1
|
Chen Z, Wu J, Wang N, Li T, Wu H, Wu H, Xiang W. Isolation, Characterization, Moisturization and Anti-HepG2 Cell Activities of a Novel Polysaccharide from Cyanobacterium aponinum. Molecules 2024; 29:4556. [PMID: 39407483 PMCID: PMC11478272 DOI: 10.3390/molecules29194556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/20/2024] Open
Abstract
Polysaccharides from cyanobacteria are extensively reported for their complex structures, good biocompatibility, and diverse bioactivities, but only a few cyanobacterial species have been exploited for the biotechnological production of polysaccharides. According to our previous study, the newly isolated marine cyanobacterium Cyanobacterium aponinum SCSIO-45682 was a good candidate for polysaccharide production. This work provided a systematic study of the extraction optimization, isolation, structural characterization, and bioactivity evaluation of polysaccharides from C. aponinum SCSIO-45682. Results showed that the crude polysaccharide yield of C. aponinum reached 17.02% by hot water extraction. The crude polysaccharides showed a porous and fibrous structure, as well as good moisture absorption and retention capacities comparable to that of sodium alginate. A homogeneous polysaccharide (Cyanobacterium aponinum polysaccharide, CAP) was obtained after cellulose DEAE-52 column and Sephadex G-100 column purification. CAP possessed a high molecular weight of 4596.64 kDa. It was mainly composed of fucose, galactose, and galacturonic acid, with a molar ratio of 15.27:11.39:8.64. The uronic acid content and sulfate content of CAP was 12.96% and 18.06%, respectively. Furthermore, CAP showed an in vitro growth inhibition effect on human hepatocellular carcinoma (HepG2) cells. The above results indicated the potential of polysaccharides from the marine cyanobacterium C. aponinum SCSIO-45682 as a moisturizer and anticancer addictive applied in cosmetical and pharmaceutical industries.
Collapse
Affiliation(s)
- Zishuo Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou 511466, China
| | - Na Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Basic Medical Sciences, Heyang Medical School, University of South China, Hengyang 421001, China
| | - Tao Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Houbo Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| |
Collapse
|
2
|
Gallo G, Imbimbo P, Aulitto M. The Undeniable Potential of Thermophiles in Industrial Processes. Int J Mol Sci 2024; 25:7685. [PMID: 39062928 PMCID: PMC11276739 DOI: 10.3390/ijms25147685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Extremophilic microorganisms play a key role in understanding how life on Earth originated and evolved over centuries. Their ability to thrive in harsh environments relies on a plethora of mechanisms developed to survive at extreme temperatures, pressures, salinity, and pH values. From a biotechnological point of view, thermophiles are considered a robust tool for synthetic biology as well as a reliable starting material for the development of sustainable bioprocesses. This review discusses the current progress in the biomanufacturing of high-added bioproducts from thermophilic microorganisms and their industrial applications.
Collapse
Affiliation(s)
- Giovanni Gallo
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany;
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
| | - Martina Aulitto
- Department of Biology, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
| |
Collapse
|
3
|
Debnath S, Muthuraj M, Bandyopadhyay TK, Bobby MN, Vanitha K, Tiwari ON, Bhunia B. Engineering strategies and applications of cyanobacterial exopolysaccharides: A review on past achievements and recent perspectives. Carbohydr Polym 2024; 328:121686. [PMID: 38220318 DOI: 10.1016/j.carbpol.2023.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ideally suited for developing sustainable biological products but are underdeveloped due to a lack of genetic tools. Exopolysaccharide (EPS) is one of the essential bioproducts with widespread industrial applications. Despite their unique structural characteristics associated with distinct biological and physicochemical aspects, EPS from cyanobacteria has been underexplored. However, it is expected to accelerate in the near future due to the utilization of low-cost cyanobacterial platforms and readily available information on the structural data and specific features of these biopolymers. In recent years, cyanobacterial EPSs have attracted growing scientific attention due to their simple renewability, rheological characteristics, massive production, and potential uses in several biotechnology domains. This review focuses on the most recent research on potential new EPS producers and their distinct compositions responsible for novel biological activities. Additionally, nutritional and process parameters discovered recently for enhancing EPS production and engineering strategies applied currently to control the biosynthetic pathway for enhanced EPS production are critically highlighted. The process intensification of previously developed EPS extraction and purification processes from cyanobacterial biomass is also extensively explained. Furthermore, the newly reported biotechnological applications of cyanobacterial exopolysaccharides are also discussed.
Collapse
Affiliation(s)
- Shubhankar Debnath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| | | | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Guntur 522213, Andhra Pradesh, India
| | - Kondi Vanitha
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak, Telangana, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
4
|
Parab S, Doshi G. An update on emerging immunological targets and their inhibitors in the treatment of psoriasis. Int Immunopharmacol 2022; 113:109341. [DOI: 10.1016/j.intimp.2022.109341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
5
|
Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds. BIOLOGY 2022; 11:biology11081146. [PMID: 36009773 PMCID: PMC9405046 DOI: 10.3390/biology11081146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Microalgae-based biorefineries allow the simultaneous production of microalgae biomass enriched in a particular macromolecule and high-added and low-value products if a proper selection of the microalgae species and the cultivation conditions are adequate for the purpose. This review discusses the challenges and future trends related to microalgae-based biorefineries stressing the multi-product approach and the use of raw wastewater or pretreated wastewater to improve the cost-benefit ratio of biomass and products. Emphasis is given to the production of biomass enriched in carbohydrates. Microalgae-bioactive compounds as potential therapeutical and health promoters are also discussed. Future and novel trends following the circular economy strategy are also discussed. Abstract Microalgae have demonstrated a large potential in biotechnology as a source of various macromolecules (proteins, carbohydrates, and lipids) and high-added value products (pigments, poly-unsaturated fatty acids, peptides, exo-polysaccharides, etc.). The production of biomass at a large scale becomes more economically feasible when it is part of a biorefinery designed within the circular economy concept. Thus, the aim of this critical review is to highlight and discuss challenges and future trends related to the multi-product microalgae-based biorefineries, including both phototrophic and mixotrophic cultures treating wastewater and the recovery of biomass as a source of valuable macromolecules and high-added and low-value products (biofertilizers and biostimulants). The therapeutic properties of some microalgae-bioactive compounds are also discussed. Novel trends such as the screening of species for antimicrobial compounds, the production of bioplastics using wastewater, the circular economy strategy, and the need for more Life Cycle Assessment studies (LCA) are suggested as some of the future research lines.
Collapse
|
6
|
Grether-Beck S, Marini A, Jaenicke T, Brenden H, Felsner I, Aue N, Brynjolfsdottir A, Krutmann J. Blue Lagoon Algae improve uneven skin pigmentation: Results from in vitro studies and from a monocenter, randomized, double blind, vehicle controlled, split-face study. Skin Pharmacol Physiol 2021; 35:77-86. [PMID: 34348349 DOI: 10.1159/000518781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/25/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Susanne Grether-Beck
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Alessandra Marini
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Thomas Jaenicke
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Heidi Brenden
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ingo Felsner
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Natalie Aue
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
7
|
Ness S, Lin S, Gordon JR. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front Immunol 2021; 12:633436. [PMID: 33777019 PMCID: PMC7988082 DOI: 10.3389/fimmu.2021.633436] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.
Collapse
Affiliation(s)
- Sara Ness
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shiming Lin
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Gordon
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Respirology, Critical Care and Sleep Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Brenes-Guillén L, Vidaurre-Barahona D, Morales S, Mora-López M, Sittenfeld A, Uribe-Lorío L. Novel Cyanobacterial Diversity Found in Costa Rican Thermal Springs Associated with Rincon de la Vieja and Miravalles Volcanoes: A Polyphasic Approach. JOURNAL OF PHYCOLOGY 2021; 57:183-198. [PMID: 33000870 DOI: 10.1111/jpy.13077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Central America is one of the most important biodiversity hot spots in the world, and Costa Rican microbial communities from thermal springs are the best characterized in the isthmus. Miravalles is an inactive quaternary stratovolcano, and the Rincón de la Vieja is a unique active volcano, in whose slopes diverse hydrothermal springs, such as Las Lilas, are located. These springs harbor extensive microbial mats, whose diversity has been studied. Based on their importance as primary producers, in this study we focused on cultured cyanobacterial diversity from two geothermal environments of northern Costa Rica. Several cultural, molecular and taxonomic techniques were employed to maximize the results of a polyphasic approach. Sample collection sites were physicochemically described, and strains were isolated and characterized by light and electron microscopy. Phylogenetic analysis was performed using 16S rRNA gene sequences and amplified ribosomal DNA restriction analysis (ARDRA). Fifty-six phylotypes were isolated and classified into 21 morphotypes and identified in 14 genera, some of them might be new species within these genera. Furthermore, according to phylogenetic analysis, there are three possible new genera in our collection. Miravalles and Las Lilas thermal springs are reservoirs of novel phylogeographic lineages of phototrophic microorganisms. This study is the first report of strains that belong to the genera Gloeocapsa, Stanieria, Microseira, Klisinema and Oculatella isolated from thermal springs and growing at temperatures above 50°C. We also obtained isolates assigned to Synechococcus, Leptolyngbya spp., and Fischerella, which are considered typical strains in these environments.
