1
|
Raftery AL, Pattaroni C, Harris NL, Tsantikos E, Hibbs ML. Environmental and inflammatory factors influencing concurrent gut and lung inflammation. Inflamm Res 2024:10.1007/s00011-024-01953-x. [PMID: 39432107 DOI: 10.1007/s00011-024-01953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Crohn's disease and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases that affect the gut and lung respectively and can occur comorbidly. METHODS Using the SHIP-1-/- model of Crohn's-like ileitis and chronic lung inflammation, the two diseases were co-investigated. RESULTS Contrary to prior literature, Crohn's-like ileitis was not fully penetrant in SHIP-1-/- mice, and housing in a specific pathogen-free facility was completely protective. Indeed, ileal tissue from SHIP-1-/- mice without overt ileitis was similar to control ilea. However, SHIP-1-/- mice with ileitis exhibited increased granulocytes in ileal tissue together with T cell lymphopenia and they lacked low abundance Bifidobacteria, suggesting this bacterium protects against ileitis. Lung disease, as defined by inflammation in lung washes, emphysema, and lung consolidation, was present in SHIP-1-/- mice regardless of ileitis phenotype; however, there was a shift in the nature of lung inflammation in animals with ileitis, with increased G-CSF and neutrophils, in addition to type 2 cytokines and eosinophils. Deficiency of G-CSF, which protects against lung disease, protected against the development of ileitis in SHIP-1-/- mice. CONCLUSIONS These studies have defined environmental, immune, and inflammatory factors that predispose to ileitis, and have identified that comorbid lung disease correlates with a granulocyte signature.
Collapse
Affiliation(s)
- April L Raftery
- Department of Immunology, School of Translational Medicine, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Céline Pattaroni
- Department of Immunology, School of Translational Medicine, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Nicola L Harris
- Department of Immunology, School of Translational Medicine, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Evelyn Tsantikos
- Department of Immunology, School of Translational Medicine, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Margaret L Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
2
|
Raftery AL, O'Brien CA, Shad A, L'Estrange-Stranieri E, Hsu AT, Jacobsen EA, Harris NL, Tsantikos E, Hibbs ML. Activated eosinophils in early life impair lung development and promote long-term lung damage. Mucosal Immunol 2024; 17:871-891. [PMID: 38901764 DOI: 10.1016/j.mucimm.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Exaggeration of type 2 immune responses promotes lung inflammation and altered lung development; however, eosinophils, despite expansion in the postnatal lung, have not been specifically assessed in the context of neonatal lung disease. Furthermore, early life factors including prematurity and respiratory infection predispose infants to chronic obstructive pulmonary disease later in life. To assess eosinophils in the developing lung and how they may contribute to chronic lung disease, we generated mice harboring eosinophil-specific deletion of the negative regulatory enzyme SH2 domain-containing inositol 5' phosphatase-1. This increased the activity and number of pulmonary eosinophils in the developing lung, which was associated with impaired lung development, expansion of activated alveolar macrophages (AMφ), multinucleated giant cell formation, enlargement of airspaces, and fibrosis. Despite regression of eosinophils following completion of lung development, AMφ-dominated inflammation persisted, alongside lung damage. Bone marrow chimera studies showed that SH2 domain-containing inositol 5' phosphatase-1-deficient eosinophils were not sufficient to drive inflammatory lung disease in adult steady-state mice but once inflammation and damage were present, it could not be resolved. Depletion of eosinophils during alveolarization alleviated pulmonary inflammation and lung pathology, demonstrating an eosinophil-intrinsic effect. These results show that the presence of activated eosinophils during alveolarization aggravates AMφs and promotes sustained inflammation and long-lasting lung pathology.
