1
|
Nabiyi S, Sajedi F, Zamani A, Behzad M. Effect of sitagliptin therapy on IL-29 and its associated signaling molecules in patients with type 2 diabetes mellitus. Hum Immunol 2024; 85:110833. [PMID: 38897073 DOI: 10.1016/j.humimm.2024.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE The potential immunoregulatory capacity of sitagliptin on interleukin-29 (IL-29) and genes involved in its intracellular pathway were explored in type 2 diabetes mellitus (T2D). MATERIALS AND METHODS T2D patients treated with six months of sitagliptin (Sita+), patients not treated with sitagliptin (Sita-), and healthy controls (HCs) were included. IL-29 levels in the supernatant of stimulated mononuclear immune cells was determined with ELISA. The mRNA expression levels of IL-29, FOS, JUN, NF-AT2, NF-KB1, STAT1-2, IRF1, IRF3, IRF7, and IRF9 was assessed with real-time qPCR. RESULTS Increased protein and gene levels of IL-29 were observed in Sita- group compared to HCs (p < 0.001 and p = 0.026), while those levels were diminished in Sita+ group in comparison with Sita- group (p < 0.001 and p = 0.008). Expression of FOS, NF-AT2 and NF-KB1 in Sita- patients was higher than HCs (p = 0.018, p = 0.021, and p = 0.001). A significant decrease in expression of FOS, NF-AT2, and NF-KB1 was found in Sita+ group versus Sita- parients (p = 0.027, p = 0.003, and p = 0.002). In Sita- patients, IL-29 levels were correlated to glucose metabolism parameters including FPG and HbA1c (p < 0.05 for all). CONCLUSION Sitagliptin administration has a regulatory effect on the aggressive expression of IL-29 and its signaling molecules including FOS, NF-AT2 and NF-KB1 in T2D.
Collapse
Affiliation(s)
- Sina Nabiyi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Firozeh Sajedi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Behzad
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Sardarmelli Z, Sheikh V, Solgi G, Behzad M. Enhanced production of interleukin-29 and related genes are associated with T helper 1 cell parameters in patients with type 2 diabetes mellitus. Hum Immunol 2023; 84:235-240. [PMID: 36635158 DOI: 10.1016/j.humimm.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The production of interleukin (IL)-29 andthe genes related to IL-29 signaling pathway (STAT1, NF-κB, and NFATc1), and T helper (Th) 1 cells (T-bet, IFN-γ, TNF-α, and IL-2) were evaluated in type 2 diabetes mellitus (T2DM). Correlations between IL-29 and diabetes parameters, and between gene expression in IL-29 pathway and Th1 cells were also examined. MATERIALS AND METHODS 41 newly diagnosed patients with T2DM and 41 healthy controls were recruited. CD4+ T cells were purifed and the production of IL-29 in the supernatant of anti- CD3 and anti- CD28 activated Th cells was detected using ELISA. The expression of IL-29- and Th1- related genes was determined with real-time PCR. RESULTS The secretion of IL-29 and the expression levels of NF-κB, NFATc1, IFN-γ, and TNF-α in Th cells were seen to be increased in diabetes persons compared to controls. Positive connections between IL-29 with hemoglobin A1c (HbA1c) and fasting plasma glucose (FPG) were found in diabetes persons. IL-29 was positively correlated with NFATc1 and TNF-α. NFATc1 was positively related to TNF-α. CONCLUSION Abnormal expression levels of IL-29- and Th1- related genes are linked with T2DM pathogenesis. IL-29 may amplify the expression of Th1-specific genes especially TNF-α by upregulating NFATc1 expression.
Collapse
Affiliation(s)
- Zahra Sardarmelli
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vida Sheikh
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Behzad
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Hao N, Zhou Z, Zhang F, Li Y, Hu R, Zou J, Zheng R, Wang L, Xu L, Tan W, Li C, Wang F. Interleukin-29 Accelerates Vascular Calcification via JAK2/STAT3/BMP2 Signaling. J Am Heart Assoc 2022; 12:e027222. [PMID: 36537334 PMCID: PMC9973608 DOI: 10.1161/jaha.122.027222] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Vascular calcification (VC), associated with enhanced cardiovascular morbidity and mortality, is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells. Inflammation promotes VC initiation and progression. Interleukin (IL)-29, a newly discovered member of type III interferon, has recently been implicated in the pathogenesis of autoimmune diseases. Here we evaluated the role of IL-29 in the VC process and underlying inflammatory mechanisms. Methods and Results The mRNA expression of IL-29 was significantly increased and positively associated with an increase in BMP2 (bone morphogenetic protein 2) mRNA level in calcified carotid arteries from patients with coronary artery disease or chronic kidney disease. IL-29 and BMP2 proteins are colocalized in human calcified arteries. IL-29 binding to its specific receptor IL-28Rα (IL-28 receptor α) (IL-29/IL-28Rα) inhibited the proliferation of rat vascular smooth muscle cells without altering cell apoptosis or migration. IL-29 promoted the calcification of rat vascular smooth muscle cells and their osteogenic transdifferentiation in vitro as well as the rat aortic ring calcification ex vivo, induced by the calcification medium or osteogenic medium. The procalcification effect of IL-29 was reduced by pharmacological inhibition of IL-29/IL-28Rα binding as well as suppression of janus kinase 2/signal transducer and activator of transcription pathway activation, accompanied by decreased BMP2 expression in the cultured rat vascular smooth muscle cells. Conclusions These results suggest an important role of IL-29 in VC development, at least partly, via activating the janus kinase 2/signal transducer and activator of transcription 3 signaling. Inhibition of IL-29 or its specific receptor, IL-28Rα, may provide a novel strategy to reduce VC in patients with vascular diseases.
Collapse
Affiliation(s)
- Nannan Hao
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Zihao Zhou
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Feifei Zhang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yong Li
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Rui Hu
- Department of Vascular SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Junjie Zou
- Department of Vascular SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Rui Zheng
- Department of Cardiovascular SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Lei Wang
- Department of RheumatologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Lingxiao Xu
- Department of RheumatologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Wenfeng Tan
- Department of RheumatologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Chunjian Li
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Fang Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
4
|
Ni S, Shan F, Geng J. Interleukin-10 family members: Biology and role in the bone and joint diseases. Int Immunopharmacol 2022; 108:108881. [PMID: 35623292 DOI: 10.1016/j.intimp.2022.108881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Interleukin (IL)-10 family cytokines include IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28A, IL-28B, and IL-29. These cytokines play crucial regulatory roles in various biological reactions and diseases. In recent years, several studies have shown that the IL-10 family plays a vital role in bone and joint diseases, including bone metabolic diseases, fractures, osteoarthritis, rheumatoid arthritis, and bone tumors. Herein, the recent progress on the regulatory role of IL-10 family of cytokines in the occurrence and development of bone and joint diseases has been summarized. This review will provide novel directions for immunotherapy of bone and joint diseases.
Collapse
Affiliation(s)
- Shenghui Ni
- Department of Orthopaedics, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning, China
| | - Jin Geng
- Department of Ophthalmology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
5
|
Zhao J, Guo S, Schrodi SJ, He D. Molecular and Cellular Heterogeneity in Rheumatoid Arthritis: Mechanisms and Clinical Implications. Front Immunol 2021; 12:790122. [PMID: 34899757 PMCID: PMC8660630 DOI: 10.3389/fimmu.2021.790122] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease that exhibits significant clinical heterogeneity. There are various treatments for rheumatoid arthritis, including disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs), and inflammatory cytokine inhibitors (ICI), typically associated with differentiated clinical effects and characteristics. Personalized responsiveness is observed to the standard treatment due to the pathophysiological heterogeneity in rheumatoid arthritis, resulting in an overall poor prognosis. Understanding the role of individual variation in cellular and molecular mechanisms related to rheumatoid arthritis will considerably improve clinical care and patient outcomes. In this review, we discuss the source of pathophysiological heterogeneity derived from genetic, molecular, and cellular heterogeneity and their possible impact on precision medicine and personalized treatment of rheumatoid arthritis. We provide emphasized description of the heterogeneity derived from mast cells, monocyte cell, macrophage fibroblast-like synoviocytes and, interactions within immune cells and with inflammatory cytokines, as well as the potential as a new therapeutic target to develop a novel treatment approach. Finally, we summarize the latest clinical trials of treatment options for rheumatoid arthritis and provide a suggestive framework for implementing preclinical and clinical experimental results into clinical practice.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
6
|
Fu LX, Chen T, Guo ZP, Cao N, Zhang LW, Zhou PM. Enhanced serum interferon-lambda 1 interleukin-29 levels in patients with psoriasis vulgaris. An Bras Dermatol 2021; 96:416-421. [PMID: 34030913 PMCID: PMC8245709 DOI: 10.1016/j.abd.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/29/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Interferon (IFN)-λ1, also named Interleukin (IL)-29, is a new member of the Type III IFN or IFN-λ family. IL-29 plays an important role in the pathogenesis of many types of autoimmune and inflammatory diseases. OBJECTIVE To study the role of IL-29 in the pathogenesis of psoriasis vulgaris. METHODS The authors detected the serum levels of IL-29 in forty-one patients with psoriasis vulgaris, twenty-three patients with atopic dermatitis and thirty-eight age and gender-matched controls by sandwich Enzyme-Linked Immunosorbent Assay (ELISA). The effects of IL-29 on the expression of cytokines, such as IL-6, IL-17, IL-8, IL-4, IL10, Interferon (IFN-γ) and Tumor Necrosis Factor-α (TNF-α), in PBMCs and HaCat cells were determined by real-time quantitative PCR. RESULTS Our data indicated that serum IL-29 levels were significantly elevated in patients with psoriasis vulgaris when compared with atopic dermatitis patients and the control group. Moreover, Serum levels of IL-29 were closely associated with the severity of psoriasis vulgaris. Furthermore, IL-29 up-regulated the mRNA expression levels of IL-6, IL-17 and TNF-α in PBMCs from psoriasis vulgaris patients. In addition, IL-29 enhanced the IL-6 and IL-8 expression from the HaCat cells. CONCLUSION This study provides the first observations on the association of IL-29 and psoriasis vulgaris and showed elevated IL-29 serum levels. The authors suggest that IL-29 may play a role in the pathogenesis of psoriasis vulgaris.
Collapse
Affiliation(s)
- Li-Xin Fu
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Tao Chen
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Zai-Pei Guo
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Na Cao
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Li-Wen Zhang
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Pei-Mei Zhou
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|