1
|
Wang X, He X, Zhong B. Oral microbiota: the overlooked catalyst in cancer initiation and progression. Front Cell Dev Biol 2025; 12:1479720. [PMID: 39872848 PMCID: PMC11769975 DOI: 10.3389/fcell.2024.1479720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
The advancement of high-throughput sequencing technology in recent decades has led to a greater understanding of the components of the oral microbiota, providing a solid foundation for extensive research in this field. The oral microbiota plays an important role in an individual's overall health. It has been shown to be significantly correlated with chronic human diseases, including diabetes, rheumatoid arthritis, cardiovascular disease, periodontal disease, and Alzheimer's disease. Furthermore, tumor occurrence and development are closely related to the oral microbiome. Specific bacteria, such as Fusobacterium nucleatum (F. nucleatum), Porphyromonas gingivalis (P. gingivalis), Streptococcus, Streptomyces, Prevotella, and Fibrophagy gingivalis, play critical roles in cancer development. The oral microbiota has various oncogenic mechanisms, including bacterial inflammation, immunological suppression, tumor growth mediated by bacterial toxins, antiapoptotic activity, and carcinogenic effects. This paper reviews the role of the oral microbiota in the occurrence and progression of cancer and systematically elucidates the molecular mechanisms by which dysbiosis influences tumorigenesis and tumor progression. This information can provide a theoretical basis for exploring cancer treatment strategies and offer new insights for cancer prevention.
Collapse
Affiliation(s)
- Xinlin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Xin He
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Provincial Branch of China Clinical Medical Research Center for Geriatric Diseases, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Bin Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Ye C, Liu X, Liu Z, Pan C, Zhang X, Zhao Z, Sun H. Fusobacterium nucleatum in tumors: from tumorigenesis to tumor metastasis and tumor resistance. Cancer Biol Ther 2024; 25:2306676. [PMID: 38289287 PMCID: PMC10829845 DOI: 10.1080/15384047.2024.2306676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024] Open
Abstract
Fusobacterium nucleatum, an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in cancer progression and prognosis. While extensive research has revealed mechanistic links between Fusobacterium nucleatum and colorectal cancer, a comprehensive review spanning its presence and metastatic implications in cancers beyond colorectal origin is conspicuously absent. This paper broadens our perspective from colorectal cancer to various malignancies associated with Fusobacterium nucleatum, including oral, pancreatic, esophageal, breast, and gastric cancers. Our central focus is to unravel the mechanisms governing Fusobacterium nucleatum colonization, initiation, and promotion of metastasis across diverse cancer types. Additionally, we explore Fusobacterium nucleatum's adverse impacts on cancer therapies, particularly within the domains of immunotherapy and chemotherapy. Furthermore, this paper underscores the clinical research significance of Fusobacterium nucleatum as a potential tumor biomarker and therapeutic target, offering a novel outlook on its applicability in cancer detection and prognostic assessment.
Collapse
Affiliation(s)
- Chun Ye
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zilun Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chuxuan Pan
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaowei Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhanyi Zhao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Central People’s Hospital of Ji’an, Shanghai East Hospital of Ji’an, Ji’an, China
| |
Collapse
|
3
|
D’Antonio DL, Zenoniani A, Umme S, Piattelli A, Curia MC. Intratumoral Fusobacterium nucleatum in Pancreatic Cancer: Current and Future Perspectives. Pathogens 2024; 14:2. [PMID: 39860963 PMCID: PMC11768203 DOI: 10.3390/pathogens14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The intratumoral microbiome plays a significant role in many cancers, such as lung, pancreatic, and colorectal cancer. Pancreatic cancer (PC) is one of the most lethal malignancies and is often diagnosed at advanced stages. Fusobacterium nucleatum (Fn), an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in several extra-oral human diseases and, lately, in pancreatic cancer progression and prognosis. It is now recognized as oncobacterium. Fn engages in pancreatic tumorigenesis and metastasis through multifaceted mechanisms, including immune response modulation, virulence factors, control of cell proliferation, intestinal metabolite interactions, DNA damage, and epithelial-mesenchymal transition. Additionally, compelling research suggests that Fn may exert detrimental effects on cancer treatment outcomes. This paper extends the perspective to pancreatic cancer associated with Fn. The central focus is to unravel the oncogenomic changes driven by Fn in colonization, initiation, and promotion of pancreatic cancer development. The presence of Fusobacterium species can be considered a prognostic marker of PC, and it is also correlated to chemoresistance. Furthermore, this review underscores the clinical research significance of Fn as a potential tumor biomarker and therapeutic target, offering a novel outlook on its applicability in cancer detection and prognostic assessment. It is thought that given the role of Fn in tumor formation and metastasis processes via its FadA, FapA, Fap2, and RadD, new therapies for tumor treatment targeting Fn will be developed.
Collapse
Affiliation(s)
- Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (D.L.D.); (A.Z.); (S.U.)
| | - Anna Zenoniani
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (D.L.D.); (A.Z.); (S.U.)
| | - Samia Umme
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (D.L.D.); (A.Z.); (S.U.)