Collapse
Affiliation(s)
- April L Raftery
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Caitlin A O'Brien
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ali Shad
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elan L'Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Amy T Hsu
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Nicola L Harris
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Evelyn Tsantikos
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Margaret L Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Campitiello R, Soldano S, Gotelli E, Hysa E, Montagna P, Casabella A, Paolino S, Pizzorni C, Sulli A, Smith V, Cutolo M. The intervention of macrophages in progressive fibrosis characterizing systemic sclerosis: A systematic review. Autoimmun Rev 2024; 23:103637. [PMID: 39255852 DOI: 10.1016/j.autrev.2024.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND AIM Systemic sclerosis (SSc) is an immune mediated connective tissue disease characterized by microvascular dysfunction, aberrant immune response, and progressive fibrosis. Although the immuno-pathophysiological mechanisms underlying SSc are not fully clarified, they are often associated with a dysfunctional macrophage activation toward an alternative (M2) phenotype induced by cytokines [i.e., IL-4, IL-10, IL-13, and transforming growth factor (TGF-β)] involved in the fibrotic and anti-inflammatory process. A spectrum of macrophage activation state has been identified ranging from M1 to M2 phenotype, gene expression of phenotype markers, and functional aspects. This systematic review aims to analyze the importance of M2 macrophage polatization during the immune mediated process and the identification of specific pathways, cytokines, and chemokines involved in SSc pathogenesis. Moreover, this review provides an overview on the in vitro and in vivo studies aiming to test therapeutic strategies targeting M2 macrophages. METHODS A systematic literature review was performed according to the preferred Reported Items for Systematic Reviews and Meta-Analyses (PRISMA). The search encompassed the online medical databases PubMed and Embase up to the 30th of June 2024. Original research manuscripts (in vitro study, in vivo study), animal model and human cohort, were considered for the review. Exclusion criteria encompassed reviews, case reports, correspondences, and conference abstracts/posters. The eligible manuscripts main findings were critically analyzed, discussed, and summarized in the correspondent tables. RESULTS Out of the 77 screened abstracts, 49 papers were deemed eligible. Following a critical analysis, they were categorized according to the primary (29 original articles) and secondary (20 original articles) research objectives of this systematic review. The data from the present systematic review suggest the pivotal role of M2 macrophages differentiation and activation together with the dysregulation of the immune system in the SSc pathogenesis. Strong correlations have been found between M2 macrophage presence and clinical manifestations in both murine and human tissue samples. Interestingly, the presence of M2 cell surface markers on peripheral blood monocytes has been highlighted, suggesting a potential biomarker role for this finding. Therapeutic effects reducing M2 macrophage activities have been observed and/or tested for existing and for new drugs, demonstrating potential efficacy in modulating the pro-fibrotic immune response for treatment of SSc. CONCLUSIONS The increased M2 macrophage activation in course of SSc seems to offer new insights on the self-amplifying inflammatory and fibrotic response by the immune system on such disease. Therefore, the revaluation of immunomodulatory and ongoing antifibrotic therapies, as well as novel therapeutical approaches in SSc that contribute to limit the M2 macrophage activation are matter of intense investigations.
Collapse
Affiliation(s)
- Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy
| | - Elvis Hysa
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Paola Montagna
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Andrea Casabella
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, University of Ghent, Ghent, Belgium; Department of Internal Medicine, Ghent University Hospital, University of Ghent, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, Flemish Institute for Biotechnology, Inflammation Research Center, Ghent, Belgium.
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
4
|
Jeon TJ, Kim OH, Kang H, Lee HJ. Preadipocytes potentiate melanoma progression and M2 macrophage polarization in the tumor microenvironment. Biochem Biophys Res Commun 2024; 721:150129. [PMID: 38762933 DOI: 10.1016/j.bbrc.2024.150129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Melanoma, the deadliest skin cancer, originates from epidermal melanocytes. The influence of preadipocytes on melanoma is less understood. We co-cultured mouse melanoma B16 cells with 3T3L1 preadipocytes to form mixed spheroids and observed increased melanoma proliferation and growth compared to B16-only spheroids. Metastasis-related proteins YAP, TAZ, and PD-L1 levels were also higher in mixed spheroids. Treatment with exosome inhibitor GW4869 halted melanoma growth and reduced expression of these proteins, suggesting exosomal crosstalk between B16 and 3T3L1 cells. MiR-155 expression was significantly higher in mixed spheroids, and GW4869 reduced its levels. Additionally, co-culturing with Raw264.7 macrophage cells increased M2 markers IL-4 and CD206 in Raw264.7 cells, effects that were diminished by GW4869. These results indicate that preadipocytes may enhance melanoma progression and metastasis via exosomal interactions.
Collapse
Affiliation(s)
- Tae Jin Jeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, South Korea
| | - Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Hana Kang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, South Korea
| | - Hyun Jung Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, South Korea; Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
5
|
Quan YZ, Ma A, Ren CQ, An YP, Qiao PS, Gao C, Zhang YK, Li XW, Lin SM, Li NN, Chen DL, Pan Y, Zhou H, Lin DM, Lin SQ, Li M, Yang BX. Ganoderic acids alleviate atherosclerosis by inhibiting macrophage M1 polarization via TLR4/MyD88/NF-κB signaling pathway. Atherosclerosis 2024; 391:117478. [PMID: 38417185 DOI: 10.1016/j.atherosclerosis.2024.117478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid infiltration and plaque formation in blood vessel walls. Ganoderic acids (GA), a class of major bioactive compounds isolated from the Chinese traditional medicine Ganoderma lucidum, have multiple pharmacological activities. This study aimed to determine the anti-atherosclerotic effect of GA and reveal the pharmacological mechanism. METHODS ApoE-/- mice were fed a high-cholesterol diet and treated with GA for 16 weeks to induce AS and identify the effect of GA. Network pharmacological analysis was performed to predict the anti-atherosclerotic mechanisms. An invitro cell model was used to explore the effect of GA on macrophage polarization and the possible mechanism involved in bone marrow dereived macrophages (BMDMs) and RAW264.7 cells stimulated with lipopolysaccharide or oxidized low-density lipoprotein. RESULTS It was found that GA at 5 and 25 mg/kg/d significantly inhibited the development of AS and increased plaque stability, as evidenced by decreased plaque in the aorta, reduced necrotic core size and increased collagen/lipid ratio in lesions. GA reduced the proportion of M1 macrophages in plaques, but had no effect on M2 macrophages. In vitro experiments showed that GA (1, 5, 25 μg/mL) significantly decreased the proportion of CD86+ macrophages and the mRNA levels of IL-6, IL-1β, and MCP-1 in macrophages. Experimental results showed that GA inhibited M1 macrophage polarization by regulating TLR4/MyD88/NF-κB signaling pathway. CONCLUSIONS This study demonstrated that GA play an important role in plaque stability and macrophage polarization. GA exert the anti-atherosclerotic effect partly by regulating TLR4/MyD88/NF-κB signaling pathways to inhibit M1 polarization of macrophages. Our study provides theoretical basis and experimental data for the pharmacological activity and mechanisms of GA against AS.
Collapse
Affiliation(s)
- Ya-Zhu Quan
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ang Ma
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Chao-Qun Ren
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Pan An
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Pan-Shuang Qiao
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Cai Gao
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yu-Kun Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, 404020, China
| | - Xiao-Wei Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; China Resources Pharmaceutical Group Limited, Beijing, 100000, China
| | - Si-Mei Lin
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Nan-Nan Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Di-Long Chen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, 404020, China
| | - Yan Pan
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Zhou
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dong-Mei Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shu-Qian Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bao-Xue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
6
|
Cornice J, Verzella D, Arboretto P, Vecchiotti D, Capece D, Zazzeroni F, Franzoso G. NF-κB: Governing Macrophages in Cancer. Genes (Basel) 2024; 15:197. [PMID: 38397187 PMCID: PMC10888451 DOI: 10.3390/genes15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are the major component of the tumor microenvironment (TME), where they sustain tumor progression and or-tumor immunity. Due to their plasticity, macrophages can exhibit anti- or pro-tumor functions through the expression of different gene sets leading to distinct macrophage phenotypes: M1-like or pro-inflammatory and M2-like or anti-inflammatory. NF-κB transcription factors are central regulators of TAMs in cancers, where they often drive macrophage polarization toward an M2-like phenotype. Therefore, the NF-κB pathway is an attractive therapeutic target for cancer immunotherapy in a wide range of human tumors. Hence, targeting NF-κB pathway in the myeloid compartment is a potential clinical strategy to overcome microenvironment-induced immunosuppression and increase anti-tumor immunity. In this review, we discuss the role of NF-κB as a key driver of macrophage functions in tumors as well as the principal strategies to overcome tumor immunosuppression by targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| |
Collapse
|
7
|
Ye X, Zhang M, Zhang N, Wei H, Wang B. Gut-brain axis interacts with immunomodulation in inflammatory bowel disease. Biochem Pharmacol 2024; 219:115949. [PMID: 38036192 DOI: 10.1016/j.bcp.2023.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The brain and the gastrointestinal (GI) tract are important sensory organs in the body and the two-way interaction that exists between them regulates key physiological and homeostatic functions. A growing body of research suggests that this bidirectional communication influences the development and progression of functional GI disorders and plays an important role in the treatment of central nervous system (CNS) disorders. Inflammatory bowel disease (IBD) is a classic intestinal disorder with a high prevalence but still unclear pathogenesis that has been widely discussed in recent years. However, in the studies available to date, we find that many authors have chosen to discuss the influence of the brain on intestinal disorders from the top down, starting with physical and psychological disorders. Coming very naturally, based on these substantial research evidence, we focus on exploring the links between bidirectional communication in the gut-brain axis and IBD, and highlight the role of the gut microbiota, vagus nerve (VN), receptors and immune cells involved in regulating IBD through the gut-brain axis in this review.
