1
|
Li F, Song B, Zhou WF, Chu LJ. Toll-Like Receptors 7/8: A Paradigm for the Manipulation of Immunologic Reactions for Immunotherapy. Viral Immunol 2023; 36:564-578. [PMID: 37751284 DOI: 10.1089/vim.2023.0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The innate immune system recognizes conserved features of viral and microbial pathogens through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are one type of PRR used by the innate immune system to mediate the secretion of proinflammatory cytokines and promote innate and adaptive immune responses. TLR family members TLR7 and TLR8 (referred to as TLR7/8 from herein) are endosomal transmembrane receptors that recognize purine-rich single-stranded RNA (ssRNA) and bacterial DNA, eliciting an immunologic reaction to pathogens. TLR7/8 were discovered to mediate the secretion of proinflammatory cytokines by activating immune cells. In addition, accumulating evidence has indicated that TLR7/8 may be closely related to numerous immune-mediated disorders, specifically several types of cancer, autoimmune disease, and viral disease. TLR7/8 agonists and antagonists, which are used as drugs or adjuvants, have been identified in preclinical studies and clinical trials as promising immune stimulators for the immunotherapy of these immune-mediated disorders. These results provided reasoning to further explore immunotherapy for the treatment of immune-mediated disorders. Nevertheless, numerous needs remain unmet, and the therapeutic effects of TLR7/8 agonists and antagonists are poor and exert strong immune-related toxicities. The present review aimed to provide an overview of the TLR family members, particularly TLR7/8, and address the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders. The aim of the work is to discuss the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders.
Collapse
Affiliation(s)
- Fang Li
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Biao Song
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei-Feng Zhou
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Li-Jin Chu
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| |
Collapse
|
2
|
Huang L, Ge X, Liu Y, Li H, Zhang Z. The Role of Toll-like Receptor Agonists and Their Nanomedicines for Tumor Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14061228. [PMID: 35745800 PMCID: PMC9230510 DOI: 10.3390/pharmaceutics14061228] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 01/11/2023] Open
Abstract
Toll-like receptors (TLRs) are a class of pattern recognition receptors that play a critical role in innate and adaptive immunity. Toll-like receptor agonists (TLRa) as vaccine adjuvant candidates have become one of the recent research hotspots in the cancer immunomodulatory field. Nevertheless, numerous current systemic deliveries of TLRa are inappropriate for clinical adoption due to their low efficiency and systemic adverse reactions. TLRa-loaded nanoparticles are capable of ameliorating the risk of immune-related toxicity and of strengthening tumor suppression and eradication. Herein, we first briefly depict the patterns of TLRa, followed by the mechanism of agonists at those targets. Second, we summarize the emerging applications of TLRa-loaded nanomedicines as state-of-the-art strategies to advance cancer immunotherapy. Additionally, we outline perspectives related to the development of nanomedicine-based TLRa combined with other therapeutic modalities for malignancies immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Hui Li
- Correspondence: (H.L.); (Z.Z.)
| | | |
Collapse
|
3
|
Nouri-Shirazi M, Guinet E. TLR3 and TLR7/8 agonists improve immunization outcome in nicotine exposed mice through different mechanisms. Immunol Lett 2022; 246:18-26. [DOI: 10.1016/j.imlet.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022]
|
4
|
Pallazola AM, Rao JX, Mengistu DT, Morcos MS, Toma MS, Stolberg VR, Tretyakova A, McCloskey L, Curtis JL, Freeman CM. Human lung cDC1 drive increased perforin-mediated NK cytotoxicity in Chronic Obstructive Pulmonary Disease. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1183-L1193. [PMID: 34704847 PMCID: PMC8715029 DOI: 10.1152/ajplung.00322.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In chronic obstructive pulmonary disease (COPD), lung natural killer cells (NKs) lyse autologous lung epithelial cells in vitro, but underlying mechanisms and their relationship to epithelial cell apoptosis in vivo are undefined. Although this cytolytic capacity of lung NKs depends on priming by dendritic cells (DC), whether priming correlates with DC maturation or is limited to a specific DC subset are also unknown. We recruited ever-smokers (≥10 pack-years) (n=96) undergoing clinically-indicated lung resections. We analyzed lung NKs for cytotoxic molecule transcripts and for cytotoxicity, which we correlated with in situ detection of activated Caspase-3/7+ airway epithelial cells. To investigate DC priming, we measured lung DC expression of CCR2, CCR7, and CX3CR1, and co-cultured peripheral blood NKs with autologous lung DC, either matured using LPS (non-obstructed smokers) or separated into conventional DC type-1 (cDC1) versus cDC type-2 (cDC2) (COPD). Lung NKs in COPD expressed more perforin (p<0.02) and granzyme B (p<0.03) transcripts; inhibiting perforin blocked in vitro killing by lung NKs. Cytotoxicity in vitro correlated significantly (Sr=0.68, p=0.0043) with numbers of apoptotic epithelial cells per airway. In non-obstructed smokers, LPS-induced maturation enhanced DC-mediated priming of blood NKs, reflected by greater epithelial cell death. Although CCR7 expression was greater in COPD in both cDC1 (p<0.03) and cDC2 (p=0.009), only lung cDC1 primed NK killing. Thus, rather than being intrinsic to those with COPD, NK priming is a capacity of human lung DC that is inducible by recognition of bacterial (and possibly other) danger signals and restricted to the cDC1 subset.
