1
|
Hemdan M, Abdel Mageed SS, Abulsoud AI, Faraag AHI, Zaki MB, Mansour RM, Raouf AA, Ali MA, Mohammed OA, Salman A, Salah AN, Abdel-Reheim MA, Doghish AS. Approaches based on miRNAs in Behçet's Disease: Unveiling pathogenic mechanisms, diagnostic strategies, and therapeutic applications. Life Sci 2024; 354:122950. [PMID: 39128821 DOI: 10.1016/j.lfs.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Behçet's Disease (BD) is an intricate medical puzzle, captivating researchers with its enigmatic pathogenesis. This complex ailment, distinguished by recurrent mouth and genital lesions, eye irritation, and skin injuries, presents a substantial obstacle to therapeutic research. This review explores the complex interaction of microRNAs (miRNAs) with BD, highlighting their crucial involvement in the disease's pathophysiology. miRNAs, recognized for regulatory influence in diverse biological processes, hold a pivotal position in the molecular mechanisms of autoimmune diseases, such as BD. The exploration begins with examining miRNA biogenic pathways and functions, establishing a foundational understanding of their regulatory mechanisms. Shifting to the molecular landscape governing BD, the review highlights miRNA-mediated impacts on critical signaling pathways like Notch, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and protein kinase B (AKT)/mammalian target of rapamycin (mTOR), offering insights into intricate pathophysiological mechanisms. Dissecting the immunological landscape reveals the profound influence of miRNAs on BD, shedding light on the intricate modulation of immune responses and offering novel perspectives on disease etiology and progression. Beyond molecular intricacies, the review explores the clinical relevance of miRNAs in BD, emphasizing their potential as diagnostic and prognostic indicators. The discussion extends to the promising realm of miRNA-based therapeutic interventions, highlighting their potential in alleviating symptoms and altering disease progression. This comprehensive review, serving as a valuable resource for researchers, clinicians, and stakeholders, aims to decipher the intricate molecular tapestry of BD and explore the therapeutic potential of miRNAs.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Akram N Salah
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
2
|
Tomkins-Netzer O, Niederer R, Greenwood J, Fabian ID, Serlin Y, Friedman A, Lightman S. Mechanisms of blood-retinal barrier disruption related to intraocular inflammation and malignancy. Prog Retin Eye Res 2024; 99:101245. [PMID: 38242492 DOI: 10.1016/j.preteyeres.2024.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Blood-retinal barrier (BRB) disruption is a common accompaniment of intermediate, posterior and panuveitis causing leakage into the retina and macular oedema resulting in vision loss. It is much less common in anterior uveitis or in patients with intraocular lymphoma who may have marked signs of intraocular inflammation. New drugs used for chemotherapy (cytarabine, immune checkpoint inhibitors, BRAF inhibitors, EGFR inhibitors, bispecific anti-EGFR inhibitors, MET receptor inhibitors and Bruton tyrosine kinase inhibitors) can also cause different types of uveitis and BRB disruption. As malignant disease itself can cause uveitis, particularly from breast, lung and gastrointestinal tract cancers, it can be clinically difficult to sort out the cause of BRB disruption. Immunosuppression due to malignant disease and/or chemotherapy can lead to infection which can also cause BRB disruption and intraocular infection. In this paper we address the pathophysiology of BRB disruption related to intraocular inflammation and malignancy, methods for estimating the extent and effect of the disruption and examine why some types of intraocular inflammation and malignancy cause BRB disruption and others do not. Understanding this may help sort and manage these patients, as well as devise future therapeutic approaches.
Collapse
Affiliation(s)
- Oren Tomkins-Netzer
- Department of Ophthalmology, Lady Davis Carmel Medical Centre, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Rachael Niederer
- Department of Ophthalmology, Te Whatu Ora, Auckland, New Zealand; Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, UK
| | - Ido Didi Fabian
- The Goldschleger Eye Institute, Sheba Medical Centre, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Yonatan Serlin
- Department of Medical Neuroscience and the Brain Repair Centre, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Alon Friedman
- Department of Medical Neuroscience and the Brain Repair Centre, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada; Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlotowski Centre for Neuroscience, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Sue Lightman
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
3
|
Pham JP, Wark KJL, Woods J, Frew JW. Resident cutaneous memory T cells: a clinical review of their role in chronic inflammatory dermatoses and potential as therapeutic targets. Br J Dermatol 2023; 189:656-663. [PMID: 37603832 DOI: 10.1093/bjd/ljad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Resident memory T cells (T-RMs) remain in epithelial barrier tissues after antigen exposure and the initial effector phase. These T-RMs provide effective antimicrobial and anticancer immunity; however, pathogenic T-RMs have been shown to mediate various chronic inflammatory disorders in a variety of tissue types. In the skin, T-RMs are referred to as resident cutaneous memory T cells (cT-RMs). Understanding the mechanisms leading to the development and establishment of these cT-RMs populations may allow for targeted treatments that provide durable responses in chronic immune-mediated skin diseases, even after cessation. In this review, we summarize the evidence on cT-RMs as drivers of chronic inflammatory dermatoses, including psoriasis, vitiligo, atopic dermatitis, cutaneous lupus erythematosus and alopecia areata, among others. Data from in vitro, animal model and ex vivo human studies are presented, with a focus on the potential for cT-RMs to trigger acute disease flares, as well as recurrent disease, by establishing an immune 'memory' in the skin. Furthermore, the available data on the potential for existing and novel treatments to affect the development or survival of cT-RMs in the skin are synthesized. The data suggest a dynamic and rapidly growing area in the field of dermatology; however, we also discuss areas in need of greater research to allow for optimal treatment selection for long-term disease control.
Collapse
Affiliation(s)
- James P Pham
- School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW, Australia
- Department of Dermatology, Liverpool Hospital, Liverpool, NSW, Australia
- Laboratory of Translational Cutaneous Medicine, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Kirsty J L Wark
- Department of Dermatology, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jane Woods
- School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW, Australia
- Department of Dermatology, Liverpool Hospital, Liverpool, NSW, Australia
| | - John W Frew
- School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW, Australia
- Department of Dermatology, Liverpool Hospital, Liverpool, NSW, Australia
- Laboratory of Translational Cutaneous Medicine, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
4
|
Zhong Z, Su G, Yang P. Risk factors, clinical features and treatment of Behçet's disease uveitis. Prog Retin Eye Res 2023; 97:101216. [PMID: 37734442 DOI: 10.1016/j.preteyeres.2023.101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Behçet's disease is a systemic vasculitis frequently associated with intraocular inflammation. Recent findings identified independent clinical clusters in Behçet's disease, each involving distinct combinations of affected organs. Ocular Behçet's disease, mainly manifested as uveitis, is characterized as an independent cluster with a low likelihood of association with other system involvements, such as intestinal, cardiovascular, or central nervous system. A prevailing theory suggests that the pathogenesis of the disease is multifactorial, where a variety of genetic and infectious agents may interact with each other to cause the disease. Among sporadic cases, the human leukocyte antigen (HLA) genes, including HLA-B51, HLA-A26, HLA-B15, and HLA-B5701, have been found to be a key component conferring genetic susceptibility. Outside the HLA region, a set of susceptibility variants are identified, closely related to interleukin (IL)-23/IL-17 pathway, tumor necrosis factor (TNF) signaling, and pattern recognition receptor systems. Microbial infections, such as Streptococcus sanguinis, Mycobacterium tuberculosis, and Herpes simplex virus (HSV), are linked to play the triggering of disease in immunogenetically predisposed individuals. Clinically, due to the notable relapsing-remitting course of ocular Behçet's disease, the prevention of recurrent attack would be the primary treatment goal. Combination of corticosteroids and immunomodulatory drugs, such as anti-TNF agents, interferon, and conventional immunosuppressants (e.g. cyclosporine, azathioprine), have been the mainstream regimen for the disease. Future research may focus on comparing the effectiveness of immunomodulatory drugs and identifying the most suitable subgroups for a specific drug on the basis of the knowledge of the molecular heterogeneity of the disease.