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences (UniCamillus), 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (D.L.D.); (A.Z.); (S.U.)
| |
Collapse
|
4
|
Altrawy A, Khalifa MM, Abdelmaksoud A, Khaled Y, Saleh ZM, Sobhy H, Abdel-Ghany S, Alqosaibi A, Al-Muhanna A, Almulhim J, El-Hashash A, Sabit H, Arneth B. Metabolites in the Dance: Deciphering Gut-Microbiota-Mediated Metabolic Reprogramming of the Breast Tumor Microenvironment. Cancers (Basel) 2024; 16:4132. [PMID: 39766032 PMCID: PMC11674667 DOI: 10.3390/cancers16244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 01/05/2025] Open
Abstract
Breast cancer (BC), a major cause of death among women worldwide, has traditionally been linked to genetic and environmental factors. However, emerging research highlights the gut microbiome's significant role in shaping BC development, progression, and treatment outcomes. This review explores the intricate relationship between the gut microbiota and the breast tumor microenvironment, emphasizing how these microbes influence immune responses, inflammation, and metabolic pathways. Certain bacterial species in the gut either contribute to or hinder BC progression by producing metabolites that affect hormone metabolism, immune system pathways, and cellular signaling. An imbalance in gut bacteria, known as dysbiosis, has been associated with a heightened risk of BC, with metabolites like short-chain fatty acids (SCFAs) and enzymes such as β-glucuronidase playing key roles in this process. Additionally, the gut microbiota can impact the effectiveness of chemotherapy, as certain bacteria can degrade drugs like gemcitabine and irinotecan, leading to reduced treatment efficacy. Understanding the complex interactions between gut bacteria and BC may pave the way for innovative treatment approaches, including personalized microbiome-targeted therapies, such as probiotics and fecal microbiota transplants, offering new hope for more effective prevention, diagnosis, and treatment of BC.
Collapse
Affiliation(s)
- Afaf Altrawy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Maye M. Khalifa
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Asmaa Abdelmaksoud
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Yomna Khaled
- Department of Bioinformatics and Functional Genomics, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Zeinab M. Saleh
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Hager Sobhy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Afnan Al-Muhanna
- King Fahad Hospital of the University, Alkhobar, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jawaher Almulhim
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia;
| | - Ahmed El-Hashash
- Department of Biomedicine, Texas A&M University, College Station, TX 77840, USA;
| | - Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University, Feulgen Str., 35392 Giessen, Germany
| |
Collapse
|
5
|
Huang L, Jiang C, Yan M, Wan W, Li S, Xiang Z, Wu J. The oral-gut microbiome axis in breast cancer: from basic research to therapeutic applications. Front Cell Infect Microbiol 2024; 14:1413266. [PMID: 39639864 PMCID: PMC11617537 DOI: 10.3389/fcimb.2024.1413266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
As a complicated and heterogeneous condition, breast cancer (BC) has posed a tremendous public health challenge across the world. Recent studies have uncovered the crucial effect of human microbiota on various perspectives of health and disease, which include cancer. The oral-gut microbiome axis, particularly, have been implicated in the occurrence and development of colorectal cancer through their intricate interactions with host immune system and modulation of systemic inflammation. However, the research concerning the impact of oral-gut microbiome axis on BC remains scarce. This study focused on comprehensively reviewing and summarizing the latest ideas about the potential bidirectional relation of the gut with oral microbiota in BC, emphasizing their potential impact on tumorigenesis, treatment response, and overall patient outcomes. This review can reveal the prospect of tumor microecology and propose a novel viewpoint that the oral-gut microbiome axis can be a breakthrough point in future BC studies.
Collapse
Affiliation(s)
- Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shuxiang Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Akbari E, Epstein JB, Samim F. Unveiling the Hidden Links: Periodontal Disease, Fusobacterium Nucleatum, and Cancers. Curr Oncol Rep 2024; 26:1388-1397. [PMID: 39133417 DOI: 10.1007/s11912-024-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW Fusobacterium nucleatum (F. nucleatum), an anaerobic, gram-negative microbe, commonly found in human dental biofilm and the gut flora. It has long been known to have a higher concentration in periodontal disease and has recently been implicated in both oral and distant cancers such as colorectal, gastrointestinal, esophageal, breast, pancreatic hepatocellular, and genitourinary cancers. However, the mechanism of its involvement in the development of cancer has not been fully discussed. This review aims to cover biological molecular and clinical aspects of F. nucleatum and cancers. RECENT FINDINGS Studies indicate F. nucleatum promotes tumor development through chronic inflammation, immune evasion, cell proliferation activation, and direct cell interactions, as in oral squamous cell carcinoma (OSCC). In colorectal cancer (CRC), F. nucleatum contributes to tumorigenesis through β-catenin signaling and NF-κB activation. It also induces autophagy, leading to chemoresistance in CRC and esophageal cancers, and enhances tumor growth and metastasis in breast cancer by reducing T-cell infiltration. F. nucleatum is linked to carcinogenesis and increased bacterial diversity in OSCC, with improved oral hygiene potentially preventing OSCC. F. nucleatum triggers cancer by causing mutations and epigenetic changes through cytokines and reactive oxygen species. It also promotes chemoresistance in CRC. F. nucleatum may potentially serve as a diagnostic tool in various cancers, with non-invasive detection methods available. Further investigation is needed to discover its potential in the diagnosis and treatment of OSCC and other cancers.