Collapse
Affiliation(s)
- Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ning Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai 201203, China.
| |
Collapse
|
8
|
Yeoh WJ, Krebs P. SHIP1 and its role for innate immune regulation-Novel targets for immunotherapy. Eur J Immunol 2023; 53:e2350446. [PMID: 37742135 DOI: 10.1002/eji.202350446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Ge X, Xue G, Ding Y, Li R, Hu K, Xu T, Sun M, Liao W, Zhao B, Wen C, Du J. The Loss of YTHDC1 in Gut Macrophages Exacerbates Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205620. [PMID: 36922750 PMCID: PMC10190588 DOI: 10.1002/advs.202205620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
The nuclear N6 -methyladenosine (m6 A) reader YT521-B homology-domain-containing protein 1 (YTHDC1) is required to maintain embryonic stem cell identity. However, little is known about its biological functions in intestinal-resident macrophages and inflammatory bowel disease (IBD). Herein, it is demonstrated that macrophage-specific depletion or insufficiency of YTHDC1 accelerates IBD development in animal models. On the molecular basis, YTHDC1 reduction in IBD-derived macrophages is attributed to Zinc finger protein 36 (ZFP36)-induced mRNA degradation. Importantly, transcriptome profiling and mechanistic assays unveil that YTHDC1 in macrophages regulates Ras homolog family member H (RHOH) to suppress inflammatory responses and fine-tunes NME nucleoside diphosphate kinase 1 (NME1) to enhance the integrity of colonic epithelial barrier, respectively. Collectively, this study identifies YTHDC1 as an important factor for the resolution of inflammatory responses and restoration of colonic epithelial barrier in the setting of IBD.
Collapse
Affiliation(s)
- Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
| | - Gang Xue
- Department of GastroenterologySecond Hospital of Shanxi Medical UniversityTaiyuanShanxi030001China
| | - Yan Ding
- Department of DermatologyHainan Provincial Hospital of Skin DiseaseHaikouHainan570000China
- Department of DermatologyHainan Medical University Affiliated Dermatology Hospital of Hainan Medical CollegeHaikouHainan570000China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
| | - Kaining Hu
- Department of Human GeneticsThe University of ChicagoChicagoIL60637USA
| | - Tengjiao Xu
- Department of DermatologyHainan Medical University Affiliated Dermatology Hospital of Hainan Medical CollegeHaikouHainan570000China
| | - Ming Sun
- College of Life SciencesMudanjiang Medical UniversityMudanjiangHeilongjiang157011China
| | - Wang Liao
- Department of CardiologyHainan General Hospital and Hainan Affiliated Hospital of Hainan Medical UniversityHaikou570311China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
| | - Chuangyu Wen
- Central LaboratoryAffiliated Dongguan HospitalSouthern Medical UniversityDongguanGuangdong523108China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
- Institute of Biomedical ResearchShanxi Medical UniversityTaiyuanShanxi030001China
| |
Collapse
|
10
|
Wang J, Gao H, Xie Y, Wang P, Li Y, Zhao J, Wang C, Ma X, Wang Y, Mao Q, Xia H. Lycium barbarum polysaccharide alleviates dextran sodium sulfate-induced inflammatory bowel disease by regulating M1/M2 macrophage polarization via the STAT1 and STAT6 pathways. Front Pharmacol 2023; 14:1044576. [PMID: 37144216 PMCID: PMC10151498 DOI: 10.3389/fphar.2023.1044576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Disruption of colonic homeostasis caused by aberrant M1/M2 macrophage polarization contributes to the development of inflammatory bowel disease (IBD). Lycium barbarum polysaccharide (LBP) is the primary active constituent of traditional Chinese herbal Lycium barbarum L., which has been widely demonstrated to have important functions in regulating immune activity and anti-inflammatory. Thus, LBP may protect against IBD. To test this hypothesis, the DSS-induced colitis model was established in mice, then the mice were treated with LBP. The results indicated that LBP attenuated the weight loss, colon shortening, disease activity index (DAI), and histopathological scores of colon tissues in colitis mice, suggesting that LBP could protect against IBD. Besides, LBP decreased the number of M1 macrophages and the protein level of Nitric oxide synthase 2(NOS2) as a marker of M1 macrophages and enhanced the number of M2 macrophages and the protein level of Arginase 1(Arg-1) as a marker of M2 macrophages in colon tissues from mice with colitis, suggesting that LBP may protect against IBD by regulating macrophage polarization. Next, the mechanistic studies in RAW264.7 cells showed that LBP inhibited M1-like phenotype by inhibiting the phosphorylation of STAT1, and promoted M2-like phenotype by promoting the phosphorylation of STAT6. Finally, immunofluorescence double-staining results of colon tissues showed that LBP regulated STAT1 and STAT6 pathways in vivo. The results in the study demonstrated that LBP could protect against IBD by regulating macrophage polarization through the STAT1 and STAT6 pathways.
Collapse
Affiliation(s)
- Juan Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huiying Gao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yuan Xie
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Peng Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yu Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Chunlin Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xin Ma
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yuwen Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qinwen Mao
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- *Correspondence: Haibin Xia, ,
| |
Collapse
|
11
|
Zhou J, Liu L, Wu P, Zhao L, Wu Y. Identification and characterization of non-coding RNA networks in infected macrophages revealing the pathogenesis of F. nucleatum-associated diseases. BMC Genomics 2022; 23:826. [PMID: 36513974 DOI: 10.1186/s12864-022-09052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND F. nucleatum, as an important periodontal pathogen, is not only closely associated with the development of periodontitis, but also implicated in systemic diseases. Macrophages may act as an important mediator in the pathogenic process of F. nucleatum infection. As non-coding RNAs (ncRNAs) have attracted extensive attention as important epigenetic regulatory mechanisms recently, we focus on the competing endogenous RNA (ceRNA) regulatory networks to elucidate the pathogenesis of F. nucleatum-associated diseases. RESULTS We screen abnormally expressed mRNAs, miRNAs, lncRNAs and circRNAs in macrophages after F. nucleatum infection via the whole transcriptome sequencing technology, including 375 mRNAs, 5 miRNAs, 64 lncRNAs, and 180 circRNAs. The accuracy of RNA-seq and microRNA-seq result was further verified by qRT-PCR analysis. GO and KEGG analysis show that the differentially expressed genes were mainly involved in MAPK pathway, Toll-like receptor pathway, NF-κB pathway and apoptosis. KEGG disease analysis reveals that they were closely involved in immune system diseases, cardiovascular disease, cancers, inflammatory bowel disease (IBD) et al. We constructed the underlying lncRNA/circRNA-miRNA-mRNA networks to understand their interaction based on the correlation analysis between the differentially expressed RNAs, and then screen the core non-coding RNAs. In which, AKT2 is controlled by hsa_circ_0078617, hsa_circ_0069227, hsa_circ_0084089, lncRNA NUP210, lncRNA ABCB9, lncRNA DIXDC1, lncRNA ATXN1 and lncRNA XLOC_237387 through miR-150-5p; hsa_circ_0001165, hsa_circ_0008460, hsa_circ_0001118, lncRNA XLOC_237387 and lncRNA ATXN1 were identified as the ceRNAs of hsa-miR-146a-3p and thereby indirectly modulating the expression of MITF. CONCLUSIONS Our data identified promising candidate ncRNAs responsible for regulating immune response in the F. nucleatum-associated diseases, offering new insights regarding the pathogenic mechanism of this pathogen.