Collapse
Affiliation(s)
- Alexander M Pallazola
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States
| | - Jessica X Rao
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States
| | - Dawit T Mengistu
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Maria S Morcos
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States
| | - Mariam S Toma
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States
| | - Valerie R Stolberg
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Alexandra Tretyakova
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States
| | - Lisa McCloskey
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States
| | - Jeffrey L Curtis
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States.,Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States.,Pulmonary and Critical Care Medicine Section, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Christine M Freeman
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States.,Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States.,Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
The impact of immuno-aging on SARS-CoV-2 vaccine development. GeroScience 2021; 43:31-51. [PMID: 33569701 PMCID: PMC7875765 DOI: 10.1007/s11357-021-00323-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
The SARS-CoV-2 pandemic has almost 56 million confirmed cases resulting in over 1.3 million deaths as of November 2020. This infection has proved more deadly to older adults (those >65 years of age) and those with immunocompromising conditions. The worldwide population aged 65 years and older is increasing, and the total number of aged individuals will outnumber those younger than 65 years by the year 2050. Aging is associated with a decline in immune function and chronic activation of inflammation that contributes to enhanced viral susceptibility and reduced responses to vaccination. Here we briefly review the pathogenicity of the virus, epidemiology and clinical response, and the underlying mechanisms of human aging in improving vaccination. We review current methods to improve vaccination in the older adults using novel vaccine platforms and adjuvant systems. We conclude by summarizing the existing clinical trials for a SARS-CoV-2 vaccine and discussing how to address the unique challenges for vaccine development presented with an aging immune system.
Collapse
|
6
|
Janitzek CM, Carlsen PHR, Thrane S, Khanna VM, Jakob V, Barnier-Quer C, Collin N, Theander TG, Salanti A, Nielsen MA, Sander AF. The Immunogenicity of Capsid-Like Particle Vaccines in Combination with Different Adjuvants Using Different Routes of Administration. Vaccines (Basel) 2021; 9:vaccines9020131. [PMID: 33562114 PMCID: PMC7915698 DOI: 10.3390/vaccines9020131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Capsid-like particle (CLP) displays can be used to enhance the immunogenicity of vaccine antigens, but a better understanding of how CLP vaccines are best formulated and delivered is needed. This study compared the humoral immune responses in mice elicited against two different vaccine antigens (a bacterial protein and a viral peptide) delivered on an AP205 CLP platform using six different adjuvant formulations. In comparison to antibody responses obtained after immunization with the unadjuvanted CLP vaccine, three of the adjuvant systems (neutral liposomes/monophosphoryl lipid A/quillaja saponaria 21, squalene-in-water emulsion, and monophosphoryl lipid A) caused significantly increased antibody levels, whereas formulation with the three other adjuvants (aluminum hydroxide, cationic liposomes, and cationic microparticles) resulted in similar or even decreased antibody responses. When delivering the soluble bacterial protein in a squalene-in-water emulsion, 4-log lower IgG levels were obtained compared to when the protein was delivered on CLPs without the adjuvant. The AP205 CLP platform promoted induction of both IgG1 and IgG2 subclasses, which could be skewed towards a higher production of IgG1 (aluminum hydroxide). Compared to other routes, intramuscular administration elicited the highest IgG levels. These results indicate that the effect of the external adjuvant does not always synergize with the adjuvant effect of the CLP display, which underscores the need for empirical testing of different extrinsic adjuvants.
