1
|
Hu Q, Wang S, Ma L, Sun Z, Liu Z, Deng S, Zhou J. Radiological assessment of immunotherapy effects and immune checkpoint-related pneumonitis for lung cancer. J Cell Mol Med 2024; 28:e17895. [PMID: 37525480 PMCID: PMC10902575 DOI: 10.1111/jcmm.17895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) therapy have revolutionized advanced lung cancer care. Interestingly, the host responses for patients received ICIs therapy are distinguishing from those with cytotoxic drugs, showing potential initial transient worsening of disease burden, pseudoprogression and delayed time to treatment response. Thus, a new imaging criterion to evaluate the response for immunotherapy should be developed. ICIs treatment is associated with unique adverse events, including potential life-threatening immune checkpoint inhibitor-related pneumonitis (ICI-pneumonitis) if treated patients are not managed promptly. Currently, the diagnosis and clinical management of ICI-pneumonitis remain challenging. As the clinical manifestation is often nonspecific, computed tomography (CT) scan and X-ray films play important roles in diagnosis and triage. This article reviews the complications of immunotherapy in lung cancer and illustrates various radiologic patterns of ICI-pneumonitis. Additionally, it is tried to differentiate ICI-pneumonitis from other pulmonary pathologies common to lung cancer such as radiation pneumonitis, bacterial pneumonia and coronavirus disease of 2019 (COVID-19) infection in recent months. Maybe it is challenging to distinguish radiologically but clinical presentation may help.
Collapse
Affiliation(s)
- Qiongjie Hu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shaofang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Ma
- Department of Orthopedics, Songzi HospitalRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zilin Liu
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shuang Deng
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jianlin Zhou
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
2
|
Vogel A, Finn RS, Blanchet Zumofen MH, Heuser C, Alvarez JS, Leibfried M, Mitchell CR, Batson S, Redhead G, Gaillard VE, Kudo M. Atezolizumab in Combination with Bevacizumab for the Management of Patients with Hepatocellular Carcinoma in the First-Line Setting: Systematic Literature Review and Meta-Analysis. Liver Cancer 2023; 12:510-520. [PMID: 38058419 PMCID: PMC10697759 DOI: 10.1159/000533166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/07/2023] [Indexed: 12/08/2023] Open
Abstract
Background In 2020, atezolizumab-bevacizumab became the new standard of care (SOC) for first-line unresectable hepatocellular carcinoma (HCC) patients, following a decade where sorafenib was the preferred first-line treatment. In the last few years, a number of novel systemic treatments with non-inferiority and superiority to sorafenib have been approved as first-line treatments. Objectives The objective of this systematic literature review (SLR) and network meta-analysis (NMA) was to compare randomised controlled trial evidence for atezolizumab-bevacizumab with globally relevant pharmacological comparators for first-line treatment of patients with unresectable HCC. Methods Randomised controlled trials investigating first-line treatment of HCC in adults with no prior systemic treatment were eligible for inclusion into the SLR and were retrieved from Embase, MEDLINE, and Evidence-Based Medicine (EBM) Reviews. Interventions of interest for the NMA included atezolizumab-bevacizumab, sorafenib, lenvatinib, durvalumab (including in combination with tremelimumab), cabozantinib (including in combination with atezolizumab), camrelizumab (including in combination with rivoceranib), pembrolizumab (including in combination with lenvatinib), and tislelizumab. Random effects NMA was conducted for survival endpoints within a Bayesian framework with an informative prior distribution for between-study heterogeneity. The hazard ratios for relative treatment effect were estimated with 95% credible intervals (CrIs). Results The SLR identified 49 studies, of which eight formed a connected evidence network permitting the indirect treatment comparison of atezolizumab-bevacizumab with comparators of interest. The indirect comparisons suggested an improved overall survival (OS) with atezolizumab-bevacizumab versus most comparators. All indirect treatment comparison results for atezolizumab-bevacizumab included the null value within the 95% CrI (n = 1) for OS and progression-free survival (PFS). Conclusions The results of the NMA indicate atezolizumab-bevacizumab is associated with superior or comparable OS and PFS together with a manageable safety profile compared with globally relevant comparators in the unresected HCC indication. The findings support that atezolizumab-bevacizumab remains SOC for the management of first-line unresectable HCC patients.
