvants to enhance its therapeutic efficacy. Among adjuvants, pan HLA-DR-binding epitope (PADRE) and anti-programmed cell death protein 1 (anti-PD1) have potentially been tested for cancer immunotherapy. Therefore, here we evaluated the ability of PADRE and anti-PD1 to enhance the function of the branched multipeptide against GBM. The potential utility of tumor-associated antigens (ErbB-2 and WT-1) targeting GBM with HLA-A24 was confirmed and a branched multipeptide was constructed from these antigens. The effects of the branched multipeptide and PADRE on immunophenotyping and polarized Th cytokine production in dendritic cells were clarified. The expression of PD1 on T cells and PDL1 on GBM cells was also investigated. The interferon-γ enzyme-linked immunospot and lactate dehydrogenase release assays were performed to determine the function of GBM peptide antigen-specific cytotoxic T cells against GBM cells. Overall, this study showed that both ErbB-2 and WT-1 are potential candidates for branched multipeptide construction. The branched multipeptide and PADRE enhanced the expression of major histocompatibility complex and co-stimulatory molecules and the production of polarized Th1 cytokines in dendritic cells. The increase in the number of interferon-γ+ effector T cells was consistent with the increase in the percentage specific lysis of GBM target cells by GBM peptide antigen-specific cytotoxic T cells in the presence of the branched multipeptide, PADRE, and anti-PD1. Our study suggests the combination of branched multipeptide and adjuvants such as PADRE and anti-PD1 can potentially enhance the effects of immunotherapy for GBM treatment.
Collapse
|
10
|
Nelde A, Rammensee HG, Walz JS. The Peptide Vaccine of the Future. Mol Cell Proteomics 2021; 20:100022. [PMID: 33583769 PMCID: PMC7950068 DOI: 10.1074/mcp.r120.002309] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
The approach of peptide-based anticancer vaccination has proven the ability to induce cancer-specific immune responses in multiple studies for various cancer entities. However, clinical responses remain so far limited to single patients and broad clinical applicability was not achieved. Therefore, further efforts are required to improve peptide vaccination in order to integrate this low-side-effect therapy into the clinical routine of cancer therapy. To design clinically effective peptide vaccines in the future, different issues have to be addressed and optimized comprising antigen target selection as well as choice of optimal adjuvants and vaccination schedules. Furthermore, the combination of peptide-based vaccines with other immuno- and molecular targeted therapies as well as the development of predictive biomarkers could further improve efficacy. In this review, current approaches in the development of peptide-based vaccines and critical implications for optimal vaccine design are discussed.
Collapse
Affiliation(s)
- Annika Nelde
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany; Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
A Screened GPR1 Peptide Exerts Antitumor Effects on Triple-Negative Breast Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:602-612. [PMID: 33005727 PMCID: PMC7508919 DOI: 10.1016/j.omto.2020.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023]
Abstract
The adipokine chemerin has been considered an important regulator of tumor immune surveillance. Chemerin recruits leukocytes through the receptor CMKLR1 to improve clinical outcomes of tumors and overall patient survival, but the role of GPR1 in tumors has not been widely investigated. Here, we found that GPR1 expression is elevated in breast cancer-especially triple-negative breast cancer (TNBC) tissues and cell lines. Herein, we screened a phage display peptide library to identify LRH7-G5, a peptide antagonist that blocks chemerin/GPR1 signaling. This peptide performed as an anticancer agent to suppress the proliferation of the TNBC cell lines MDA-MB-231 and HCC1937 but has little effect on T47D cells. LRH7-G5 treatment significantly blocked tumor growth in a TNBC cell-bearing orthotopic mouse model. Last, our results showed that this peptide's antitumor role is mediated through the PI3K/AKT signaling pathway. In conclusion, these data collectively suggest that the chemerin receptor GPR1 is a novel target for controlling TNBC progression and establish peptide LRH7-G5 as a new therapeutic agent for suppressing TNBC tumor growth.
Collapse
|
12
|
Tanaka K, Enomoto N, Uehara M, Furuhashi K, Sakurai S, Yasui H, Karayama M, Hozumi H, Suzuki Y, Fujisawa T, Inui N, Nakamura Y, Nagata T, Suda T. Development of a novel T cell-oriented vaccine using CTL/Th-hybrid epitope long peptide and biodegradable microparticles, against an intracellular bacterium. Microbiol Immunol 2020; 64:666-678. [PMID: 32786043 DOI: 10.1111/1348-0421.12836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
Antigen-specific CD8+ T-lymphocytes (cytotoxic T-lymphocytes: CTL), as well as CD4+ T-lymphocytes (helper T-lymphocytes: Th), simultaneously play an important role in the elimination of intracellular bacteria such as Mycobacterium tuberculosis and Listeria monocytogenes. Administration of T-cell epitope short peptide needs large numbers of peptides for effective vaccination due to its easily degradable nature in vivo. In this respect, biocompatible and biodegradable microparticles combined with CTL/Th-hybrid epitope long peptide (long peptide) have been used to diminish the degradation of loaded peptide. The aim of this study is to develop a novel T cell-oriented vaccine against intracellular bacteria that is composed of long peptide and poly (lactic-co-glycolic acid) (PLGA) microparticles. Mouse bone marrow-derived dendritic cells (BMDCs) were loaded with L. monocytogenes listeriolysin O (LLO)-derived or ovalbumin (OVA)-derived long peptide/PLGA or other comparative antigens. The antigen-loaded BMDCs were injected subcutaneously into the flank of mice twice, and then, the spleens were collected and lymphocyte proliferation and interferon-γ production were evaluated. The median diameter of the PLGA spheres was 1.38 μm. Both LLO- and OVA-long peptide/PLGA showed significantly more robust CTL and Th proliferations with higher interferon-γ production than the long peptide alone or CTL and Th short peptides/PLGA vaccination. Furthermore, the LLO-long peptide/PLGA vaccination showed a significantly lower bacterial burden in spleens compared with the long peptide alone or the CTL and Th short peptides/PLGA vaccination after the challenge of lethal amounts of L. monocytogenes. These results suggest that the novel vaccine taking advantages of CTL/Th-hybrid epitope long peptide and PLGA microparticle is effective for protection against intracellular bacteria.
Collapse
Affiliation(s)
- Kazuki Tanaka
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Health Administration Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masahiro Uehara
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Respiratory Medicine, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shogo Sakurai
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
13
|
Zhang L, Huang Y, Lindstrom AR, Lin TY, Lam KS, Li Y. Peptide-based materials for cancer immunotherapy. Theranostics 2019; 9:7807-7825. [PMID: 31695802 PMCID: PMC6831480 DOI: 10.7150/thno.37194] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/29/2019] [Indexed: 12/21/2022] Open
Abstract
Peptide-based materials hold great promise as immunotherapeutic agents for the treatment of many malignant cancers. Extensive studies have focused on the development of peptide-based cancer vaccines and delivery systems by mimicking the functional domains of proteins with highly specific immuno-regulatory functions or tumor cells fate controls. However, a systemic understanding of the interactions between the different peptides and immune systems remains unknown. This review describes the role of peptides in regulating the functions of the innate and adaptive immune systems and provides a comprehensive focus on the design, categories, and applications of peptide-based cancer vaccines. By elucidating the impacts of peptide length and formulations on their immunogenicity, peptide-based immunomodulating agents can be better utilized and dramatic breakthroughs may also be realized. Moreover, some critical challenges for translating peptides into large-scale synthesis, safe delivery, and efficient cancer immunotherapy are posed to improve the next-generation peptide-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| |
Collapse
|
14
|
Rabu C, Rangan L, Florenceau L, Fortun A, Charpentier M, Dupré E, Paolini L, Beauvillain C, Dupel E, Latouche JB, Adotevi O, Labarrière N, Lang F. Cancer vaccines: designing artificial synthetic long peptides to improve presentation of class I and class II T cell epitopes by dendritic cells. Oncoimmunology 2019; 8:e1560919. [PMID: 30906653 PMCID: PMC6422379 DOI: 10.1080/2162402x.2018.1560919] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
There is now a consensus that efficient peptide vaccination against cancer requires that peptides should (i) be exclusively presented by professional APC and (ii) stimulate both CD4 and CD8-specific T cell responses. To this aim, in recent trials, patients were vaccinated with pools of synthetic long peptides (SLP) (15-30 aa long) composed of a potential class I epitope(s) elongated at both ends with native antigen sequences to also provide a potential class II epitope(s). Using MELOE-1 as a model antigen, we present an alternative strategy consisting in linking selected class I and class II epitopes with an artificial cathepsin-sensitive linker to improve epitope processing and presentation by DC. We provide evidence that some linker sequences used in our artificial SLPs (aSLPs) could increase up to 100-fold the cross-presentation of class I epitopes to CD8-specific T cell clones when compared to cross-presentation of the corresponding native long peptide. Presentation of class II epitopes were only slightly increased. We confirmed this increased cross-presentation after in vitro stimulation of PBMC from healthy donors with aSLP and assessment of CD8-specific responses and also in vivo following aSLP vaccination of HLA*A0201/HLA-DRB0101 transgenic mice. Finally, we provide some evidence that vaccination with aSLP could inhibit the growth of transplanted tumors in mice. Our data thus support the use of such aSLPs in future cancer vaccination trials to improve anti-tumor CD8 T cell responses and therapeutic efficacy.
Collapse
Affiliation(s)
- Catherine Rabu
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Laurie Rangan
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Laetitia Florenceau
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Agnès Fortun
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Maud Charpentier
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Emilie Dupré
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Léa Paolini
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Céline Beauvillain
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Estelle Dupel
- Rouen University Hospital, INSERM UMR1245, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Jean-Baptiste Latouche
- Rouen University Hospital, INSERM UMR1245, Institute for Research and Innovation in Biomedicine, Rouen, France
- Department of Genetics, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Nathalie Labarrière
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - François Lang
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| |
Collapse
|
15
|
Mazur J, Roy K, Kanwar JR. Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine (Lond) 2017; 13:105-137. [PMID: 29161215 DOI: 10.2217/nnm-2017-0286] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain cancer is a highly lethal disease, especially devastating toward both the elderly and children. This cancer has no therapeutics available to combat it, predominately due to the blood-brain barrier (BBB) preventing treatments from maintaining therapeutic levels within the brain. Recently, nanoparticle technology has entered the forefront of cancer therapy due to its ability to deliver therapeutic effects while potentially passing physiological barriers. Key nanoparticles for brain cancer treatment include glutathione targeted PEGylated liposomes, gold nanoparticles, superparamagnetic iron oxide nanoparticles and nanoparticle-albumin bound drugs, with these being discussed throughout this review. Recently, the survivin protein has gained attention as it is over-expressed in a majority of tumors. This review will briefly discuss the properties of survivin, while focusing on how both nanoparticles and survivin-targeting treatments hold potential as brain cancer therapies. This review may provide useful insight into new brain cancer treatment options, particularly survivin inhibition and nanomedicine.
Collapse
Affiliation(s)
- Jake Mazur
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| | - Kislay Roy
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| |
Collapse
|
16
|
Kitamura H, Ohno Y, Toyoshima Y, Ohtake J, Homma S, Kawamura H, Takahashi N, Taketomi A. Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci 2017; 108:1947-1952. [PMID: 28749573 PMCID: PMC5623748 DOI: 10.1111/cas.13332] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
Overcoming the immunosuppressive state in tumor microenvironments is a critical issue for improving the efficacy of cancer immunotherapy. Interleukin (IL)‐6, a pleiotropic cytokine, is highly produced in the tumor‐bearing host. Previous studies have indicated that IL‐6 suppresses the antigen presentation ability of dendritic cells (DC) through activation of signal transducer and activator of transcription 3 (STAT3). Thus, we focused on the precise effect of the IL‐6/STAT3 signaling cascade on human DC and the subsequent induction of antitumor T cell immune responses. Tumor‐infiltrating CD11b+CD11c+ cells isolated from colorectal cancer tissues showed strong induction of the IL‐6 gene, downregulated surface expression of human leukocyte antigen (HLA)‐DR, and an attenuated T cell‐stimulating ability compared with those from peripheral blood mononuclear cells, suggesting that the tumor microenvironment suppresses antitumor effector cells. In vitro experiments revealed that IL‐6‐mediated STAT3 activation reduced surface expression of HLA‐DR on CD14+ monocyte‐derived DC. Moreover, we confirmed that cyclooxygenase 2, lysosome protease and arginase activities were involved in the IL‐6‐mediated downregulation of the surface expression levels of HLA class II on human DC. These findings suggest that IL‐6‐mediated STAT3 activation in the tumor microenvironment inhibits functional maturation of DC to activate effector T cells, blocking introduction of antitumor immunity in cancers. Therefore, we propose in this review that blockade of the IL‐6/STAT3 signaling pathway and target molecules in DC may be a promising strategy to improve the efficacy of immunotherapies for cancer patients.
Collapse
Affiliation(s)
- Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Ohno
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yujiro Toyoshima
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junya Ohtake
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shigenori Homma
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideki Kawamura
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Norihiko Takahashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
17
|
Kumai T, Kobayashi H, Harabuchi Y, Celis E. Peptide vaccines in cancer-old concept revisited. Curr Opin Immunol 2016; 45:1-7. [PMID: 27940327 DOI: 10.1016/j.coi.2016.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 02/04/2023]
Abstract
Synthetic peptide vaccines aim to elicit and expand tumor-specific T cells capable of controlling or eradicating the tumor. Despite the high expectations based on preclinical studies, the results of clinical trials using peptide vaccines have been disappointing. Thus, many researchers in the field have considered peptide vaccines as outdated and no longer viable for cancer therapy. However, recent progress in understanding the critical roles of immune adjuvants, modes of vaccine administration and T cell dynamics has lead to a rebirth of this approach and reconsidering the use of peptide vaccines for treating malignant disorders.
Collapse
Affiliation(s)
- Takumi Kumai
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States; Department of Pathology, Asahikawa Medical University, Asahikawa, Japan; Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan; Department of Innovative Research for Diagnosis and Treatment of Head & Neck Cancer, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States.
| |
Collapse
|
18
|
Garg H, Suri P, Gupta JC, Talwar GP, Dubey S. Survivin: a unique target for tumor therapy. Cancer Cell Int 2016; 16:49. [PMID: 27340370 PMCID: PMC4917988 DOI: 10.1186/s12935-016-0326-1] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
Survivin is the smallest member of the Inhibitor of apoptosis (IAP) family of proteins, involved in inhibition of apoptosis and regulation of cell cycle. These functional attributes make Survivin a unique protein exhibiting divergent functions i.e. regulating cell proliferation and cell death. Expression pattern of Survivin is also distinctive; it is prominently expressed during embryonal development, absent in most normal, terminally differentiated tissues but upregulated in a variety of human cancers. Expression of Survivin in tumours correlates with not only inhibition of apoptosis and a decreased rate of cell death, but also resistance to chemotherapy and aggressiveness of tumours. Therefore, Survivin is an important target for cancer vaccines and therapeutics. Survivin has also been found to be prominently expressed on both human and embryonic stem cells and many somatic stem cell types indicating its yet unexplored role in stem cell generation and maintenance. Overall, Survivin emerges as a molecule with much wider role in cellular homeostasis. This review will discuss various aspects of Survivin biology and its role in regulation of apoptosis, cell division, chemo-resistance and tumour progression. Various molecular and immunotherapeutic approaches targeting Survivin will also be discussed.
Collapse
Affiliation(s)
- Himani Garg
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, J-3 Block, Room No: LG21, Sector 125, Noida, Uttar Pradesh 201303 India
| | - Prerna Suri
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Jagdish C Gupta
- Talwar Research Foundation, E-8 Neb Valley, Neb Sarai, New Delhi, 110 068 India
| | - G P Talwar
- Talwar Research Foundation, E-8 Neb Valley, Neb Sarai, New Delhi, 110 068 India
| | - Shweta Dubey
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, J-3 Block, Room No: LG21, Sector 125, Noida, Uttar Pradesh 201303 India
| |
Collapse
|
19
|
Ohno Y, Kitamura H, Takahashi N, Ohtake J, Kaneumi S, Sumida K, Homma S, Kawamura H, Minagawa N, Shibasaki S, Taketomi A. IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4(+) T cells. Cancer Immunol Immunother 2016; 65:193-204. [PMID: 26759006 PMCID: PMC11028987 DOI: 10.1007/s00262-015-1791-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/29/2015] [Indexed: 12/15/2022]
Abstract
Immunosuppression in tumor microenvironments critically affects the success of cancer immunotherapy. Here, we focused on the role of interleukin (IL)-6/signal transducer and activator of transcription (STAT3) signaling cascade in immune regulation by human dendritic cells (DCs). IL-6-conditioned monocyte-derived DCs (MoDCs) impaired the presenting ability of cancer-related antigens. Interferon (IFN)-γ production attenuated by CD4(+) T cells co-cultured with IL-6-conditioned MoDCs corresponded with decreased DC IL-12p70 production. Human leukocyte antigen (HLA)-DR and CD86 expression was significantly reduced in CD11b(+)CD11c(+) cells obtained from peripheral blood mononuclear cells (PBMCs) of healthy donors by IL-6 treatment and was STAT3 dependent. Arginase-1 (ARG1), lysosomal protease, cathepsin L (CTSL), and cyclooxygenase-2 (COX2) were involved in the reduction of surface HLA-DR expression. Gene expressions of ARG1, CTSL, COX2, and IL6 were higher in tumor-infiltrating CD11b(+)CD11c(+) cells compared with PBMCs isolated from colorectal cancer patients. Expression of surface HLA-DR and CD86 on CD11b(+)CD11c(+) cells was down-regulated, and T cell-stimulating ability was attenuated compared with PBMCs, suggesting that an immunosuppressive phenotype might be induced by IL-6, ARG1, CTSL, and COX2 in tumor sites of colorectal cancer patients. There was a relationship between HLA-DR expression levels in tumor tissues and the size of CD4(+) T and CD8(+) T cell compartments. Our findings indicate that IL-6 causes a dysfunction in human DCs that activates cancer antigen-specific Th cells, suggesting that blocking the IL-6/STAT3 signaling pathway might be a promising strategy to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Yosuke Ohno
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815, Japan
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815, Japan.
| | - Norihiko Takahashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Junya Ohtake
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815, Japan
| | - Shun Kaneumi
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815, Japan
| | - Kentaro Sumida
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815, Japan
| | - Shigenori Homma
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Hideki Kawamura
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Nozomi Minagawa
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Susumu Shibasaki
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| |
Collapse
|
20
|
Peptide-Based Treatment: A Promising Cancer Therapy. J Immunol Res 2015; 2015:761820. [PMID: 26568964 PMCID: PMC4629048 DOI: 10.1155/2015/761820] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/14/2014] [Indexed: 12/16/2022] Open
Abstract
Many new therapies are currently being used to treat cancer. Among these new methods, chemotherapy based on peptides has been of great interest due to the unique advantages of peptides, such as a low molecular weight, the ability to specifically target tumor cells, and low toxicity in normal tissues. In treating cancer, peptide-based chemotherapy can be mainly divided into three types, peptide-alone therapy, peptide vaccines, and peptide-conjugated nanomaterials. Peptide-alone therapy may specifically enhance the immune system's response to kill tumor cells. Peptide-based vaccines have been used in advanced cancers to improve patients' overall survival. Additionally, the combination of peptides with nanomaterials expands the therapeutic ability of peptides to treat cancer by enhancing drug delivery and sensitivity. In this review, we mainly focus on the new advances in the application of peptides in treating cancer in recent years, including diagnosis, treatment, and prognosis.
Collapse
|
21
|
Ohtake J, Kaneumi S, Tanino M, Kishikawa T, Terada S, Sumida K, Masuko K, Ohno Y, Kita T, Iwabuchi S, Shinohara T, Tanino Y, Takemura T, Tanaka S, Kobayashi H, Kitamura H. Neuropeptide signaling through neurokinin-1 and neurokinin-2 receptors augments antigen presentation by human dendritic cells. J Allergy Clin Immunol 2015; 136:1690-1694. [PMID: 26371842 DOI: 10.1016/j.jaci.2015.06.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 05/26/2015] [Accepted: 06/22/2015] [Indexed: 11/24/2022]
Affiliation(s)
- Junya Ohtake
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shun Kaneumi
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Mishie Tanino
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takuto Kishikawa
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Terada
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Sumida
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kazutaka Masuko
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Ohno
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Kita
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, Iowa
| | | | - Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Tamiko Takemura
- Department of Pathology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Hidemitsu Kitamura
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
22
|
Yang H, Kim DS. Peptide Immunotherapy in Vaccine Development: From Epitope to Adjuvant. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 99:1-14. [PMID: 26067814 DOI: 10.1016/bs.apcsb.2015.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vaccines are designed to educate the host immune system to prevent infectious disease or to fight against various diseases such as cancers. Peptides were first employed to provide specific immune responses while minimizing unintended allergenic or reactogenic adverse effects. Discoveries of virus or cancer-specific antigens and the advanced knowledge of immunology accelerate the peptide vaccine development. Despite the overwhelming research pipelines, a very few of them reached to market approvals or phase III clinical trials, because of the lack of efficacy. Several strategies for the next generation peptide vaccines are devised to overcome the weak immunogenicity and the poor delivery. In this review, we discuss the new promising strategies of peptide vaccine development which are recently developed in preclinical and/or clinical stage focusing the roles of peptides in the vaccine formulation from epitope to adjuvant. Additionally, we discuss the future perspectives of peptide vaccine and immunotherapy.
Collapse
Affiliation(s)
- Hyun Yang
- Research and Development Center, Peptron, Inc., Daejeon, South Korea
| | - Dong Seok Kim
- Research and Development Center, Peptron, Inc., Daejeon, South Korea.
| |
Collapse
|
23
|
Masuko K, Wakita D, Togashi Y, Kita T, Kitamura H, Nishimura T. Artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP): preparation and immunological analysis of vaccine efficacy. Immunol Lett 2014; 163:102-12. [PMID: 25479286 DOI: 10.1016/j.imlet.2014.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
To elucidate the immunologic mechanisms of artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP), which indicated a great vaccine efficacy in human cancers, we prepared ovalbumin (OVA)-H/K-HELP by conjugating killer and helper epitopes of OVA-model tumor antigen via a glycine-linker. Vaccination of C57BL/6 mice with OVA-H/K-HELP (30 amino acids) but not with short peptides mixture of class I-binding peptide (8 amino-acids) and class II-binding peptide (17 amino-acids) combined with adjuvant CpG-ODN (cytosine-phosphorothioate-guanine oligodeoxynucleotides), induced higher numbers of OVA-tetramer-positive CTL with concomitant activation of IFN-γ-producing CD4(+) Th1 cells. However, replacement of glycine-linker of OVA-H/K-HELP with other peptide-linker caused a significant decrease of vaccine efficacy of OVA-H/K-HELP. In combination with adjuvant CpG-ODN, OVA-H/KHELP exhibited greater vaccine efficacy compared with short peptides vaccine, in both preventive and therapeutic vaccine models against OVA-expressing EG-7 tumor. The elevated vaccine efficacy of OVAH/K-HELP might be derived from the following mechanisms: (i) selective presentation by only professional dendritic cells (DC) in vaccinated draining lymph node (dLN); (ii) a long-term sustained antigen presentation exerted by DC to stimulate both CTL and Th1 cells; (iii) formation of three cells interaction among DC, Th and CTL. In comparative study, H/K-HELP indicated stronger therapeutic vaccine efficacy compared with that of extended class I synthetic long peptide, indicating that both the length of peptide and the presence of Th epitope peptide were crucial aspects for preparing artificially synthesized H/K-HELP vaccine.
Collapse
Affiliation(s)
- Kazutaka Masuko
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Daiko Wakita
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | - Toshiyuki Kita
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan; Division of ROYCE' Health Bioscience, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Hidemitsu Kitamura
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Takashi Nishimura
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan; Division of ROYCE' Health Bioscience, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| |
Collapse
|