Collapse
Affiliation(s)
- Christoph M. Janitzek
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Philip H. R. Carlsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Susan Thrane
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Vijansh M. Khanna
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Virginie Jakob
- Vaccine Formulation Institute, Plan-Les-Ouates, 1228 Geneva, Switzerland;
| | - Christophe Barnier-Quer
- Vaccine Formulation Laboratory, University of Lausanne, 1015 Lausanne, Switzerland; (C.B.-Q.); (N.C.)
| | - Nicolas Collin
- Vaccine Formulation Laboratory, University of Lausanne, 1015 Lausanne, Switzerland; (C.B.-Q.); (N.C.)
| | - Thor G. Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Morten A. Nielsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Adam F. Sander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-30111529
| |
Collapse
|
7
|
Root-Bernstein R. Synergistic Activation of Toll-Like and NOD Receptors by Complementary Antigens as Facilitators of Autoimmune Disease: Review, Model and Novel Predictions. Int J Mol Sci 2020; 21:ijms21134645. [PMID: 32629865 PMCID: PMC7369971 DOI: 10.3390/ijms21134645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/29/2022] Open
Abstract
Persistent activation of toll-like receptors (TLR) and nucleotide-binding oligomerization domain-containing proteins (NOD) in the innate immune system is one necessary driver of autoimmune disease (AD), but its mechanism remains obscure. This study compares and contrasts TLR and NOD activation profiles for four AD (autoimmune myocarditis, myasthenia gravis, multiple sclerosis and rheumatoid arthritis) and their animal models. The failure of current AD theories to explain the disparate TLR/NOD profiles in AD is reviewed and a novel model is presented that explains innate immune support of persistent chronic inflammation in terms of unique combinations of complementary AD-specific antigens stimulating synergistic TLRs and/or NODs. The potential explanatory power of the model is explored through testable, novel predictions concerning TLR- and NOD-related AD animal models and therapies.
Collapse
|
8
|
RNA Sensing of Mycobacterium tuberculosis and Its Impact on TB Vaccination Strategies. Vaccines (Basel) 2020; 8:vaccines8010067. [PMID: 32033104 PMCID: PMC7158685 DOI: 10.3390/vaccines8010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is still an important global threat and although the causing organism has been discovered long ago, effective prevention strategies are lacking. Mycobacterium tuberculosis (MTB) is a unique pathogen with a complex host interaction. Understanding the immune responses upon infection with MTB is crucial for the development of new vaccination strategies and therapeutic targets for TB. Recently, it has been proposed that sensing bacterial nucleic acid in antigen-presenting cells via intracellular pattern recognition receptors (PRRs) is a central mechanism for initiating an effective host immune response. Here, we summarize key findings of the impact of mycobacterial RNA sensing for innate and adaptive host immunity after MTB infection, with emphasis on endosomal toll-like receptors (TLRs) and cytosolic sensors such as NLRP3 and RLRs, modulating T-cell differentiation through IL-12, IL-21, and type I interferons. Ultimately, these immunological pathways may impact immune memory and TB vaccine efficacy. The novel findings described here may change our current understanding of the host response to MTB and potentially impact clinical research, as well as future vaccination design. In this review, the current state of the art is summarized, and an outlook is given on how progress can be made.