Collapse
Affiliation(s)
- Jieyu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Macrophage immunotherapy: overcoming impediments to realize promise. Trends Immunol 2022; 43:959-968. [PMID: 36441083 DOI: 10.1016/j.it.2022.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
As an essential component of immunity, macrophages have key roles in mammalian host defense, tissue homeostasis, and repair, as well as in disease pathogenesis and pathophysiology. A source of fascination and extensive research, in this Opinion we challenge the utility of the M1-M2 paradigm, and discuss the importance of accurate characterization of human macrophages. We comment on the application of single cell analytics to define macrophage subpopulations and how this could advance therapeutic options. We argue that human macrophage cell therapy can be used to alleviate many diseases, and offer a viewpoint on the knowledge gaps that must be filled to render such a therapeutic approach a reality and, ideally, a common future practice in precision medicine.
Collapse
|
13
|
Kalkusova K, Taborska P, Stakheev D, Smrz D. The Role of miR-155 in Antitumor Immunity. Cancers (Basel) 2022; 14:5414. [PMID: 36358832 PMCID: PMC9659277 DOI: 10.3390/cancers14215414] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 09/19/2023] Open
Abstract
MicroRNAs belong to a group of short non-coding RNA molecules that are involved in the regulation of gene expression at multiple levels. Their function was described two decades ago, and, since then, microRNAs have become a rapidly developing field of research. Their participation in the regulation of cellular processes, such as proliferation, apoptosis, cell growth, and migration, made microRNAs attractive for cancer research. Moreover, as a single microRNA can simultaneously target multiple molecules, microRNAs offer a unique advantage in regulating multiple cellular processes in different cell types. Many of these cell types are tumor cells and the cells of the immune system. One of the most studied microRNAs in the context of cancer and the immune system is miR-155. MiR-155 plays a role in modulating innate and adaptive immune mechanisms in distinct immune cell types. As such, miR-155 can be part of the communication between the tumor and immune cells and thus impact the process of tumor immunoediting. Several studies have already revealed its effect on antitumor immune responses, and the targeting of this molecule is increasingly implemented in cancer immunotherapy. In this review, we discuss the current knowledge of miR-155 in the regulation of antitumor immunity and the shaping of the tumor microenvironment, and the plausible implementation of miR-155 targeting in cancer therapy.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
14
|
Adipose-derived stem cells regulate CD4+ T-cell-mediated macrophage polarization and fibrosis in fat grafting in a mouse model. Heliyon 2022; 8:e11538. [DOI: 10.1016/j.heliyon.2022.e11538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/04/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
|
15
|
Feng Q, Ma X, Cheng K, Liu G, Li Y, Yue Y, Liang J, Zhang L, Zhang T, Wang X, Gao X, Nie G, Zhao X. Engineered Bacterial Outer Membrane Vesicles as Controllable Two-Way Adaptors to Activate Macrophage Phagocytosis for Improved Tumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206200. [PMID: 35985666 DOI: 10.1002/adma.202206200] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The most immune cells infiltrating tumor microenvironment (TME), tumor-associated macrophages (TAMs) closely resemble immunosuppressive M2-polarized macrophages. Moreover, tumor cells exhibit high expression of CD47 "don't eat me" signal, which obstructs macrophage phagocytosis. The precise and efficient activation of TAMs is a promising approach to tumor immunotherapy; however, re-education of macrophages remains a challenge. Bacteria-derived outer membrane vesicles (OMVs) are highly immunogenic nanovesicles that can robustly stimulate macrophages. Here, an OMV-based controllable two-way adaptor is reported, in which a CD47 nanobody (CD47nb) is fused onto OMV surface (OMV-CD47nb), with the outer surface coated with a polyethylene glycol (PEG) layer containing diselenide bonds (PEG/Se) to form PEG/Se@OMV-CD47nb. The PEG/Se layer modification not only mitigates the immunogenicity of OMV-CD47nb, thereby remarkedly increasing the dose that can be administered safely through intravenous injection, but also equips the formulation with radiation-triggered controlled release of OMV-CD47nb. Application of radiation to tumors in mice injected with the nanoformulation results in remodeling of TME. As two-way adaptors, OMV-CD47nb activates TAM phagocytosis of tumor cells via multiple pathways, including induction of M1 polarization and blockade of "don't eat me" signal. