1
|
Plum T, Feyerabend TB, Rodewald HR. Beyond classical immunity: Mast cells as signal converters between tissues and neurons. Immunity 2024; 57:2723-2736. [PMID: 39662090 DOI: 10.1016/j.immuni.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
Mast cells are regarded as effectors in immune defense against parasites and venoms and play an essential role in the pathology of allergic diseases. More recently, mast cells have been shown to receive stimuli derived from type 2 immunity, tissue damage, stress, and inflammation. Mast cells then rapidly convert these diverse signals into appropriate, organ-specific protective reflexes that can limit inflammation or reduce tissue damage. In this review, we consider functions of mast cells in sensations-such as pain, itch, and nausea-arising from tissue insults and inflammation and the ensuing protective responses. In light of emerging data highlighting the involvement of mast cells in neuroimmune communication, we also propose that mast cells are "signal converters" linking immunological and tissue states with nervous system responses.
Collapse
Affiliation(s)
- Thomas Plum
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Thorsten B Feyerabend
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Feng Y, Xu L, Zhang J, Bin J, Pang X, He S, Fang L. Allergenic protein-induced type I hypersensitivity models: a review. FRONTIERS IN ALLERGY 2024; 5:1481011. [PMID: 39483683 PMCID: PMC11525013 DOI: 10.3389/falgy.2024.1481011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Context Type I hypersensitivity affects approximately one-third of the global population. As the pathophysiology underlying the development of type I hypersensitivity (asthma, food allergy, and anaphylactic shock, etc.) is complex and heterogeneous, animal model studies continue to be the key to identifying novel molecular pathways and providing therapeutic strategies. Objective Selection of the animal model should be done with careful consideration of the protocol variables, animal species, and strains to accurately reflect the clinical symptoms typical of humans. Methods The following databases were searched: PubMed and Web of Science. Results and conclusion Foreign allergens include allergenic proteins and chemical haptens. This review summarizes the various methods used for designing animal models of common allergenic protein-induced type I hypersensitivity, namely, passive anaphylaxis model, active systemic anaphylaxis/anaphylaxis shock model, food allergy model, asthma model, and IgE-mediated cell models. Additionally, we summarize shrimp tropomyosin-induced type I hypersensitivity models from our previous studies and discuss their advantages and limitations compared with that of ovalbumin-induced models.
Collapse
Affiliation(s)
- Yanhua Feng
- Paediatric Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
| | - Liangyu Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jinming Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jinlian Bin
- Paediatric Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xialing Pang
- Paediatric Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
| | - Sheng He
- Paediatric Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Fang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University Medical College, Yangzhou, China
| |
Collapse
|
3
|
Tonc E, Omwanda GK, Tovar KA, Golden XME, Chatterjea D. Immune mechanisms in vulvodynia: key roles for mast cells and fibroblasts. Front Cell Infect Microbiol 2023; 13:1215380. [PMID: 37360527 PMCID: PMC10285386 DOI: 10.3389/fcimb.2023.1215380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Vulvodynia is a debilitating condition characterized by painful sensitivity to touch and pressure in the vestibular tissue surrounding the vaginal opening. It is often a "diagnosis of exclusion" of idiopathic pain made in the absence of visible inflammation or injury. However, the association between increased vulvodynia risk and a history of yeast infections and skin allergies has led researchers to explore whether immune mechanisms of dysregulated inflammation might underlie the pathophysiology of this chronic pain condition. Here we synthesize epidemiological investigations, clinical biopsies and primary cell culture studies, and mechanistic insights from several pre-clinical models of vulvar pain. Taken together, these findings suggest that altered inflammatory responses of tissue fibroblasts, and other immune changes in the genital tissues, potentially driven by the accumulation of mast cells may be key to the development of chronic vulvar pain. The association of increased numbers and function of mast cells with a wide variety of chronic pain conditions lends credence to their involvement in vulvodynia pathology and underscores their potential as an immune biomarker for chronic pain. Alongside mast cells, neutrophils, macrophages, and numerous inflammatory cytokines and mediators are associated with chronic pain suggesting immune-targeted approaches including the therapeutic administration of endogenous anti-inflammatory compounds could provide much needed new ways to treat, manage, and control the growing global pandemic of chronic pain.
Collapse
|
4
|
Rahimi RA, Sokol CL. Functional Recognition Theory and Type 2 Immunity: Insights and Uncertainties. Immunohorizons 2022; 6:569-580. [PMID: 35926975 PMCID: PMC9897289 DOI: 10.4049/immunohorizons.2200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 immunity plays an important role in host defense against helminths and toxins while driving allergic diseases. Despite progress in understanding the biology of type 2 immunity, the fundamental mechanisms regulating the type 2 immune module remain unclear. In contrast with structural recognition used by pattern recognition receptors, type 2 immunogens are sensed through their functional properties. Functional recognition theory has arisen as the paradigm for the initiation of type 2 immunity. However, the vast array of structurally unrelated type 2 immunogens makes it challenging to advance our understanding of type 2 immunity. In this article, we review functional recognition theory and organize type 2 immunogens into distinct classes based on how they fit into the concept of functional recognition. Lastly, we discuss areas of uncertainty in functional recognition theory with the goal of providing a framework to further define the logic of type 2 immunity in host protection and immunopathology.
Collapse
Affiliation(s)
- Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Rahimi RA, Cho JL, Jakubzick CV, Khader SA, Lambrecht BN, Lloyd CM, Molofsky AB, Talbot S, Bonham CA, Drake WP, Sperling AI, Singer BD. Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 67:e1-18. [PMID: 35776495 PMCID: PMC9273224 DOI: 10.1165/rcmb.2022-0167st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.
Collapse
|
6
|
Mathur S, Wang JC, Seehus CR, Poirier F, Crosson T, Hsieh YC, Doyle B, Lee S, Woolf CJ, Foster SL, Talbot S. Nociceptor neurons promote IgE class switch in B cells. JCI Insight 2021; 6:148510. [PMID: 34727095 PMCID: PMC8783686 DOI: 10.1172/jci.insight.148510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Nociceptors, the high-threshold primary sensory neurons that trigger pain, interact with immune cells in the periphery to modulate innate immune responses. Whether they also participate in adaptive and humoral immunity is, however, not known. In this study, we probed if nociceptors have a role in distinct airway and skin models of allergic inflammation. In both models, the genetic ablation and pharmacological silencing of nociceptors substantially reduced inflammatory cell infiltration to the affected tissue. Moreover, we also found a profound and specific deficit in IgE production in these models of allergic inflammation. Mechanistically, we discovered that the nociceptor-released neuropeptide Substance P help triggered the formation of antibody secreting cells and their release of IgE. Our findings suggest that nociceptors, in addition to their contributions to innate immunity, play a key role in modulating the adaptive immune response, particularly B cell antibody class switching to IgE.
Collapse
Affiliation(s)
- Shreya Mathur
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, United States of America
| | - Jo-Chiao Wang
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
| | - Corey R Seehus
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States of America
| | - Florence Poirier
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
| | - Theo Crosson
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
| | - Yu-Chen Hsieh
- Department of Genetics, Harvard Medical School and Massachusetts General Hospital, Boston, United States of America
| | - Benjamin Doyle
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States of America
| | - Seungkyu Lee
- Department of Neurobiology, Harvard Medical School, Boston, United States of America
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States of America
| | - Simmie L Foster
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, United States of America
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
| |
Collapse
|
7
|
Crosson T, Wang JC, Doyle B, Merrison H, Balood M, Parrin A, Pascal M, Mindt BC, Seehus CR, Ozcan A, Huang X, Semenara E, Lai NYY, Majdoubi A, Abdulnour REE, Rajchgot T, Rafei M, Foster SL, Thibodeau J, Fritz JH, Levy BD, Woolf CJ, Talbot S. FcεR1-expressing nociceptors trigger allergic airway inflammation. J Allergy Clin Immunol 2021; 147:2330-2342. [PMID: 33453289 DOI: 10.1016/j.jaci.2020.12.644] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung nociceptor neurons amplify immune cell activity and mucus metaplasia in response to an inhaled allergen challenge in sensitized mice. OBJECTIVE We sought to identify the cellular mechanisms by which these sensory neurons are activated subsequent to allergen exposure. METHODS We used calcium microscopy and electrophysiologic recording to assess whether vagal neurons directly respond to the model allergen ovalbumin (OVA). Next, we generated the first nociceptor-specific FcεR1γ knockdown (TRPV1Cre::FcεR1γfl/fl) mice to assess whether this targeted invalidation would affect the severity of allergic inflammation in response to allergen challenges. RESULTS Lung-innervating jugular nodose complex ganglion neurons express the high-affinity IgE receptor FcεR1, the levels of which increase in OVA-sensitized mice. FcεR1γ-expressing vagal nociceptor neurons respond directly to OVA complexed with IgE with depolarization, action potential firing, calcium influx, and neuropeptide release. Activation of vagal neurons by IgE-allergen immune complexes, through the release of substance P from their peripheral terminals, directly amplifies TH2 cell influx and polarization in the airways. Allergic airway inflammation is decreased in TRPV1Cre::FcεR1γfl/fl mice and in FcεR1α-/- mice into which bone marrow has been transplanted. Finally, increased in vivo circulating levels of IgE following allergen sensitization enhances the responsiveness of FcεR1 to immune complexes in both mouse jugular nodose complex ganglion neurons and human induced pluripotent stem cell-derived nociceptors. CONCLUSIONS Allergen sensitization triggers a feedforward inflammatory loop between IgE-producing plasma cells, FcεR1-expressing vagal sensory neurons, and TH2 cells, which helps to both initiate and amplify allergic airway inflammation. These data highlight a novel target for reducing allergy, namely, FcεR1γ expressed by nociceptors.
Collapse
Affiliation(s)
- Theo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Benjamin Doyle
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Hannah Merrison
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Mohammad Balood
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Alexandre Parrin
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Maud Pascal
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Barbara C Mindt
- McGill University Research Center on Complex Traits, Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
| | - Corey R Seehus
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Alp Ozcan
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Xuan Huang
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Elise Semenara
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Nicole Y Y Lai
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Abdelilah Majdoubi
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Trevor Rajchgot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Simmie L Foster
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Jacques Thibodeau
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Jörg H Fritz
- McGill University Research Center on Complex Traits, Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass.
| | - Sebastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
8
|
Crosson T, Roversi K, Balood M, Othman R, Ahmadi M, Wang JC, Seadi Pereira PJ, Tabatabaei M, Couture R, Eichwald T, Latini A, Prediger RD, Rangachari M, Seehus CR, Foster SL, Talbot S. Profiling of how nociceptor neurons detect danger - new and old foes. J Intern Med 2019; 286:268-289. [PMID: 31282104 DOI: 10.1111/joim.12957] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The host evolves redundant mechanisms to preserve physiological processing and homeostasis. These functions range from sensing internal and external threats, creating a memory of the insult and generating reflexes, which aim to resolve inflammation. Impairment in such functioning leads to chronic inflammatory diseases. By interacting through a common language of ligands and receptors, the immune and sensory nervous systems work in concert to accomplish such protective functions. Whilst this bidirectional communication helps to protect from danger, it can contribute to disease pathophysiology. Thus, the somatosensory nervous system is anatomically positioned within primary and secondary lymphoid tissues and mucosa to modulate immunity directly. Upstream of this interplay, neurons detect danger, which prompts the release of neuropeptides initiating (i) defensive reflexes (ranging from withdrawal response to coughing) and (ii) chemotaxis, adhesion and local infiltration of immune cells. The resulting outcome of such neuro-immune interplay is still ill-defined, but consensual findings start to emerge and support neuropeptides not only as blockers of TH 1-mediated immunity but also as drivers of TH 2 immune responses. However, the modalities detected by nociceptors revealed broader than mechanical pressure and temperature sensing and include signals as various as cytokines and pathogens to immunoglobulins and even microRNAs. Along these lines, we aggregated various dorsal root ganglion sensory neuron expression profiling datasets supporting such wide-ranging sensing capabilities to help identifying new danger detection modalities of these cells. Thus, revealing unexpected aspects of nociceptor neuron biology might prompt the identification of novel drivers of immunity, means to resolve inflammation and strategies to safeguard homeostasis.
Collapse
Affiliation(s)
- T Crosson
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - K Roversi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Balood
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - R Othman
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - M Ahmadi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - J-C Wang
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - M Tabatabaei
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - R Couture
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - T Eichwald
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - A Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - R D Prediger
- Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Rangachari
- Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - C R Seehus
- FM Kirby Neurobiology Center, Children's Hospital, Boston, MA, USA
| | - S L Foster
- Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - S Talbot
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
9
|
Boo B, Kamath R, Arriaga-Gomez E, Landry J, Emanuel E, Joo S, Saldías Montivero M, Martinov T, Fife BT, Chatterjea D. Tetrahydrocannabinol Reduces Hapten-Driven Mast Cell Accumulation and Persistent Tactile Sensitivity in Mouse Model of Allergen-Provoked Localized Vulvodynia. Int J Mol Sci 2019; 20:ijms20092163. [PMID: 31052404 PMCID: PMC6539044 DOI: 10.3390/ijms20092163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
Vulvodynia is a remarkably prevalent chronic pain condition of unknown etiology. An increase in numbers of vulvar mast cells often accompanies a clinical diagnosis of vulvodynia and a history of allergies amplifies the risk of developing this condition. We previously showed that repeated exposures to oxazolone dissolved in ethanol on the labiar skin of mice led to persistent genital sensitivity to pressure and a sustained increase in labiar mast cells. Here we sensitized female mice to the hapten dinitrofluorobenzene (DNFB) dissolved in saline on their flanks, and subsequently challenged them with the same hapten or saline vehicle alone for ten consecutive days either on labiar skin or in the vaginal canal. We evaluated tactile ano-genital sensitivity, and tissue inflammation at serial timepoints. DNFB-challenged mice developed significant, persistent tactile sensitivity. Allergic sites showed mast cell accumulation, infiltration of resident memory CD8+CD103+ T cells, early, localized increases in eosinophils and neutrophils, and sustained elevation of serum Immunoglobulin E (IgE). Therapeutic intra-vaginal administration of Δ9-tetrahydrocannabinol (THC) reduced mast cell accumulation and tactile sensitivity. Mast cell-targeted therapeutic strategies may therefore provide new ways to manage and treat vulvar pain potentially instigated by repeated allergenic exposures.
Collapse
Affiliation(s)
- Beebie Boo
- Biology Department, Macalester College, Saint Paul, MN 55105, USA.
| | - Rohit Kamath
- Biology Department, Macalester College, Saint Paul, MN 55105, USA.
| | | | - Jasmine Landry
- Biology Department, Macalester College, Saint Paul, MN 55105, USA.
| | | | - Sookyong Joo
- Biology Department, Macalester College, Saint Paul, MN 55105, USA.
| | | | - Tijana Martinov
- Center for Immunology, University of Minnesota, Minnesota, MN 55455, USA.
| | - Brian T Fife
- Center for Immunology, University of Minnesota, Minnesota, MN 55455, USA.
| | | |
Collapse
|