Collapse
Affiliation(s)
- Zhenyu Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|
5
|
Arıkan S, Öztürk O, Duygulu Ş, Atalay EÖ, Atalay A. Associations of IL-17 and IL-17 receptor polymorphisms with Behçet's disease in Denizli Province of Turkey. Immunol Res 2023; 71:600-608. [PMID: 36701075 DOI: 10.1007/s12026-023-09363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
Although the etiopathogenesis of Behçet's disease is not known, studies conducted in different populations show that it is a multifactorial disease that is thought to develop as a result of the interaction of environmental and genetic factors. IL-17 is thought to induce the neutrophilic inflammation and the tissue damage mediated by immune response in patients. Polymorphisms in the gene region encoding IL-17 and IL-17R molecules may play a critical role in the pathogenesis of the disease and contribute to the elucidation of disease mechanism. We aimed to show the association of IL-17A, IL-17F, and IL-17RC polymorphisms and haplotypes in Behçet's disease patients and its clinical features. We genotyped IL-17A (rs4711998 (A/G), rs8193036 (C/T), rs2275913 (A/G), rs3819025 (A/G), rs8193038 (A/G), rs3804513 (A/T), rs1974226 (C/T), rs3748067 (C/T)); IL-17F (rs763780 (T/C), rs2397084 (T/C)); and IL-17R (IL-17RC) (rs708567 (C/T)) polymorphisms in 88 patients with Behçet's disease and 133 healthy controls using PCR-RFLP-based approach. The results of our study showed that polymorphisms of IL-17A, rs8193036 (C/T), rs3819025 (G/A), rs3804513 (A/T), IL-17F rs2397084 (T/C), and IL-17RC rs708567 (C/T) are associated with the susceptibility to the BD. When the haplotype distributions of all loci of IL-17Aand IL-17A/IL-17F together were examined and in contrast to the data obtained from the controls, the GTGGAACC (27.84%) and GTGGAACCTT (25.57%) have the highest frequencies. In conclusion, the allele and genotype frequency differences of the IL-17A, IL-17F, and IL-17R and haplotype frequencies between Behçet's disease and controls indicate that the genetic structure of Behçet's disease may be different.
Collapse
Affiliation(s)
- Sanem Arıkan
- Department of Biophysics, Faculty of Medicine, Pamukkale University, 20070, Denizli, Turkey.
| | - Onur Öztürk
- Department of Biophysics, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkey
| | - Şeniz Duygulu
- Department of Dermatology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Erol Ömer Atalay
- Department of Biophysics, Faculty of Medicine, Pamukkale University, 20070, Denizli, Turkey
| | - Ayfer Atalay
- Department of Biophysics, Faculty of Medicine, Pamukkale University, 20070, Denizli, Turkey
| |
Collapse
|
6
|
Zhang C, Liu X, Xiao J, Jiang F, Fa L, Jiang H, Zhou L, Su W, Xu Z. γδ T cells in autoimmune uveitis pathogenesis: A promising therapeutic target. Biochem Pharmacol 2023; 213:115629. [PMID: 37257721 DOI: 10.1016/j.bcp.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Autoimmune uveitis is a non-infectious, inflammatory intraocular disease that affects the uveal and adjacent tissues. It frequently causes varying degrees of visual loss. Evidence for the strong association between activated γδ T cells and the development of autoimmune uveitis is growing. The innate and adaptive immune response are connected in the early phases by the γδ T cells that contain the γ and δ chains. γδ T cells can identify antigens in a manner that is not constrained by the MHC. When activated by various pathways, γδ T cells can not only secrete pro-inflammatory factors early on (such as IL-17), but they can also promote Th17 cells responses, which ultimately exacerbates autoimmune uveitis. Therefore, we review the mechanisms by which γδ T cells affect autoimmune uveitis in different activation and disease states. Moreover, we also prospect for immunotherapies targeting different γδ T cell-related action pathways, providing a reference for exploring new drug for the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanwen Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Luzhong Fa
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Sanz M, Mann BT, Ryan PL, Bosque A, Pennington DJ, Hackstein H, Soriano-Sarabia N. Deep characterization of human γδ T cell subsets defines shared and lineage-specific traits. Front Immunol 2023; 14:1148988. [PMID: 37063856 PMCID: PMC10102470 DOI: 10.3389/fimmu.2023.1148988] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Under non-pathological conditions, human γδ T cells represent a small fraction of CD3+ T cells in peripheral blood (1-10%). They constitute a unique subset of T lymphocytes that recognize stress ligands or non-peptide antigens through MHC-independent presentation. Major human γδ T cell subsets, Vδ1 and Vδ2, expand in response to microbial infection or malignancy, but possess distinct tissue localization, antigen recognition, and effector responses. We hypothesized that differences at the gene, phenotypic, and functional level would provide evidence that γδ T cell subpopulations belong to distinct lineages. Comparisons between each subset and the identification of the molecular determinants that underpin their differences has been hampered by experimental challenges in obtaining sufficient numbers of purified cells. By utilizing a stringent FACS-based isolation method, we compared highly purified human Vδ1 and Vδ2 cells in terms of phenotype, gene expression profile, and functional responses. We found distinct genetic and phenotypic signatures that define functional differences in γδ T cell populations. Differences in TCR components, repertoire, and responses to calcium-dependent pathways suggest that Vδ1 and Vδ2 T cells are different lineages. These findings will facilitate further investigation into the ligand specificity and unique role of Vδ1 and Vδ2 cells in early immune responses.