Collapse
Affiliation(s)
- Laura Brenes-Guillén
- Molecular and Biology Research Center, University of Costa Rica, San José, Costa Rica
| | | | - Saylen Morales
- Molecular and Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Marielos Mora-López
- Molecular and Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Ana Sittenfeld
- Molecular and Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Lorena Uribe-Lorío
- Molecular and Biology Research Center, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
9
|
Microbiota of the Therapeutic Euganean Thermal Muds with a Focus on the Main Cyanobacteria Species. Microorganisms 2020; 8:microorganisms8101590. [PMID: 33076380 PMCID: PMC7650686 DOI: 10.3390/microorganisms8101590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
The Euganean Thermal District has been known since Roman times for the therapeutic properties of peloids, obtained from natural clays that have undergone a traditional maturation process. This leads to the growth of a green microbial biofilm with Cyanobacteria and the target species Phormidium sp. ETS-05 as fundamental components for their ability to synthetize anti-inflammatory molecules. Currently, in-depth studies on the microbiota colonizing Euganean peloids, as in general on peloids utilized worldwide, are missing. This is the first characterization of the microbial community of Euganean thermal muds, also investigating the effects of environmental factors on its composition. We analysed 53 muds from 29 sites (Spas) using a polyphasic approach, finding a stable microbiota peculiar to the area. Differences among mud samples mainly depended on two parameters: water temperature and shading of mud maturation plants. In the range 37-47 °C and in the case of irradiance attenuation due to the presence of protective roofs, a statistically significant higher mud Chl a content was detected. Moreover, in these conditions, a characteristic microbial and Cyanobacteria population composition dominated by Phormidium sp. ETS-05 was observed. We also obtained the complete genome sequence of this target species using a mixed sequencing approach based on Illumina and Nanopore sequencing.
Collapse
|
10
|
Exopolysaccharides from Cyanobacteria: Strategies for Bioprocess Development. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113763] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyanobacteria have the potential to become an industrially sustainable source of functional biopolymers. Their exopolysaccharides (EPS) harbor chemical complexity, which predicts bioactive potential. Although some are reported to excrete conspicuous amounts of polysaccharides, others are still to be discovered. The production of this strain-specific trait can promote carbon neutrality while its intrinsic location can potentially reduce downstream processing costs. To develop an EPS cyanobacterial bioprocess (Cyano-EPS) three steps were explored: the selection of the cyanobacterial host; optimization of production parameters; downstream processing. Studying the production parameters allow us to understand and optimize their response in terms of growth and EPS production though many times it was found divergent. Although the extraction of EPS can be achieved with a certain degree of simplicity, the purification and isolation steps demand experience. In this review, we gathered relevant research on EPS with a focus on bioprocess development. Challenges and strategies to overcome possible drawbacks are highlighted.
Collapse
|
11
|
Zampieri RM, Adessi A, Caldara F, Codato A, Furlan M, Rampazzo C, De Philippis R, La Rocca N, Dalla Valle L. Anti-Inflammatory Activity of Exopolysaccharides from Phormidium sp. ETS05, the Most Abundant Cyanobacterium of the Therapeutic Euganean Thermal Muds, Using the Zebrafish Model. Biomolecules 2020; 10:biom10040582. [PMID: 32290043 PMCID: PMC7226003 DOI: 10.3390/biom10040582] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
The Euganean Thermal District (Italy) represents the oldest and largest thermal center in Europe, and its therapeutic mud is considered a unique product whose beneficial effects have been documented since Ancient Roman times. Mud properties depend on the heat and electrolytes of the thermal water, as well as on the bioactive molecules produced by its biotic component, mainly represented by cyanobacteria. The investigation of the healing effects of compounds produced by the Euganean cyanobacteria represents an important goal for scientific validation of Euganean mud therapies and for the discovering of new health beneficial biomolecules. In this work, we evaluated the therapeutic potential of exopolysaccharides (EPS) produced by Phormidium sp. ETS05, the most abundant cyanobacterium of the Euganean mud. Specifically, Phormidium EPS resulted in exerting anti-inflammatory and pro-resolution activities in chemical and injury-induced zebrafish inflammation models as demonstrated using specific transgenic zebrafish lines and morphometric and expression analyses. Moreover, in vivo and in vitro tests showed no toxicity at all for the EPS concentrations tested. The results suggest that these EPS, with their combined anti-inflammatory and pro-resolution activities, could be one of the most important therapeutic molecules present in the Euganean mud and confirm the potential of these treatments for chronic inflammatory disease recovery.
Collapse
Affiliation(s)
- Raffaella Margherita Zampieri
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (R.M.Z.); (A.C.); (M.F.); (C.R.)
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via Maragliano 77, 50144 Firenze, Italy; (A.A.); (R.D.P.)
| | - Fabrizio Caldara
- Pietro d’Abano Thermal Studies Center, Via Jappelli 5, Abano Terme, 35031 Padova, Italy;
| | - Alessia Codato
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (R.M.Z.); (A.C.); (M.F.); (C.R.)
| | - Mattia Furlan
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (R.M.Z.); (A.C.); (M.F.); (C.R.)
| | - Chiara Rampazzo
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (R.M.Z.); (A.C.); (M.F.); (C.R.)
| | - Roberto De Philippis
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via Maragliano 77, 50144 Firenze, Italy; (A.A.); (R.D.P.)
| | - Nicoletta La Rocca
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (R.M.Z.); (A.C.); (M.F.); (C.R.)
- Correspondence: (N.L.R.); (L.D.V.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (R.M.Z.); (A.C.); (M.F.); (C.R.)
- Correspondence: (N.L.R.); (L.D.V.)
| |
Collapse
|
12
|
Preparation of Calcipotriol Emulsion Using Bacterial Exopolysaccharides as Emulsifier for Percutaneous Treatment of Psoriasis Vulgaris. Int J Mol Sci 2019; 21:ijms21010077. [PMID: 31861934 PMCID: PMC6982318 DOI: 10.3390/ijms21010077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/08/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
An exopolysaccharides/calcipotriol (EPS/CPT) emulsion was prepared using bacterial EPS as emulsifier, sunflower oil as an oil phase and CPT as the loaded drug, and the effect of this emulsion on psoriasis vulgaris treatment was evaluated. An EPS composed of mannose (70.56%) and glucose (29.44%) was obtained from the marine mangrove bacteria Bacillus amyloliquefaciens ZWJ (Zhu Wenjing) strain. The EPS has significant emulsifying activity at the concentration of 1.5%. The prepared EPS/CPT emulsion has small and stable particle size, with a drug content of 0.00492%, and good spreading properties. The in vitro drug release results revealed that the emulsion showed a certain sustained release effect. In vitro and in vivo animal experiments show that the EPS/CPT emulsion can effectively treat psoriasis vulgaris by increasing the accumulation of CPT in psoriatic skin lesions and reducing the levels of inflammatory cells and inflammatory factors (TNF and IL6). Additionally, it has a certain effect on reducing the side effects associated with CPT. This study lays a foundation for the research of EPS in the topical application of medical materials and treatment of psoriasis.
Collapse
|
13
|
Pereira SB, Sousa A, Santos M, Araújo M, Serôdio F, Granja P, Tamagnini P. Strategies to Obtain Designer Polymers Based on Cyanobacterial Extracellular Polymeric Substances (EPS). Int J Mol Sci 2019; 20:E5693. [PMID: 31739392 PMCID: PMC6888056 DOI: 10.3390/ijms20225693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023] Open
Abstract
Biopolymers derived from polysaccharides are a sustainable and environmentally friendly alternative to the synthetic counterparts available in the market. Due to their distinctive properties, the cyanobacterial extracellular polymeric substances (EPS), mainly composed of heteropolysaccharides, emerge as a valid alternative to address several biotechnological and biomedical challenges. Nevertheless, biotechnological/biomedical applications based on cyanobacterial EPS have only recently started to emerge. For the successful exploitation of cyanobacterial EPS, it is important to strategically design the polymers, either by genetic engineering of the producing strains or by chemical modification of the polymers. This requires a better understanding of the EPS biosynthetic pathways and their relationship with central metabolism, as well as to exploit the available polymer functionalization chemistries. Considering all this, we provide an overview of the characteristics and biological activities of cyanobacterial EPS, discuss the challenges and opportunities to improve the amount and/or characteristics of the polymers, and report the most relevant advances on the use of cyanobacterial EPS as scaffolds, coatings, and vehicles for drug delivery.
Collapse
Affiliation(s)
- Sara B. Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aureliana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Marina Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Filipa Serôdio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
14
|
Flores C, Lima RT, Adessi A, Sousa A, Pereira SB, Granja PL, De Philippis R, Soares P, Tamagnini P. Characterization and antitumor activity of the extracellular carbohydrate polymer from the cyanobacterium Synechocystis ΔsigF mutant. Int J Biol Macromol 2019; 136:1219-1227. [PMID: 31233798 DOI: 10.1016/j.ijbiomac.2019.06.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 12/23/2022]
Abstract
Cyanobacterial extracellular carbohydrate polymers are particularly attractive for biotechnological applications. Previously, we determined the monosaccharidic composition of the polymer of a Synechocystis ΔsigF overproducing mutant. Here, we further characterized this polymer, demonstrated that it is possible to recover it in high yields, and successfully use it for biomedical research. This amorphous polymer is formed by a mesh of fibrils/lamellar structures with high porosity, is constituted by high molecular mass fractions, is highly sulfated and displays low viscosity, even in highly concentrated aqueous solutions. FTIR analysis confirmed the presence of several functional groups. We demonstrated that the ΔsigF polymer has strong biological activity, decreasing the viability of melanoma, thyroid and ovary carcinoma cells by inducing high levels of apoptosis, through p53 and caspase-3 activation. Therefore, the ΔsigF Synechocystis mutant is a promising platform for the sustainable production of biological active carbohydrate polymer(s) with the desired characteristics for biomedical applications.
Collapse
Affiliation(s)
- Carlos Flores
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Raquel T Lima
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FMUP - Faculty of Medicine, Department of Pathology, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Alessandra Adessi
- DAGRI - Department of Agriculture, Food, Environment and Forestry, University of Florence, Via Maragliano 77, 50144 Firenze, Italy.
| | - Aureliana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Sara B Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Pedro L Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Roberto De Philippis
- DAGRI - Department of Agriculture, Food, Environment and Forestry, University of Florence, Via Maragliano 77, 50144 Firenze, Italy.
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FMUP - Faculty of Medicine, Department of Pathology, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.
| |
Collapse
|
15
|
Gudmundsdottir AB, Brynjolfsdottir A, Olafsdottir ES, Hardardottir I, Freysdottir J. Exopolysaccharides from Cyanobacterium aponinum induce a regulatory dendritic cell phenotype and inhibit SYK and CLEC7A expression in dendritic cells, T cells and keratinocytes. Int Immunopharmacol 2019; 69:328-336. [PMID: 30772700 DOI: 10.1016/j.intimp.2019.01.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
Abstract
Regular bathing in the Blue Lagoon has beneficial effects on psoriasis. Previously, we showed that exopolysaccharides (EPS-Ca) secreted by Cyanobacterium aponinum, a dominating organism in the Blue Lagoon, increased IL-10 secretion by human dendritic cells (DCs). In addition, co-culturing allogeneic CD4+ T cells with DCs matured in the presence of EPS-Ca increased differentiation of T cells into T regulatory cells at the cost of the disease inducing Th17 cells. In the present study, EPS-Ca increased the proportion of DCs expressing CD141, a surface molecule linked to regulatory DCs, and the CD141+ cells secreted more IL-10 than the CD141- cells. EPS-Ca decreased T cell secretion of IL-17, IL-13 and IL-10 and the proportion of T cells expressing the activation marker CD69 that has also been linked to lymphocyte retention. In addition, EPS-Ca reduced keratinocyte secretion of CCL20 and CXCL10, chemokines implicated in recruitment of inflammatory cells. EPS-Ca decreased DC expression of Dectin-1/CLEC7A and SYK, keratinocyte expression of CLEC7A, SYK and CAMP (the gene for LL37), and T cell expression of phosphorylated Zap70. These results indicate that EPS-Ca may induce a regulatory phenotype of DCs, T cells that are less active/inflammatory and less prone to being retained in the skin, and keratinocytes that induce less recruitment of inflammatory cells to the skin and that these effects may be mediated by the effects of EPS-Ca on CLEC7A and SYK. Overall the results indicate that EPS-Ca may be involved in the beneficial effects psoriasis patients experience when bathing in the Blue Lagoon.
Collapse
Affiliation(s)
- Asa B Gudmundsdottir
- Faculty of Medicine, University of Iceland, Biomedical Center, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland; Department of Immunology, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland; Center for Rheumatology Research, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland
| | | | - Elin Soffia Olafsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Ingibjorg Hardardottir
- Faculty of Medicine, University of Iceland, Biomedical Center, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland; Department of Immunology, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland
| | - Jona Freysdottir
- Faculty of Medicine, University of Iceland, Biomedical Center, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland; Department of Immunology, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland; Center for Rheumatology Research, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland.
| |
Collapse
|
16
|
Georgescu SR, Tampa M, Caruntu C, Sarbu MI, Mitran CI, Mitran MI, Matei C, Constantin C, Neagu M. Advances in Understanding the Immunological Pathways in Psoriasis. Int J Mol Sci 2019; 20:ijms20030739. [PMID: 30744173 PMCID: PMC6387410 DOI: 10.3390/ijms20030739] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2022] Open
Abstract
Psoriasis vulgaris is a chronic, immune-mediated, inflammatory, polygenic skin disorder affecting approximately 2% of the population. It has a great impact on quality of life; patients often experience depression, anxiety, stigma as well as suicidal behavior. Even though psoriasis is one of the most studied dermatological conditions, the pathogenesis of the disease is still not completely elucidated. The complex interactions between keratinocytes, dendritic cells, T-lymphocytes, neutrophils and mast cells are responsible for the histopathological changes seen in psoriasis. The pathogenic model leading to the formation of psoriatic plaques has however evolved a lot over the years. There is now enough evidence to support the role of interleukin (IL) -23, IL-17, IL-22, T helper (Th) -17 cells, Th-22 cells, T regulatory cells, transforming growth factor (TGF)-β1 and IL-10 in the pathogenesis of the disease. Moreover, several inflammatory and anti-inflammatory molecules are currently being investigated, some of them showing promising results. The aim of this paper is to look over the most recent advances in the immunological pathways involved in the pathogenesis of psoriasis vulgaris.
Collapse
Affiliation(s)
- Simona-Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Victor Babes Hospital of Infectious Diseases, 030303 Bucharest, Romania.
| | - Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Victor Babes Hospital of Infectious Diseases, 030303 Bucharest, Romania.
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania.
| | - Maria-Isabela Sarbu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Cristina-Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Madalina-Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Carolina Constantin
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania.
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania.
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania.
| |
Collapse
|
17
|
Bacterial diversity of the outflows of a Polichnitos (Lesvos, Greece) hot spring, laboratory studies of a Cyanobacterium sp. strain and potential medical applications. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1293-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
18
|
Poyato C, Thomsen BR, Hermund DB, Ansorena D, Astiasarán I, Jónsdóttir R, Kristinsson HG, Jacobsen C. Antioxidant effect of water and acetone extracts of
Fucus vesiculosus
on oxidative stability of skin care emulsions. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Candelaria Poyato
- Faculty of Pharmacy, Department of Nutrition, Food Science and PhysiologyUniversity of NavarraPamplonaSpain
- IDISNAInstituto Biosanitario de NavarraPamplonaSpain
| | | | - Ditte B. Hermund
- Division of Food Technology, National Food InstituteTechnical University of DenmarkLynbyDenmark
| | - Diana Ansorena
- Faculty of Pharmacy, Department of Nutrition, Food Science and PhysiologyUniversity of NavarraPamplonaSpain
- IDISNAInstituto Biosanitario de NavarraPamplonaSpain
| | - Iciar Astiasarán
- Faculty of Pharmacy, Department of Nutrition, Food Science and PhysiologyUniversity of NavarraPamplonaSpain
- IDISNAInstituto Biosanitario de NavarraPamplonaSpain
| | | | | | - Charlotte Jacobsen
- Division of Food Technology, National Food InstituteTechnical University of DenmarkLynbyDenmark
| |
Collapse
|