• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4607197)   Today's Articles (8)   Subscriber (49373)
For: Zabel M, Tauber PA, Pickl WF. The making and function of CAR cells. Immunol Lett 2019;212:53-69. [PMID: 31181279 PMCID: PMC7058416 DOI: 10.1016/j.imlet.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022]

Graphical abstract

Graphic abstract for manuscript CCAS-D-20-00136 by Liu, D., et al., ‘The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy”. The various branches of evaluating cancer immunotherapy metaphorically represented as a Rubik’s cube. The development of a novel approach to predict the effectiveness of Chimeric Antigen Receptor (CAR)-modified cells by quantifying the quality of CAR IS will introduce a new parameter to the rapidly expanding field of cancer immunotherapy. Currently, no single parameter can predict the clinical outcome or efficacy of a specific type of CAR-modified cell. IS quality will serve as a quantifiable measure to evaluate CAR products and can be used in conjunction with other conventional parameters to form a composite clinical predictor. Much like a Rubik’s cube has countless configurations, several methods and combinations of clinical metrics have arisen for evaluating the ability of a given immunotherapeutic strategy to treat cancer. The quality of IS depicting cancer immunotherapy is metaphorically expressed as a Rubik’s cube. Each face/color represents one aspect of cancer therapy. Each grid in one face indicates one factor within that aspect of cancer therapy. For example, the green color represents the tumor microenvironment, and one out of the nine grids in the green color indicates suppressor cells (suppressors in green). Changes in one factor may completely alter the entire strategy of cancer therapy. However, the quality of IS (illuminated center red grid) makes the effectiveness of CAR immunotherapy predictable.

Collapse
Number Cited by Other Article(s)
1
Li S, Wang H, Guo N, Su B, Lambotte O, Zhang T. Targeting the HIV reservoir: chimeric antigen receptor therapy for HIV cure. Chin Med J (Engl) 2023;136:2658-2667. [PMID: 37927030 PMCID: PMC10684145 DOI: 10.1097/cm9.0000000000002904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/07/2023]  Open
2
Qin H, Hu H, Liao X, Zhao P, He W, Su X, Sun J, Li Q. Antitumor effect of neoantigen-reactive T cells combined with PD1 inhibitor therapy in mouse lung cancer. J Cancer Res Clin Oncol 2023;149:7363-7378. [PMID: 36933035 PMCID: PMC10024025 DOI: 10.1007/s00432-023-04683-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/05/2023] [Indexed: 03/19/2023]
3
Moazzeni A, Kheirandish M, Khamisipour G, Rahbarizadeh F. Directed targeting of B-cell maturation antigen-specific CAR T cells by bioinformatic approaches: From in-silico to in-vitro. Immunobiology 2023;228:152376. [PMID: 37058845 DOI: 10.1016/j.imbio.2023.152376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 04/16/2023]
4
Huang Z, Chavda VP, Bezbaruah R, Dhamne H, Yang DH, Zhao HB. CAR T-Cell therapy for the management of mantle cell lymphoma. Mol Cancer 2023;22:67. [PMID: 37004047 PMCID: PMC10064560 DOI: 10.1186/s12943-023-01755-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/04/2023] [Indexed: 04/03/2023]  Open
5
Wang H, Pan W. Challenges of chimeric antigen receptor-T/natural killer cell therapy in the treatment of solid tumors: focus on colorectal cancer and evaluation of combination therapies. Mol Cell Biochem 2022;478:967-980. [PMID: 36190614 DOI: 10.1007/s11010-022-04568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
6
Tian C, Huang P, He Y, Wang L, Peng Z. [Effects of sodium iodide symporter co-expression on proliferation and cytotoxic activity of chimeric antigen receptor T cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022;42:1062-1068. [PMID: 35869771 DOI: 10.12122/j.issn.1673-4254.2022.07.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
7
Hauth F, Ho AY, Ferrone S, Duda DG. Radiotherapy to Enhance Chimeric Antigen Receptor T-Cell Therapeutic Efficacy in Solid Tumors: A Narrative Review. JAMA Oncol 2021;7:1051-1059. [PMID: 33885725 DOI: 10.1001/jamaoncol.2021.0168] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
8
Park CH. Making Potent CAR T Cells Using Genetic Engineering and Synergistic Agents. Cancers (Basel) 2021;13:cancers13133236. [PMID: 34209505 PMCID: PMC8269169 DOI: 10.3390/cancers13133236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022]  Open
9
Cortés-Hernández A, Alvarez-Salazar EK, Soldevila G. Chimeric Antigen Receptor (CAR) T Cell Therapy for Cancer. Challenges and Opportunities: An Overview. Methods Mol Biol 2021;2174:219-244. [PMID: 32813253 DOI: 10.1007/978-1-0716-0759-6_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
10
Radichev IA, Yoon J, Scott DW, Griffin K, Savinov AY. Towards antigen-specific Tregs for type 1 diabetes: Construction and functional assessment of pancreatic endocrine marker, HPi2-based chimeric antigen receptor. Cell Immunol 2020;358:104224. [PMID: 33068914 DOI: 10.1016/j.cellimm.2020.104224] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/05/2023]
11
Ataca Atilla P, McKenna MK, Tashiro H, Srinivasan M, Mo F, Watanabe N, Simons BW, McLean Stevens A, Redell MS, Heslop HE, Mamonkin M, Brenner MK, Atilla E. Modulating TNFα activity allows transgenic IL15-Expressing CLL-1 CAR T cells to safely eliminate acute myeloid leukemia. J Immunother Cancer 2020;8:jitc-2020-001229. [PMID: 32938629 PMCID: PMC7497527 DOI: 10.1136/jitc-2020-001229] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 12/12/2022]  Open
12
Liu D, Badeti S, Dotti G, Jiang JG, Wang H, Dermody J, Soteropoulos P, Streck D, Birge RB, Liu C. The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy. Cell Commun Signal 2020;18:134. [PMID: 32843053 PMCID: PMC7446110 DOI: 10.1186/s12964-020-00617-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022]  Open

Video abstract

  • Dongfang Liu
    • Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA. .,Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07101, USA.
  • Saiaditya Badeti
    • Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
  • Gianpietro Dotti
    • Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
  • Jie-Gen Jiang
    • Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
  • He Wang
    • Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
  • James Dermody
    • Institute of Genomic Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
  • Patricia Soteropoulos
    • Institute of Genomic Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
  • Deanna Streck
    • Institute of Genomic Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
  • Raymond B Birge
    • Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
  • Chen Liu
    • Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA.,Department of Pathology, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
Collapse
13
CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol 2020;21:e168-e178. [PMID: 32135120 DOI: 10.1016/s1470-2045(19)30823-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
14
PSMA-Directed CAR T Cells Combined with Low-Dose Docetaxel Treatment Induce Tumor Regression in a Prostate Cancer Xenograft Model. MOLECULAR THERAPY-ONCOLYTICS 2020;18:226-235. [PMID: 32728611 PMCID: PMC7372156 DOI: 10.1016/j.omto.2020.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023]
15
CARs: Beyond T Cells and T Cell-Derived Signaling Domains. Int J Mol Sci 2020;21:ijms21103525. [PMID: 32429316 PMCID: PMC7279007 DOI: 10.3390/ijms21103525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]  Open
16
Current Perspectives in Cancer Immunotherapy. Cancers (Basel) 2019;11:cancers11101472. [PMID: 31575023 PMCID: PMC6826426 DOI: 10.3390/cancers11101472] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022]  Open
17
Phasetime: Deep Learning Approach to Detect Nuclei in Time Lapse Phase Images. J Clin Med 2019;8:jcm8081159. [PMID: 31382487 PMCID: PMC6723258 DOI: 10.3390/jcm8081159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA