1
|
Shen H, Liu W, Dou Y, Lu Y, Zhang C, Wang X, Kong F, Wang S. Guluronic acid disaccharide inhibits reactive oxygen species production and amyloid-β oligomer formation. Biochem Biophys Res Commun 2024; 737:150467. [PMID: 39133984 DOI: 10.1016/j.bbrc.2024.150467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 11/13/2024]
Abstract
In general, Cu(II) is the critical factor in catalyzing reactive oxygen species (ROS) production and accelerating amyloid-β (Aβ) oligomer formation in Alzheimer's disease (AD). Natural chelating agents with good biocompatibility and appropriate binding affinity with Cu(II) have emerged as potential candidates for AD therapy. Herein, we tested the capability of guluronic acid disaccharide (Di-GA), a natural chelating agent with the moderate association affinity to Cu(II), in inhibiting ROS production and Aβ oligomer formation. The results showed that Di-GA was capable of chelating with Cu(II) and reducing ROS production, even in solutions containing Fe(II), Zn(II), and Aβ. In addition, Di-GA can also capture Cu(II) from Cu-Aβ complexes and decrease Aβ oligomer formation. The cellular results confirmed that Di-GA prevented SH-SY5Y cells from ROS and Aβ oligomer damage by reducing the injury of ROS and Aβ oligomers on cell membrane and decreasing their intracellular damage on mitochondria. Notably, the slightly higher efficiency of Di-GA in chelating with Cu(I) than Cu(II) can be benefit for its in vivo applications, as Cu(I) is not only the most active but also the special intermediate specie during ROS production process. All of these results proved that Di-GA could be a promising marine drug candidate in reducing copper-related ROS damage and Aβ oligomer toxicity associated with AD.
Collapse
Affiliation(s)
- Hangyu Shen
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Wenhui Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Yun Dou
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Yongxin Lu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Chunling Zhang
- Department of Rheumatology, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong, 250013, China
| | - Xiaoying Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China; Shandong Haizhibao Ocean Science and Technology Co., Ltd, Weihai, Shandong, 264300, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Shoujuan Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| |
Collapse
|
2
|
Li C, Zhang X, Wang Y, Cheng L, Li C, Xiang Y. The role of IL-1 family of cytokines in the pathogenesis and therapy of Alzheimer's disease. Inflammopharmacology 2024:10.1007/s10787-024-01534-8. [PMID: 39126573 DOI: 10.1007/s10787-024-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurological condition that occurs with age and poses a significant global public health concern, is distinguished by the degeneration of neurons and synapses in various regions of the brain. While the exact processes behind the neurodegeneration in AD are not completely known, it is now acknowledged that inflammation may have a significant impact on the beginning and advancement of AD neurodegeneration. The severity of many neurological illnesses can be influenced by the equilibrium between pro-inflammatory and anti-inflammatory mediators. The IL-1 family of cytokines is linked to innate immune responses, which are present in both acute inflammation and chronic inflammatory diseases. Research on the role of the IL-1 family in chronic neurological disease has been concentrated on AD. In this context, there is indirect evidence suggesting its involvement in the development of the disease. This review aims to provide a summary of the contribution of every IL-1 family member in AD pathogenesis, current immunotherapies in AD disease, and present treatment possibilities for either targeting or boosting these cytokines.
Collapse
Affiliation(s)
- ChangQing Li
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Xun Zhang
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Yunqian Wang
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Le Cheng
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - ChangBao Li
- Urology Department, Huili People's Hospital, Huili615100, Guangyuan, Sichuan, China
| | - Yu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Qian L, Bian W, Wang D, Ming Z, Zhang Y, Zhang L, Fu L. Adeno-Associated Virus-Mediated Immunotherapy Based on Bispecific Tandem scFv for Alzheimer’s Disease. J Alzheimers Dis 2023; 93:435-448. [PMID: 37038816 DOI: 10.3233/jad-221088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Background: Patients with Alzheimer’s disease (AD) have considerably increased globally as a result of population aging, placing a significant burden on the global economy and the medical system. The outcome of clinical trials for AD immunotherapy that solely targeted amyloid-β (Aβ) or phosphorylated tau protein (p-Tau) was unsatisfactory. Therefore, blocking both Aβ and p-Tau’s pathological processes simultaneously while also preventing their interaction may be the key to developing an effective AD therapy. Objective: To develop a novel immunotherapy based on bispecific tandem scFv (TaFv) against AD. Methods: Bispecific single-chain antibody that targets both Aβ and p-Tau were obtained using E. coli expression system. Biological ability of TaFvs were determined by ELISA, SDS-PAGE, and immunohistochemical assay. Recombinant adeno-associated virus 9 (rAAV9) were packaged to create TaFv. The in vivo activity of rAAV9 were detected in mouse, using biophotonic imaging and frozen section methods. Results: The outcomes demonstrated that both Aβ and p-Tau had a high affinity for the bispecific TaFv. Additionally, it can bind to the amyloid plaques and neuronal tangles in the brain slices of an AD mouse model. Moreover, the rAAV9 could infect neuronal cells, transverse the blood-brain barrier, and express TaFv in the mouse brain. Conclusion: This novel immunotherapy offers a fresh concept for the immunotherapy of AD and successfully delivers the double target antibody into the brain, acting on both pathogenic substances Aβ and p-Tau.
Collapse
Affiliation(s)
- Lin Qian
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Wenjuan Bian
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Diqi Wang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Zhuoqun Ming
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yu Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Linbo Zhang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Lu Fu
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine,School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
Vogt ACS, Jennings GT, Mohsen MO, Vogel M, Bachmann MF. Alzheimer's Disease: A Brief History of Immunotherapies Targeting Amyloid β. Int J Mol Sci 2023; 24:3895. [PMID: 36835301 PMCID: PMC9961492 DOI: 10.3390/ijms24043895] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and may contribute to 60-70% of cases. Worldwide, around 50 million people suffer from dementia and the prediction is that the number will more than triple by 2050, as the population ages. Extracellular protein aggregation and plaque deposition as well as accumulation of intracellular neurofibrillary tangles, all leading to neurodegeneration, are the hallmarks of brains with Alzheimer's disease. Therapeutic strategies including active and passive immunizations have been widely explored in the last two decades. Several compounds have shown promising results in many AD animal models. To date, only symptomatic treatments are available and because of the alarming epidemiological data, novel therapeutic strategies to prevent, mitigate, or delay the onset of AD are required. In this mini-review, we focus on our understanding of AD pathobiology and discuss current active and passive immunomodulating therapies targeting amyloid-β protein.
Collapse
Affiliation(s)
- Anne-Cathrine S. Vogt
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | | | - Mona O. Mohsen
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
| | - Monique Vogel
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
| | - Martin F. Bachmann
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Centre for Cellular and Molecular Physiology (CCMP), Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
5
|
Valiukas Z, Ephraim R, Tangalakis K, Davidson M, Apostolopoulos V, Feehan J. Immunotherapies for Alzheimer’s Disease—A Review. Vaccines (Basel) 2022; 10:vaccines10091527. [PMID: 36146605 PMCID: PMC9503401 DOI: 10.3390/vaccines10091527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that falls under the umbrella of dementia and is characterised by the presence of highly neurotoxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein within the brain. Historically, treatments for AD have consisted of medications that can slow the progression of symptoms but not halt or reverse them. The shortcomings of conventional drugs have led to a growing need for novel, effective approaches to the treatment of AD. In recent years, immunotherapies have been at the forefront of these efforts. Briefly, immunotherapies utilise the immune system of the patient to treat a condition, with common immunotherapies for AD consisting of the use of monoclonal antibodies or vaccines. Most of these treatments target the production and deposition of Aβ due to its neurotoxicity, but treatments specifically targeting tau protein are being researched as well. These treatments have had great variance in their efficacy and safety, leading to a constant need for the research and development of new safe and effective treatments.
Collapse
Affiliation(s)
- Zachary Valiukas
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3011, Australia
| | - Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
| | - Kathy Tangalakis
- First Year College, Victoria University, Melbourne, VIC 3011, Australia
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 3011, Australia
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
6
|
Zhang Y, Qian L, Kuang Y, Liu J, Wang D, Xie W, Zhang L, Fu L. An adeno-associated virus-mediated immunotherapy for Alzheimer’s disease. Mol Immunol 2022; 144:26-34. [DOI: 10.1016/j.molimm.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 11/29/2022]
|
7
|
Sun ZT, Ma C, Li GJ, Zheng XY, Hao YT, Yang Y, Wang X. Application of Antibody Fragments Against Aβ With Emphasis on Combined Application With Nanoparticles in Alzheimer's Disease. Front Pharmacol 2021; 12:654611. [PMID: 33967797 PMCID: PMC8100690 DOI: 10.3389/fphar.2021.654611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and accumulating evidences suggest a key role of amyloid-β (Aβ) peptide in the pathogenesis of AD. According to the amyloid cascade hypothesis, the imbalance of producing and clearing Aβ is the beginning of neurodegeneration and dementia. Consequently, immunotherapy becomes popular through using antibodies against Aβ. However, many studies of monoclonal antibodies were stopped because adverse effects appeared or there were no evident benefits observed. Some antibody fragments have many advantages over monoclonal antibodies, such as small sizes, lack of the crystallizable fraction (Fc) and so on. There are three main antibody fragments, including single chain variable fragments (scFvs), Fab fragments and single-domain antibody fragments. Nanoparticles can facilitate the entry of drug molecules across the blood-brain barrier, making them become excellent carriers. Various kinds of nanoparticles have been applied in the treatment of AD. The combination of nanoparticles and antibody fragments against amyloid-β can be used in the diagnosis and treatment of Alzheimer’s disease. In this review, we summarize the progress of antibody fragments against amyloid-β in AD, focusing on the combined application with nanoparticles in the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Zhi-Ting Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Chi Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Guang-Jian Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yi-Tong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|