Collapse
Affiliation(s)
| | - Richard S. Finn
- Division of Hematology Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Yang B, Yin S, Zhou Z, Huang L, Xi M. Inflammation Control and Tumor Growth Inhibition of Ovarian Cancer by Targeting Adhesion Molecules of E-Selectin. Cancers (Basel) 2023; 15:cancers15072136. [PMID: 37046797 PMCID: PMC10093113 DOI: 10.3390/cancers15072136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: The aim is to use E-selectin-binding peptide (ESBP) to actively recognize E-selectin, so allowing a drug delivery system to actively recognize the cells and inhibit the tumor growth of ovarian cancer by targeting adhesion molecules of E-selectin. An ovarian-cancer-directed drug delivery system was designed based on the high affinity of E-selectin-binding peptide (ESBP) to E-selectin. The effects and mechanisms of ESBP-bovine serum albumin (BSA) polymerized nanoparticles were investigated. Methods: BSA polymerized nanoparticles (BSANPs) and ESBP-BSANPs-paclitaxel (PTX) were prepared and their characteristics were measured. The in vitro targetability and cytotoxicity of ESBP-BSANPs-PTX were evaluated through in vitro drug uptake and MTT experiments. The mechanisms of ESBP-BSANPs-PTX were investigated via apoptosis, wound healing and immunohistochemistry assays. The in vivo targeting properties and drug effects were observed in a mouse tumor-bearing model. Results: In vitro experiments revealed an increase in the uptake of ESBP-BSANPs-FITC. The cytotoxicity of ESBP-BSANPs-PTX in A2780/CP70, HUVEC, RAW264.7 and ID8 cells was higher than that of PTX alone. ESBP-BSANPs-PTX increased cell apoptosis in a dose-dependent manner and exhibited a greater ability to inhibit cell migration than BSANPs-PTX. In vivo experiments demonstrated the targetability and good effects of ESBP-BSANPs. Conclusions: ESBP-BSANPs-PTX improve PTX targetability, provide tumor-specific and potent therapeutic activities, and show promise for the development of agents in preclinical epithelial ovarian cancer.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Shanmei Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Luyao Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| |
Collapse
|
4
|
Jin W, Ou K, Li Y, Liu W, Zhao M. Metabolism-related long non-coding RNA in the stomach cancer associated with 11 AMMLs predictive nomograms for OS in STAD. Front Genet 2023; 14:1127132. [PMID: 36992704 PMCID: PMC10040790 DOI: 10.3389/fgene.2023.1127132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Background: The metabolic processes involving amino acids are intimately linked to the onset and progression of cancer. Long non-coding RNAs (LncRNAs) perform an indispensable function in the modulation of metabolic processes as well as the advancement of tumors. Non-etheless, research into the role that amino acid metabolism-related LncRNAs (AMMLs) might play in predicting the prognosis of stomach adenocarcinoma (STAD) has not been done. Therefore, This study sought to design a model for AMMLs to predict STAD-related prognosis and elucidate their immune properties and molecular mechanisms.Methods: The STAD RNA-seq data in the TCGA-STAD dataset were randomized into the training and validation groups in a 1:1 ratio, and models were constructed and validated respectively. In the molecular signature database, This study screened for genes involved in amino acid metabolism. AMMLs were obtained by Pearson’s correlation analysis, and predictive risk characteristics were established using least absolute shrinkage and selection operator (LASSO) regression, univariate Cox analysis, and multivariate Cox analysis. Subsequently, the immune and molecular profiles of high- and low-risk patients and the benefit of the drug were examined.Results: Eleven AMMLs (LINC01697, LINC00460, LINC00592, MIR548XHG, LINC02728, RBAKDN, LINCOG, LINC00449, LINC01819, and UBE2R2-AS1) were used to develop a prognostic model. Moreover, high-risk individuals had worse overall survival (OS) than low-risk patients in the validation and comprehensive groups. A high-risk score was associated with cancer metastasis as well as angiogenic pathways and high infiltration of tumor-associated fibroblasts, Treg cells, and M2 macrophages; suppressed immune responses; and a more aggressive phenotype.Conclusion: This study identified a risk signal associated with 11 AMMLs and established predictive nomograms for OS in STAD. These findings will help us personalize treatment for gastric cancer patients.
Collapse
Affiliation(s)
- Wenjian Jin
- Department of Hepatopancreatobiliary Surgery, Changzhou First People’s Hospital, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kongbo Ou
- Department of Urinary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou First People’s Hospital, Soochow University, Changzhou, China
| | - Yuanyuan Li
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou First People’s Hospital, Soochow University, Changzhou, China
| | - Wensong Liu
- Department of Hepatopancreatobiliary Surgery, Changzhou First People’s Hospital, Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Min Zhao, ; Wensong Liu,
| | - Min Zhao
- Department of Gastrointestinal Surgery, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
- *Correspondence: Min Zhao, ; Wensong Liu,
| |
Collapse
|
5
|
Watanabe T, Yamaguchi Y. Cutaneous manifestations associated with immune checkpoint inhibitors. Front Immunol 2023; 14:1071983. [PMID: 36891313 PMCID: PMC9986601 DOI: 10.3389/fimmu.2023.1071983] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that block key mediators of tumor-mediated immune evasion. The frequency of its use has increased rapidly and has extended to numerous cancers. ICIs target immune checkpoint molecules, such as programmed cell death protein 1 (PD-1), PD ligand 1 (PD-L1), and T cell activation, including cytotoxic T-lymphocyte-associated protein-4 (CTLA-4). However, ICI-driven alterations in the immune system can induce various immune-related adverse events (irAEs) that affect multiple organs. Among these, cutaneous irAEs are the most common and often the first to develop. Skin manifestations are characterized by a wide range of phenotypes, including maculopapular rash, psoriasiform eruption, lichen planus-like eruption, pruritus, vitiligo-like depigmentation, bullous diseases, alopecia, and Stevens-Johnson syndrome/toxic epidermal necrolysis. In terms of pathogenesis, the mechanism of cutaneous irAEs remains unclear. Still, several hypotheses have been proposed, including activation of T cells against common antigens in normal tissues and tumor cells, increased release of proinflammatory cytokines associated with immune-related effects in specific tissues/organs, association with specific human leukocyte antigen variants and organ-specific irAEs, and acceleration of concurrent medication-induced drug eruptions. Based on recent literature, this review provides an overview of each ICI-induced skin manifestation and epidemiology and focuses on the mechanisms underlying cutaneous irAEs.
Collapse
Affiliation(s)
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
6
|
Yu L, Gong C. Pancancer analysis of a potential gene mutation model in the prediction of immunotherapy outcomes. Front Genet 2022; 13:917118. [PMID: 36092890 PMCID: PMC9459043 DOI: 10.3389/fgene.2022.917118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Immune checkpoint blockade (ICB) represents a promising treatment for cancer, but predictive biomarkers are needed. We aimed to develop a cost-effective signature to predict immunotherapy benefits across cancers.Methods: We proposed a study framework to construct the signature. Specifically, we built a multivariate Cox proportional hazards regression model with LASSO using 80% of an ICB-treated cohort (n = 1661) from MSKCC. The desired signature named SIGP was the risk score of the model and was validated in the remaining 20% of patients and an external ICB-treated cohort (n = 249) from DFCI.Results: SIGP was based on 18 candidate genes (NOTCH3, CREBBP, RNF43, PTPRD, FAM46C, SETD2, PTPRT, TERT, TET1, ROS1, NTRK3, PAK7, BRAF, LATS1, IL7R, VHL, TP53, and STK11), and we classified patients into SIGP high (SIGP-H), SIGP low (SIGP-L) and SIGP wild type (SIGP-WT) groups according to the SIGP score. A multicohort validation demonstrated that patients in SIGP-L had significantly longer overall survival (OS) in the context of ICB therapy than those in SIGP-WT and SIGP-H (44.00 months versus 13.00 months and 14.00 months, p < 0.001 in the test set). The survival of patients grouped by SIGP in non-ICB-treated cohorts was different, and SIGP-WT performed better than the other groups. In addition, SIGP-L + TMB-L (approximately 15% of patients) had similar survivals to TMB-H, and patients with both SIGP-L and TMB-H had better survival. Further analysis on tumor-infiltrating lymphocytes demonstrated that the SIGP-L group had significantly increased abundances of CD8+ T cells.Conclusion: Our proposed model of the SIGP signature based on 18-gene mutations has good predictive value for the clinical benefit of ICB in pancancer patients. Additional patients without TMB-H were identified by SIGP as potential candidates for ICB, and the combination of both signatures showed better performance than the single signature.
Collapse
Affiliation(s)
- Lishan Yu
- Yanqi Lake Beijing Institute Mathematical Sciences and Applications, Beijing, China
- Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
| | - Caifeng Gong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Caifeng Gong,
| |
Collapse
|
7
|
Yamamoto T. Skin Manifestation Induced by Immune Checkpoint Inhibitors. Clin Cosmet Investig Dermatol 2022; 15:829-841. [PMID: 35592732 PMCID: PMC9112343 DOI: 10.2147/ccid.s364243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022]
Abstract
In accordance with recent therapeutic progress of immune checkpoint inhibitors for certain cancers, various disorders are induced as immune-related adverse events (irAEs) affecting the skin, gut, thyroid gland, lung, and liver. Among such irAEs, mucocutaneous manifestation is the most common. Cutaneous manifestations are categorized into several groups, ie, inflammatory reactions, immunobullous reactions, alterations of epidermal keratinocytes, and alterations of epidermal melanocytes; however, there are additionally various cutaneous toxicities, unclassified into those groups. Blocking of programmed cell death 1 (PD-1)/programmed cell death ligand 1(PDL1) can lead to the induction of autoimmune reaction, via activation of cytotoxic T cells, inhibition of regulatory T cell function, and alteration of cytokine balance. Similarly, blockade of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) reduces the suppressive function of regulatory T cells. Due to those mechanisms, various autoimmune conditions can be induced, in addition to nonspecific drug eruptions. Dermatologists should be aware of various types of those mucocutaneous manifestations, either common or rare, as well as the management of such conditions. Herein, various mucocutaneous manifestations of irAEs and cases involving Japanese patients have been described, based on a single institute's experience.
Collapse
Affiliation(s)
- Toshiyuki Yamamoto
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
8
|
Chera A, Stancu AL, Bucur O. Thyroid-related adverse events induced by immune checkpoint inhibitors. Front Endocrinol (Lausanne) 2022; 13:1010279. [PMID: 36204105 PMCID: PMC9530140 DOI: 10.3389/fendo.2022.1010279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint inhibitors, namely anti-CTLA-4, anti-PD-1 and anti-PD-L1 monoclonal antibodies, have emerged in the last decade as a novel form of cancer treatment, promoting increased survival in patients. As they tamper with the immune response in order to destroy malignant cells, a new type of adverse reactions has emerged, known as immune-related adverse events (irAEs), which frequently target the endocrine system, especially the thyroid and hypophysis. Thyroid irAEs include hyperthyroidism, thyrotoxicosis, hypothyroidism and a possibly life-threatening condition known as the "thyroid storm". Early prediction of occurrence and detection of the thyroid irAEs should be a priority for the clinician, in order to avoid critical situations. Moreover, they are recently considered both a prognostic marker and a means of overseeing treatment response, since they indicate an efficient activation of the immune system. Therefore, a multidisciplinary approach including both oncologists and endocrinologists is recommended when immune checkpoint inhibitors are used in the clinic.
Collapse
Affiliation(s)
- Alexandra Chera
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andreea Lucia Stancu
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Viron Molecular Medicine Institute, Boston, MA, United States
- *Correspondence: Octavian Bucur, ;;
| |
Collapse
|
9
|
Emerging role of SWI/SNF complex deficiency as a target of immune checkpoint blockade in human cancers. Oncogenesis 2021; 10:3. [PMID: 33419967 PMCID: PMC7794300 DOI: 10.1038/s41389-020-00296-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian SWI/SNF complex is a key chromatin remodeler that reshapes nucleosomes and regulates DNA accessibility. Mutations in SWI/SNF subunits are found in a broad spectrum of human cancers; however, the mechanisms of how these aberrations of SWI/SNF complex would impact tumorigenesis and cancer therapeutics remain to be elucidated. Studies have demonstrated that immune checkpoint blockade (ICB) therapy is promising in cancer treatment. Nevertheless, suitable biomarkers that reliably predict the clinical response to ICB are still lacking. Emerging evidence has suggested that SWI/SNF components play novel roles in the regulation of anti-tumor immunity, and SWI/SNF deficiency can be therapeutically targeted by ICB. These findings manifest the prominence of the SWI/SNF complex as a stratification biomarker that predicts treatment (therapeutic) response to ICB. In this review, we summarize the recent advances in ICB therapy by harnessing the cancer-specific vulnerability elicited by SWI/SNF deficiency. We provide novel insights into a comprehensive understanding of the underlying mechanisms by which SWI/SNF functions as a modulator of anti-tumor immunity.
Collapse
|
10
|
Inflammatory Myeloradiculitis Secondary to Pembrolizumab: A Case Report and Literature Review. Case Rep Oncol Med 2020; 2020:8819296. [PMID: 32908747 PMCID: PMC7450342 DOI: 10.1155/2020/8819296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors are the most important new medications in oncology and include inhibitors of programmed cell death protein-1 (PD-1) such as Pembrolizumab, Nivolumab, and Cemiplimab. These anticancer agents prevent tumour immune evasion and have been associated with a range of immune-related adverse events (irAEs) including those involving the nervous system. In this case report and literature review, we present the first case of inflammatory myeloradiculitis secondary to Pembrolizumab. We also summarise the characteristics, treatment, and outcomes of other cases reported in the literature which include a component of myelitis. Finally, we make general recommendations on management.
Collapse
|
11
|
Forsdyke DR. Metabolic optimization of adoptive T cell transfer cancer immunotherapy: A historical overview. Scand J Immunol 2020; 92:e12929. [PMID: 32640079 DOI: 10.1111/sji.12929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
After prolonged extracorporeal multiplication in physiological culture media, there can be curative infusions of a cancer patient's own cytotoxic T cells (adoptive T cell transfer; ACT), which must achieve efficient activation in potentially adverse tumour microenvironments. With spectacular, yet irregular, success, improvements are needed. Developing lymphoid cells are biologically selected, not only for 'near-self' reactivity (positive selection), but also to avoid self-reactivity (negative selection). Thus, success requires harnessing near-self cells while avoiding extreme autoimmune phenomena. Abrupt metabolic changes accompanying T cell activation to leave the G0 stage and enter the G1 stage of the cell cycle (eg enhanced glycolysis) are accompanied by increased transcription of the G0S9 gene that mediates salvage synthesis of NAD+ from nicotinamide; the latter has recently been shown to increase the efficiency of ACT. Despite theoretical and experimental advances, there has not been parallel progress in simulating in vivo conditions with culture media that were initially formulated for their positive benefits for tumour cell lines (cell survival and proliferation). Yet for lymphoid cells, inhibition or death (ie immunological tolerance) is as important as their activation and proliferation (immunological response). Thus, use of media optimized for the latter may mask the former. The resilience of established culture protocols may have been partly politically driven. However, unphysiological conditions have sometimes yielded fortuitous insights. Optimization of culture media for specific tissues must consider the nature of problems addressed in research settings and the need to avoid mishaps in clinical settings.
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|