Collapse
|
9
|
Zhao R, Qiao J, Zhang X, Zhao Y, Meng X, Sun D, Peng X. Toll-Like Receptor-Mediated Activation of CD39 Internalization in BMDCs Leads to Extracellular ATP Accumulation and Facilitates P2X7 Receptor Activation. Front Immunol 2019; 10:2524. [PMID: 31736956 PMCID: PMC6834529 DOI: 10.3389/fimmu.2019.02524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) trigger innate immune responses through their recognition of conserved molecular ligands of either endogenous or microbial origin. Although activation, function, and signaling pathways of TLRs were already well-studied, their precise function in specific cell types, especially innate immune cells, needs to be further clarified. In this study, we showed that when significantly decreased amounts of membrane CD39, an adenosine triphosphate (ATP)-degrading enzyme, were detected in lipopolysaccharide (LPS)-treated bone marrow-derived dendritic cells (BMDCs), Cd39 mRNA expression, and whole-cell CD39 expression were at the same levels as those in untreated BMDCs. Further experiments demonstrated that the downregulation of membrane CD39 expression in LPS-treated BMDCs was mediated by endocytosis, leading to membrane-exposed CD39 downregulation, which was positively associated with decreased enzymatic activity in ATP metabolism and increased extracellular ATP accumulation. The accumulated ATP promoted intracellular calcium accumulation and IL-1β production in BMDCs through P2X7 signaling activation. Further research revealed that not only LPS but also other TLR ligands, excluding polyI:C, induced CD39 internalization in BMDCs and that the MyD88 pathway was critical in this process. The results suggested that the activation of CD39 internalization in DCs induced by a TLR ligand caused increased ATP accumulation, leading to P2X7 receptor activation that mediated a proinflammatory effect. Considering the strong modulatory effect of extracellular ATP accumulation on the immune response and inflammation, the manipulation of membrane CD39 expression on DCs may have implications on the regulation and treatment of inflammatory responses.
Collapse
Affiliation(s)
- Ronglan Zhao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Jinjuan Qiao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Xumei Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yansong Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiangying Meng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Deming Sun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Doheny Eye Institute, Los Angeles, CA, United States
| | - Xiaoxiang Peng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| |
Collapse
|
10
|
Tran TH, Tran TTP, Truong DH, Nguyen HT, Pham TT, Yong CS, Kim JO. Toll-like receptor-targeted particles: A paradigm to manipulate the tumor microenvironment for cancer immunotherapy. Acta Biomater 2019; 94:82-96. [PMID: 31129358 DOI: 10.1016/j.actbio.2019.05.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Abstract
The expression of Toll-like receptors (TLRs) on antigen presenting cells, especially dendritic cells, offers several sensitive mediators to trigger an adaptive immune response, which potentially can be exploited to detect and eliminate pathogenic objects. Consequently, numerous agonists that target TLRs are being used clinically either alone or in combination with other therapies to strengthen the immune system in the battle against cancer. This review summarizes the roles of TLRs in tumor biology, and focuses on relevant TLR-dependent antitumor pathways and the conjugation of TLR agonists as adjuvants to nano- and micro-particles for boosting responses leading to cancer suppression and eradication. STATEMENT OF SIGNIFICANCE: Toll-like receptors (TLRs), which express on antigen presenting cells, such as dendritic cells and macrophages, play an important role in sensing pathogenic agents and inducing adaptive immunity. As a result, several TLR agonists have been investigating as therapeutic agents individually or in combination with other treatment modalities for cancer treatment through boosting the immune system. This review aims to focus on the roles of TLRs in cancer and TLR-dependent antitumor pathways as well as the use of different nano- or micro-particles bearing TLR agonists for tumor inhibition and elimination.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Thi Thu Phuong Tran
- The Institute of Molecular Genetics of Montpellier, CNRS, Montpellier, France
| | - Duy Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Tung Thanh Pham
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
11
|
Żeromski J, Kaczmarek M, Boruczkowski M, Kierepa A, Kowala-Piaskowska A, Mozer-Lisewska I. Significance and Role of Pattern Recognition Receptors in Malignancy. Arch Immunol Ther Exp (Warsz) 2019; 67:133-141. [PMID: 30976817 PMCID: PMC6509067 DOI: 10.1007/s00005-019-00540-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Pattern recognition receptors (PRRs) are members of innate immunity, playing pivotal role in several immunological reactions. They are known to act as a bridge between innate and adaptive immunity. They are expressed on several normal cell types but have been shown with increasing frequency on/in tumor cells. Significance of this phenomenon is largely unknown, but it has been shown by several authors that they, predominantly Toll-like receptors (TLRs), act in the interest of tumor, by promotion of its growth and spreading. Preparation of artificial of TLRs ligands (agonists) paved the way to use them as a therapeutic agents for cancer, so far in a limited scale. Agonists may be combined with conventional anti-cancer modalities with apparently promising results. PRRs recognizing nucleic acids such as RIG-1 like receptors (sensing RNA) and STING (sensing DNA) constitute a novel promising approach for cancer immunotherapy.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- DNA/immunology
- DNA/metabolism
- Disease Models, Animal
- Humans
- Immunity, Innate/drug effects
- Immunotherapy/methods
- Ligands
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/pathology
- RNA/immunology
- RNA/metabolism
- Receptors, Pattern Recognition/agonists
- Receptors, Pattern Recognition/immunology
- Receptors, Pattern Recognition/metabolism
Collapse
Affiliation(s)
- Jan Żeromski
- Department of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland.
| | - Mariusz Kaczmarek
- Department of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Maciej Boruczkowski
- Department of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Agata Kierepa
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Arleta Kowala-Piaskowska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Iwona Mozer-Lisewska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| |
Collapse
|
12
|
Saxena M, Sabado RL, La Mar M, Mohri H, Salazar AM, Dong H, Correa Da Rosa J, Markowitz M, Bhardwaj N, Miller E. Poly-ICLC, a TLR3 Agonist, Induces Transient Innate Immune Responses in Patients With Treated HIV-Infection: A Randomized Double-Blinded Placebo Controlled Trial. Front Immunol 2019; 10:725. [PMID: 31024557 PMCID: PMC6467168 DOI: 10.3389/fimmu.2019.00725] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/18/2019] [Indexed: 01/31/2023] Open
Abstract
Objective: Toll-like receptor-3 agonist Poly-ICLC has been known to activate immune cells and induce HIV replication in pre-clinical experiments. In this study we investigated if Poly-ICLC could be used for disrupting HIV latency while simultaneously enhancing innate immune responses. Design: This was a randomized, placebo-controlled, double-blinded trial in aviremic, cART-treated HIV-infected subjects. Participants (n = 15) were randomized 3:1 to receive two consecutive daily doses of Poly-ICLC (1.4 mg subcutaneously) vs. placebo. Subjects were observed for adverse events, immune activation, and viral replication. Methods: Besides primary outcomes of safety and tolerability, several longitudinal immune parameters were evaluated including immune cell phenotype and function via flowcytometry, ELISA, and transcriptional profiling. PCR assays for plasma HIV-1 RNA, CD4+ T cell-associated HIV-1 RNA, and proviral DNA were performed to measure HIV reservoirs and latency. Results: Poly-ICLC was overall safe and well-tolerated. Poly-ICLC-related adverse events were Grade 1/2, with the exception of one Grade 3 neutropenia which was short-lived. Mild Injection site reactions were observed in nearly all participants in the Poly-ICLC arm. Transcriptional analyses revealed upregulation of innate immune pathways in PBMCs following Poly-ICLC treatment, including strong interferon signaling accompanied by transient increases in circulating IP-10 (CXCL10) levels. These responses generally peaked by 24–48 h after the first injection and returned to baseline by day 8. CD4+ T cell number and phenotype were unchanged, plasma viral control was maintained and no significant effect on HIV reservoirs was observed. Conclusions: These finding suggest that Poly-ICLC could be safely used for inducing transient innate immune responses in treated HIV+ subjects indicating promise as an adjuvant for HIV therapeutic vaccines. Trial Registration:www.ClinicalTrials.gov, identifier: NCT02071095.
Collapse
Affiliation(s)
- Mansi Saxena
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rachel L Sabado
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Melissa La Mar
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States
| | - Hiroshi Mohri
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States
| | | | - Hanqing Dong
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joel Correa Da Rosa
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States
| | - Nina Bhardwaj
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elizabeth Miller
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
13
|
Margolis N, Markovits E, Markel G. Reprogramming lymphocytes for the treatment of melanoma: From biology to therapy. Adv Drug Deliv Rev 2019; 141:104-124. [PMID: 31276707 DOI: 10.1016/j.addr.2019.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
This decade has introduced drastic changes in melanoma therapy, predominantly due to the materialization of the long promise of immunotherapy. Cytotoxic T cells are the chief component of the immune system, which are targeted by different strategies aimed to increase their capacity against melanoma cells. To this end, reprogramming of T cells occurs by T cell centered manipulation, targeting the immunosuppressive tumor microenvironment or altering the whole patient. These are enabled by delivery of small molecules, functional monoclonal antibodies, different subunit vaccines, as well as living lymphocytes, native or genetically engineered. Current FDA-approved therapies are focused on direct T cell manipulation, such as immune checkpoint inhibitors blocking CTLA-4 and/or PD-1, which paves the way for an effective immunotherapy backbone available for combination with other modalities. Here we review the biology and clinical developments that enable melanoma immunotherapy today and in the future.
Collapse
|
14
|
Zheng H, Liu L, Zhang H, Kan F, Wang S, Li Y, Tian H, Meng S. Dendritic cells pulsed with placental gp96 promote tumor-reactive immune responses. PLoS One 2019; 14:e0211490. [PMID: 30703157 PMCID: PMC6354997 DOI: 10.1371/journal.pone.0211490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Defining and loading of immunogenic and safe cancer antigens remain a major challenge for designing dendritic cell (DC)-based cancer vaccines. In this study, we defined a prototype strategy of using DC-based vaccines pulsed with placenta-derived heat shock protein gp96 to induces anti-tumor T cell responses. Placental gp96 was efficiently taken up by CD11c+ bone marrow-derived DCs (BMDCs) and resulted in moderate BMDC maturation. Splenocytes and cytotoxic T cells (CTLs) generated with mouse BMDCs pulsed with placental gp96 specifically lysed B16 melanoma and LLC lung carcinoma cells. In both transplantable melanoma and lung carcinoma mice models, immunization with placental gp96-stimulated BMDCs led to a significant decrease in tumor growth and mouse mortality with respect to mice treated with liver gp96-pulsed BMDCs or placental gp96 alone. This vaccine induced strong cross-reactive tumor-specific T cell responses. Our results revealed that DCs pulsed with placenta-derived gp96 represent an effective immunotherapy to induce tumor-reactive immune responses, possibly via loading DCs with its associated carcinoembryonic antigens.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/therapy
- Cells, Cultured
- Cytokines/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Female
- Immunotherapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/therapy
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Placenta/metabolism
- Pregnancy
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Huaguo Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lanlan Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Han Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Fangming Kan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yang Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Nouri-Shirazi M, Tamjidi S, Nourishirazi E, Guinet E. Combination of TLR8 and TLR4 agonists reduces the degrading effects of nicotine on DC-NK mediated effector T cell generation. Int Immunopharmacol 2018; 61:54-63. [PMID: 29803914 DOI: 10.1016/j.intimp.2018.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
The magnitude of immune responses to vaccination is a critical factor in determining protection from disease. It is known that cigarette smoke dampens the immune system and increases the risk of vaccine-preventable diseases. We reported that nicotine, the immunosuppressive component of cigarette smoke, disrupts the differentiation and functional properties of DC, which are pivotal in the initiation of immune response to vaccines. We also reported that TLR agonists act in synergy and boost DC maturation, DC-NK crosstalk and ultimately naïve T cell polarization into effector Th1 and Tc1 cells. Here, we investigated whether the combination of TLR agonists could diminish the degrading effects of nicotine on DC-NK mediated effector T cell generation. We found that none of TLR agonists, single or combined, were able to diminish completely the adverse effects of nicotine on DC. However, TLR3, TLR4, and TLR8 agonists acted as the most effective adjuvants to increase the expression levels of antigen-presenting, costimulatory molecules and production of cytokines by nicotine-exposed DC (nicDC). When combined, TLR3 + 8 and TLR4 + 8 synergistically optimized nicDC maturation and IFN-γ secretion from nicotine-exposed NK (nicNK) during co-cultures. Interestingly, in contrast to DC-NK-T, co-cultures of nicDC-nicNK-T treated with TLR3 + 8 or TLR4 + 8 agonists produced a similar frequency of effector memory Th1 and Tc1 cells. However, the effector cells from TLR4 + 8 followed by TLR3 + 8 treated nicDC-nicNK-T co-cultures produced significantly more IFN-γ when compared with aluminum salt treated co-culture. Our data suggest that addition of appropriate TLR agonists to vaccine formulation could potentially augment the immune response to vaccination in smokers.
Collapse
Affiliation(s)
- Mahyar Nouri-Shirazi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA.
| | - Saba Tamjidi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| | - Erika Nourishirazi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| | - Elisabeth Guinet
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| |
Collapse
|