Collapse
Affiliation(s)
- Marta Sanz
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Brendan T. Mann
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Paul L. Ryan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Daniel J. Pennington
- Centre for Immunology, Blizzard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Natalia Soriano-Sarabia
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
8
|
Ryu HM, Islam SMS, Sayeed HM, Babita R, Seong JK, Lee H, Sohn S. Characterization of immune responses associated with ERAP-1 expression in HSV-induced Behçet's disease mouse model. Clin Immunol 2023; 250:109305. [PMID: 37003592 DOI: 10.1016/j.clim.2023.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Behçet's disease (BD) is a chronic multisystem inflammatory disorder. Endoplasmic reticulum aminopeptidase 1 (ERAP1) polymorphism has been reported as a risk factor for BD. However, the immunological role of ERAP1 in BD remains unclear. Therefore, the purpose of this study was to investigate the immunological role of ERAP1 in BD using a mouse model. ERAP1 incomplete expressing mice (ERAP1 hetero, +/-) were generated and inoculated with herpes simplex virus 1 to produce a BD mouse model. In these mice, dendritic cell activation markers and other immune response-related markers were analyzed. Among them, the factor showing a significant difference between ERAP+/- BD mice and WT BD mice was IL-17. In ERAP+/-, BD had significantly different expression levels of CD80, CD11b, Ly6G, RORγt, IFNγ, and IL-17 compared to asymptomatic controls. This study demonstrates ERAP1 defective expressions play an important role in BD development through inappropriate regulation of Th17.
Collapse
Affiliation(s)
- Hye-Myung Ryu
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - S M Shamsul Islam
- Department of Biomedical Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Hasan M Sayeed
- Department of Biomedical Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Rahar Babita
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Interdiscplinary Program for Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Lee
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi 10408, Republic of Korea
| | - Seonghyang Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
9
|
γδ T Lymphocytes as a Double-Edged Sword-State of the Art in Gynecological Diseases. Int J Mol Sci 2022; 23:ijms232314797. [PMID: 36499125 PMCID: PMC9740168 DOI: 10.3390/ijms232314797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Human gamma-delta (γδ) T cells are a heterogeneous cell population that bridges the gap between innate and acquired immunity. They are involved in a variety of immunological processes, including tumor escape mechanisms. However, by being prolific cytokine producers, these lymphocytes also participate in antitumor cytotoxicity. Which one of the two possibilities takes place depends on the tumor microenvironment (TME) and the subpopulation of γδ T lymphocytes. The aim of this paper is to summarize existing knowledge about the phenotype and dual role of γδ T cells in cancers, including ovarian cancer (OC). OC is the third most common gynecological cancer and the most lethal gynecological malignancy. Anticancer immunity in OC is modulated by the TME, including by immunosuppressive cells, cytokines, and soluble factors. Immune cells are exposed in the TME to many signals that determine their immunophenotype and can manipulate their functions. The significance of γδ T cells in the pathophysiology of OC is enigmatic and remains to be investigated.
Collapse
|