Collapse
Affiliation(s)
- Elahe Akbari
- Faculty of Dental Medicine and Oral Health, McGill University, Montreal, QC, Canada
| | - Joel B Epstein
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cedars Sinai Health System, Los Angeles, CA, USA
| | - Firoozeh Samim
- Faculty of Dental Medicine and Oral Health, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Zhao Y, Lv W, Wen L, Liu W, Zhao Y, Li Y, Hou F. Relationship between GTP binding protein RAB10, toll-like receptor 4, and nuclear factor kappa-B and prognosis in patients with breast cancer. Sci Rep 2024; 14:23287. [PMID: 39375417 PMCID: PMC11458806 DOI: 10.1038/s41598-024-74501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
The objective of this study was to investigate the correlation between Rab10 (GTP binding protein RAB10), TLR4 (Toll-like receptor 4), and NF-κB (nuclear factor kappa-B) levels and therapeutic effects in peripheral blood of patients with breast cancer after surgery. The study included 160 patients with stage I-III breast cancer who underwent surgical treatment at our hospital's Department of Breast Surgery and Oncology between January 2021 and June 2021. ELISA was used to assess Rab10, TLR4, and NF-κB levels in peripheral blood. Based on their levels of Rab10, TLR4, and NF-κB in peripheral blood, participants were categorized into two groups: the low marker expression group (72 participants with relatively low expression of Rab10, TLR4, and NF-κB: Rab10<2.0ng/ml; TLR4<2.75ng/ml; NF-κB<3.5ng/ml) and the high marker expression group (88 participants with relatively high expression: Rab10 ≥ 2.0 ng/ml; TLR4 ≥ 2.75ng/ml; NF-κB ≥ 3.5ng/ml). All participants provided informed consent to participate the study. The baseline data of the two groups of patients, the presence or absence of lymph node metastasis and recurrence within 3 years after surgery, as well as the survival status within 3 years after surgery (including median overall survival and median progression-free survival) were statistically analyzed. The expressions of Rab10, TLR4, and NF-κB in the peripheral blood of patients were detected through enzyme-linked immunosorbent assay (ELISA). Kendall's tau-b correlation analysis was conducted to examine the relationship between the expressions of Rab10, TLR4, and NF-κB and the therapeutic effects outcomes. The levels of Rab10, TLR4, and NF - κ B in peripheral blood of the high marker expression group were higher than those of the low marker expression group (Rab10: 1.87 ± 0.18 vs. 3.15 ± 0.24 ng/ml; TLR4: 2.17 ± 0.20 vs. 3.26 ± 0.25 ng/ml); NF-κB: 2.68 ± 0.27 vs. 4.63 ± 0.30 ng/ml; P < 0.05). Analyzing the relationship between patient staging and Rab10, TLR4, and NF - κ B expression, the number of patients in high marker expression group III-IV increased compared to the low marker expression group (54.55% vs. 36.12%; P < 0.05), while the number of patients in high marker expression group I-II decreased compared to the low marker expression group (45.45% vs. 63.88%; P < 0.05). It was found that the number of patients with no recurrence or metastasis in the high marker expression group decreased compared to the low marker expression group (56.81% vs. 73.61%; P < 0.05), while the number of patients with recurrence or metastasis in the high marker expression group increased compared to the low marker expression group (43.19% vs. 26.39%; P < 0.05). The median overall survival and median progression free survival in the high marker expression group were shorter than those in the low marker expression group (median overall survival: 21.45 ± 2.68 months vs. 28.38 ± 3.44 months; median progression free survival: 15.25 ± 2.37 vs. 20.72 ± 2.58 months; P < 0.05). Kendall's tau-b correlation indicated a positive correlation between the expressions of Rab10, TLR4, and NF-κB and a poor therapeutic effects (P < 0.05), suggesting that elevated levels of Rab10, TLR4, and NF-κB may lead to a worsened therapeutic effects. There is a significant correlation between the presence of Rab10, TLR4, and NF-κB in the peripheral blood of breast cancer patients. Elevated levels of Rab10, TLR4, and NF-κB are linked to an increased risk of recurrence, metastasis, reduced overall survival, and progression-free survival.
Collapse
Affiliation(s)
- Yanchun Zhao
- Out-patient Department, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Weiwei Lv
- Department of Galactophore, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Lisha Wen
- Department of Nuclear Medicine, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Weiguang Liu
- Department of Galactophore, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Yanhua Zhao
- Department of Oncology, Yi County Hospital of Traditional Chinese Medicine, Baoding, Hebei, China
| | - Yanhui Li
- Department of Galactophore, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Fengyan Hou
- Cancer Center, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Handan, 056000, Hebei, China.
| |
Collapse
|
8
|
Zhang Y, Lin H, Liang L, Jin S, Lv J, Zhou Y, Xu F, Liu F, Feng N. Intratumoral microbiota as a novel prognostic indicator in bladder cancer. Sci Rep 2024; 14:22198. [PMID: 39333148 PMCID: PMC11437234 DOI: 10.1038/s41598-024-72918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Microbes are important components of the tumor microenvironment and have a close relationship with tumors. However, there is still a lack of research on the intratumoral microbiota in bladder cancer and its impact on the tumor immune microenvironment. In this study, we used fluorescence in situ hybridization (FISH) and observed a substantial presence of microbiota in bladder cancer tissues, with greater abundance compared to that in normal bladder tissues. Based on the BIC database, we found that the microbiome of bladder cancer is highly diverse and its structure is significantly different from that of other tumors. To investigate the relationships among the intratumoral microbiota, tumor immunity, and prognosis in bladder cancer patients, we analyzed bladder cancer-specific differentially expressed immune- and antimicrobial-related genes from the ImmPort, TISIDB, and TCGA databases. We identified 11 hub genes and constructed a prognostic risk model. Further analysis revealed differences at the family and genus levels between distinct groups. Using LEfSe analysis, we identified six hub biomarkers and developed a novel microbial-based scoring system. The scoring system allows subgrouping of bladder cancer patients, with significant differences in prognosis, immune cell infiltration, tumor mutation burden, and immune checkpoints among different groups. Further FISH and immunofluorescence co-staining experiments initially verified that the specific distribution of microorganisms and M2 macrophages in bladder cancer may be closely related to the poor prognosis of patients. In conclusion, this study revealed the characteristics of the intratumoral microbiota in bladder cancer and identified potential prognostic targets for clinical application.
Collapse
Affiliation(s)
- Yuwei Zhang
- Medical School of Nantong University, 9 Qiangyuan Road, Nantong, 226019, China
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Hao Lin
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
- Department of Urology, Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Linghui Liang
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
- Department of Urology, Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Shengkai Jin
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Jing Lv
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Yuhua Zhou
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Feng Xu
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
| | - Fengping Liu
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China.
| | - Ninghan Feng
- Medical School of Nantong University, 9 Qiangyuan Road, Nantong, 226019, China.
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China.
- Department of Urology, Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
9
|
Ghosh A, Jaaback K, Boulton A, Wong-Brown M, Raymond S, Dutta P, Bowden NA, Ghosh A. Fusobacterium nucleatum: An Overview of Evidence, Demi-Decadal Trends, and Its Role in Adverse Pregnancy Outcomes and Various Gynecological Diseases, including Cancers. Cells 2024; 13:717. [PMID: 38667331 PMCID: PMC11049087 DOI: 10.3390/cells13080717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Gynecological and obstetric infectious diseases are crucial to women's health. There is growing evidence that links the presence of Fusobacterium nucleatum (F. nucleatum), an anaerobic oral commensal and potential periodontal pathogen, to the development and progression of various human diseases, including cancers. While the role of this opportunistic oral pathogen has been extensively studied in colorectal cancer in recent years, research on its epidemiological evidence and mechanistic link to gynecological diseases (GDs) is still ongoing. Thus, the present review, which is the first of its kind, aims to undertake a comprehensive and critical reappraisal of F. nucleatum, including the genetics and mechanistic role in promoting adverse pregnancy outcomes (APOs) and various GDs, including cancers. Additionally, this review discusses new conceptual advances that link the immunomodulatory role of F. nucleatum to the development and progression of breast, ovarian, endometrial, and cervical carcinomas through the activation of various direct and indirect signaling pathways. However, further studies are needed to explore and elucidate the highly dynamic process of host-F. nucleatum interactions and discover new pathways, which will pave the way for the development of better preventive and therapeutic strategies against this pathobiont.
Collapse
Affiliation(s)
- Arunita Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Ken Jaaback
- Hunter New England Centre for Gynecological Cancer, John Hunter Hospital, Newcastle, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Angela Boulton
- Newcastle Private Hospital, Newcastle, NSW 2305, Australia; (A.B.); (S.R.)
| | - Michelle Wong-Brown
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Steve Raymond
- Newcastle Private Hospital, Newcastle, NSW 2305, Australia; (A.B.); (S.R.)
| | - Partha Dutta
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nikola A. Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arnab Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| |
Collapse
|
10
|
Feng K, Ren F, Shang Q, Wang X, Wang X. Association between oral microbiome and breast cancer in the east Asian population: A Mendelian randomization and case-control study. Thorac Cancer 2024; 15:974-986. [PMID: 38485288 PMCID: PMC11045337 DOI: 10.1111/1759-7714.15280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The causal relationship between breast cancer (BC) and the oral microbiome remains unclear. In this case-control study, using two-sample Mendelian randomization (MR), we thoroughly explored the relationship between the oral microbiome and BC in the East Asian population. METHODS Genetic summary data related to oral microbiota and BC were collected from genome-wide association studies involving participants of East Asian descent. MR estimates were generated by conducting various analyses. Sequencing data from a case-control study were used to verify the validity of these findings. RESULTS MR analysis revealed that 30 tongue and 37 salivary bacterial species were significantly associated with BC. Interestingly, in both tongue and salivary microbiomes, we observed the causal effect of six genera, namely, Aggregatibacter, Streptococcus, Prevotella, Haemophilus, Lachnospiraceae, Oribacterium, and Solobacterium, on BC. Our case-control study findings suggest differences in specific bacteria between patients with BC and healthy controls. Moreover, sequencing data confirmed the MR analysis results, demonstrating that compared with the healthy control group, the BC group had a higher relative abundance of Pasteurellaceae and Streptococcaceae but a lower relative abundance of Bacteroidaceae. CONCLUSIONS Our MR analysis suggests that the oral microbiome exerts a causative effect on BC risk, supported by the sequencing data of a case-control study. In the future, studies should be undertaken to comprehensively understand the complex interaction mechanisms between the oral microbiota and BC.
Collapse
Affiliation(s)
- Kexin Feng
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fei Ren
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingyao Shang
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xin Wang
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiang Wang
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
11
|
Guo X, Yu K, Huang R. The ways Fusobacterium nucleatum translocate to breast tissue and contribute to breast cancer development. Mol Oral Microbiol 2024; 39:1-11. [PMID: 38171827 DOI: 10.1111/omi.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer is among the most prevalent malignancies in women worldwide. Epidemiological findings suggested that periodontal diseases may be associated with breast cancer, among which Fusobacterium nucleatum is considered an important cross-participant. In this work, we comprehensively summarize the known mechanisms of how F. nucleatum translocates to, colonizes in mammary tumors, and promotes the carcinogenesis. Specifically, F. nucleatum translocates to mammary tissue through the mammary-intestinal axis, direct nipple contact, and hematogenous transmission. Subsequently, F. nucleatum takes advantage of fusobacterium autotransporter protein 2 to colonize breast cancer and uses virulence factors fusobacterium adhesin A and lipopolysaccharide to promote proliferation. Moreover, the upregulated matrix metalloproteinase-9 induced by F. nucleatum does not only trigger the inflammatory response but also facilitates the tumor-promoting microenvironment. Aside from the pro-inflammatory effect, F. nucleatum may also be engaged in tumor immune evasion, which is achieved through the action of virulence factors on immune checkpoint receptors highly expressed on T cells, natural killer cells, and tumor-infiltrating lymphocytes. Taking breast cancer as an example, more relevant research studies may expand our current knowledge of how oral microbes affect systemic health. Hopefully, exploring these mechanisms in depth could provide new strategies for safer and more effective biologic and targeted therapies targeted at breast cancer.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Wang B, Deng J, Donati V, Merali N, Frampton AE, Giovannetti E, Deng D. The Roles and Interactions of Porphyromonas gingivalis and Fusobacterium nucleatum in Oral and Gastrointestinal Carcinogenesis: A Narrative Review. Pathogens 2024; 13:93. [PMID: 38276166 PMCID: PMC10820765 DOI: 10.3390/pathogens13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Epidemiological studies have spotlighted the intricate relationship between individual oral bacteria and tumor occurrence. Porphyromonas gingivalis and Fusobacteria nucleatum, which are known periodontal pathogens, have emerged as extensively studied participants with potential pathogenic abilities in carcinogenesis. However, the complex dynamics arising from interactions between these two pathogens were less addressed. This narrative review aims to summarize the current knowledge on the prevalence and mechanism implications of P. gingivalis and F. nucleatum in the carcinogenesis of oral squamous cell carcinoma (OSCC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). In particular, it explores the clinical and experimental evidence on the interplay between P. gingivalis and F. nucleatum in affecting oral and gastrointestinal carcinogenesis. P. gingivalis and F. nucleatum, which are recognized as keystone or bridging bacteria, were identified in multiple clinical studies simultaneously. The prevalence of both bacteria species correlated with cancer development progression, emphasizing the potential impact of the collaboration. Regrettably, there was insufficient experimental evidence to demonstrate the synergistic function. We further propose a hypothesis to elucidate the underlying mechanisms, offering a promising avenue for future research in this dynamic and evolving field.
Collapse
Affiliation(s)
- Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Valentina Donati
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Fondazione Pisana per la Scienza, 56100 Pisa, Italy
| | - Dongmei Deng
- Department of Prevention Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universitreit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
13
|
Lan Z, Liu WJ, Cui H, Zou KL, Chen H, Zhao YY, Yu GT. The role of oral microbiota in cancer. Front Microbiol 2023; 14:1253025. [PMID: 37954233 PMCID: PMC10634615 DOI: 10.3389/fmicb.2023.1253025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Cancer remains a significant global challenge, with an estimated 47% increase in cancer patients from 2020 to 2040. Increasing research has identified microorganism as a risk factor for cancer development. The oral cavity, second only to the colon, harbors more than 700 bacterial species and serves as a crucial microbial habitat. Although numerous epidemiological studies have reported associations between oral microorganisms and major systemic tumors, the relationship between oral microorganisms and cancers remains largely unclear. Current research primarily focuses on respiratory and digestive system tumors due to their anatomical proximity to the oral cavity. The relevant mechanism research mainly involves 47% dominant oral microbial population that can be cultured in vitro. However, further exploration is necessary to elucidate the mechanisms underlying the association between oral microbiota and tumors. This review systematically summarizes the reported correlations between oral microbiota and common cancers while also outlining potential mechanisms that may guide biological tumor treatment.
Collapse
Affiliation(s)
- Zhou Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Wei-Jia Liu
- Department of Oral Mucosal Diseases, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ke-Long Zou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hao Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yu-Yue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Guang-Tao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Li G, Sun Y, Huang Y, Lian J, Wu S, Luo D, Gong H. Fusobacterium nucleatum-derived small extracellular vesicles facilitate tumor growth and metastasis via TLR4 in breast cancer. BMC Cancer 2023; 23:473. [PMID: 37221488 PMCID: PMC10207721 DOI: 10.1186/s12885-023-10844-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND The contributive role of the microbiome in tumor progression has been reported in multiple studies, such as the Fusobacterium nucleatum (F. nucleatum) in breast cancer (BC). This study aimed to explore the role of F. nucleatum-derived small extracellular vesicles (Fn-EVs) in BC and preliminarily uncover the mechanism. METHODS Ten normal and 20 cancerous breast tissues were harvested to investigate the gDNA expression of F. nucleatum and its relation with the clinical characteristics of BC patients. After isolating Fn-EVs by ultracentrifugation from F. nucleatum (ATCC 25,586), both MDA-MB-231 and MCF-7 cells were treated with PBS, Fn, or Fn-EVs, followed by being subjected to CCK-8, Edu staining, wound healing, and Transwell assays to detect their cell viability, proliferation, migration, and invasion. TLR4 expression in BC cells with diverse treatments was assessed by western blot. In vivo experiments were performed to verify its role in tumor growth and liver metastasis. RESULTS The F. nucleatum gDNA levels of breast tissues in BC patients were significantly higher than those in normal subjects, and positively associated with tumor size and metastasis. Fn-EVs administration significantly enhanced the cell viability, proliferation, migration, and invasion of BC cells, while knocking down TLR4 in BC cells could block these effects. Furthermore, in vivo study verified the contributive role of Fn-EVs in tumor growth and metastasis of BC, which might rely on its regulation of TLR4. CONCLUSIONS Collectively, our results suggest that F. nucleatum plays an important role in BC tumor growth and metastasis by regulating TLR4 through Fn-EVs. Thus, a better understanding of this process may aid in the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Guiqiu Li
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052 PR China
| | - Yan Sun
- Shenzhen Nanshan District Maternal and Child Health Hospital, Shenzhen, 518052 PR China
| | - Yu Huang
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052 PR China
| | - Jie Lian
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052 PR China
| | - Shaoyuan Wu
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052 PR China
| | - Dixian Luo
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052 PR China
| | - Hui Gong
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052 PR China
| |
Collapse
|
15
|
Parida S, Siddharth S, Xia Y, Sharma D. Concomitant analyses of intratumoral microbiota and genomic features reveal distinct racial differences in breast cancer. NPJ Breast Cancer 2023; 9:4. [PMID: 36702853 PMCID: PMC9880005 DOI: 10.1038/s41523-023-00505-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Racial disparities are most accentuated among Black women as their lifetime risk of breast cancer incidence is lower than white and Asian women but their breast cancer related mortality is the highest among all races. Black women are more likely to develop triple-negative breast cancer at a younger age and harbor more aggressive tumors. In addition to tumor-centric alterations, tumor growth is also influenced by multiple other tumor microenvironment-related features, including resident immune cells and microbiota. Hence, in this study, we conduct concurrent genomic and metagenomic analyses, and uncover distinctive intratumoral microbial community compositions and tumor immune microenvironment-related traits in breast tumors from Asian, Black and white women. Interestingly, unique racially associated genomic nodes are found in the breast tumors from Asian, Black and white women. Examination of the cellular heterogeneity show differential enrichment of 11 out of 64 immune and stroma cell types in the breast tumors from different racial groups. In terms of microbial diversity, significant differences are revealed in alpha and beta-diversity measures. Intriguingly, potential race-specific microbial biomarkers of breast cancer are identified which significantly correlate with genes involved with tumor aggressiveness, angiogenesis, tumor cell migration and metastasis as well as oncogenic pathways-GLI and Notch. Investigating the metabolic features of intratumoral microbes, we find a significant differential enrichment of environmental information processing pathways, oncogenic pathways, and lipid metabolism pathways. Concomitantly investigating tumor-centric, tumor immune microenvironment-related and microbial alterations, our study provides a comprehensive understanding of racial disparities in breast cancer and warrants further exploration.
Collapse
Affiliation(s)
- Sheetal Parida
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Sumit Siddharth
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Yuqing Xia
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
| |
Collapse
|
16
|
Fan Z, Tang P, Li C, Yang Q, Xu Y, Su C, Li L. Fusobacterium nucleatum and its associated systemic diseases: epidemiologic studies and possible mechanisms. J Oral Microbiol 2023; 15:2145729. [PMID: 36407281 PMCID: PMC9673791 DOI: 10.1080/20002297.2022.2145729] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Fusobacterium nucleatum (F. nucleatum) is an anaerobic oral commensal and the major coaggregation bridge organism linking early and late colonisers. In recent years, a large number of studies suggest that F. nucleatum is closely related to the development of various systemic diseases, such as cardiovascular diseases, adverse pregnancy outcomes, inflammatory bowel diseases, cancer, Alzheimer's disease, respiratory infection, rheumatoid arthritis, etc. Objective To review the effect of F. nucleatum on systemic diseases and its possible pathogenesis and to open new avenues for prevention and treatment of F. nucleatum-associated systemic diseases. Design The research included every article published up to July 2022 featuring the keywords 'Systemic diseases' OR 'Atherosclerotic cardiovascular diseases' OR 'Atherosclerosis' OR 'Adverse pregnancy outcomes' OR 'Inflammatory bowel disease' OR 'Ulcerative colitis' OR 'Crohn’s disease' OR 'Cancers' OR 'Oral squamous cell carcinomas' OR 'Gastrointestinal cancers' OR 'Colorectal cancer' OR 'Breast cancer' OR 'Genitourinary cancers' OR 'Alzheimer’s disease ' OR 'Rheumatoid arthritis' OR 'Respiratory diseases' AND 'Fusobacterium nucleatum' OR 'Periodontal pathogen' OR 'Oral microbiota' OR 'Porphyromonas gingivalis' and was conducted in the major medical databases. Results F. nucleatum can induce immune response and inflammation in the body through direct or indirect pathways, and thus affect the occurrence and development of systemic diseases. Only by continuing to investigate the pathogenic lifestyles of F. nucleatum will we discover the divergent pathways that may be leveraged for diagnostic, preventive and therapeutic purposes.
Collapse
Affiliation(s)
- Zixin Fan
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengzhou Tang
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Li
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Yang
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Xu
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Su
- State KeyLaboratory of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Li
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
He Z, Tian W, Wei Q, Xu J. Involvement of Fusobacterium nucleatum in malignancies except for colorectal cancer: A literature review. Front Immunol 2022; 13:968649. [PMID: 36059542 PMCID: PMC9428792 DOI: 10.3389/fimmu.2022.968649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is originally an oral opportunistic pathogen and accumulating evidence links the presence of F. nucleatum with the pathogenicity, development, and prognosis of colorectal cancer (CRC). However, only limited preliminary data is available dealing with the role of F. nucleatum in other malignancies except for CRC. The present review aims to update and systematize the latest information about the mechanisms of F. nucleatum-mediating carcinogenesis, together with the detection rates, clinicopathological, and molecular features in F. nucleatum-associated malignancies. Comparing with adjacent non-tumorous tissue, previous studies have shown an overabundance of intratumoural F. nucleatum. Although the prognostic role of F. nucleatum is still controversial, a higher prevalence of F. nucleatum was usually associated with a more advanced tumor stage and a worse overall survival. Preliminary evidence have shown that epithelial-to-mesenchymal transition (EMT) and relevant inflammation and immune response aroused by F. nucleatum may be the probable link between F. nucleatum infection and the initiation of oral/head and neck cancer. Further studies are needed to elucidate the etiologic role of the specific microbiota and the connection between the extent of periodontitis and carcinogenesis in different tumor types. The mechanisms of how the antibiotics exerts the critical role in the carcinogenesis and antitumor effects in malignancies other than CRC need to be further explored.
Collapse
Affiliation(s)
- Zhixing He
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Tian
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xu
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jing Xu,
| |
Collapse
|
18
|
Li TJ, Hao YH, Tang YL, Liang XH. Periodontal Pathogens: A Crucial Link Between Periodontal Diseases and Oral Cancer. Front Microbiol 2022; 13:919633. [PMID: 35847109 PMCID: PMC9279119 DOI: 10.3389/fmicb.2022.919633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence shows a striking link between periodontal diseases and various human cancers including oral cancer. And periodontal pathogens, leading to periodontal diseases development, may serve a crucial role in oral cancer. This review elucidated the molecular mechanisms of periodontal pathogens in oral cancer. The pathogens directly engage in their own unique molecular dialogue with the host epithelium to acquire cancer phenotypes, and indirectly induce a proinflammatory environment and carcinogenic substance in favor of cancer development. And functional, rather than compositional, properties of oral microbial community correlated with cancer development are discussed. The effect of periodontal pathogens on periodontal diseases and oral cancer will further detail the pathogenesis of oral cancer and intensify the need of maintaining oral hygiene for the prevention of oral diseases including oral cancer.
Collapse
Affiliation(s)
- Tian-Jiao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi-hang Hao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Liu Z, Parida S, Wu S, Sears CL, Sharma D, Barman I. Label-Free Vibrational and Quantitative Phase Microscopy Reveals Remarkable Pathogen-Induced Morphomolecular Divergence in Tumor-Derived Cells. ACS Sens 2022; 7:1495-1505. [PMID: 35583030 DOI: 10.1021/acssensors.2c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Delineating the molecular and morphological changes that cancer cells undergo in response to extracellular stimuli is crucial for identifying factors that promote tumor progression. Label-free optical imaging offers a potentially promising route for retrieving such single-cell information by generating detailed visualization of the morphology and determining alterations in biomolecular composition. The potential of such nonperturbative morphomolecular microscopy for analyzing microbiota-cancer cell interactions has been surprisingly underappreciated, despite the growing evidence of the critical role of dysbiosis in malignant transformations. Here, using a model system of breast cancer cells, we show that label-free Raman microspectroscopy and quantitative phase microscopy can detect biomolecular and morphological changes in single cells exposed to Bacteroides fragilis toxin (BFT), a toxin secreted by enterotoxigenicB. fragilis. Remarkably, using machine learning to elucidate subtle, but consistent, cellular differences, we found that the morphomolecular differences between BFT-exposed and control breast cancer cells became more accentuated after in vivo passage, corroborating our findings that a short-term BFT exposure imparts a long-term effect on cancer cells and promotes a more invasive phenotype. Complementing more classical labeling techniques, our label-free platform offers a global detection approach with measurements representative of the overall cellular phenotype, paving the way for further investigations into the multifaceted interactions between the cancer cell and the microbiota.
Collapse
Affiliation(s)
- Zhenhui Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sheetal Parida
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Shaoguang Wu
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Cynthia L. Sears
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
20
|
Abstract
Accumulating evidence demonstrates that the oral pathobiont Fusobacterium nucleatum is involved in the progression of an increasing number of tumors types. Thus far, the mechanisms underlying tumor exacerbation by F. nucleatum include the enhancement of proliferation, establishment of a tumor‐promoting immune environment, induction of chemoresistance, and the activation of immune checkpoints. This review focuses on the mechanisms that mediate tumor‐specific colonization by fusobacteria. Elucidating the mechanisms mediating fusobacterial tumor tropism and promotion might provide new insights for the development of novel approaches for tumor detection and treatment.
Collapse
Affiliation(s)
- Tamar Alon-Maimon
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ofer Mandelboim
- The Concern Foundation Laboratories, Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
21
|
Kovács T, Mikó E, Ujlaki G, Yousef H, Csontos V, Uray K, Bai P. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev 2021; 40:1223-1249. [PMID: 34967927 PMCID: PMC8825384 DOI: 10.1007/s10555-021-10013-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer, the most frequent cancer in women, is characterized by pathological changes to the microbiome of breast tissue, the tumor, the gut, and the urinary tract. Changes to the microbiome are determined by the stage, grade, origin (NST/lobular), and receptor status of the tumor. This year is the 50th anniversary of when Hill and colleagues first showed that changes to the gut microbiome can support breast cancer growth, namely that the oncobiome can reactivate excreted estrogens. The currently available human and murine data suggest that oncobiosis is not a cause of breast cancer, but can support its growth. Furthermore, preexisting dysbiosis and the predisposition to cancer are transplantable. The breast's and breast cancer's inherent microbiome and the gut microbiome promote breast cancer growth by reactivating estrogens, rearranging cancer cell metabolism, bringing about a more inflammatory microenvironment, and reducing the number of tumor-infiltrating lymphocytes. Furthermore, the gut microbiome can produce cytostatic metabolites, the production of which decreases or blunts breast cancer. The role of oncobiosis in the urinary tract is largely uncharted. Oncobiosis in breast cancer supports invasion, metastasis, and recurrence by supporting cellular movement, epithelial-to-mesenchymal transition, cancer stem cell function, and diapedesis. Finally, the oncobiome can modify the pharmacokinetics of chemotherapeutic drugs. The microbiome provides novel leverage on breast cancer that should be exploited for better management of the disease.
Collapse
Affiliation(s)
- Tünde Kovács
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Heba Yousef
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Viktória Csontos
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|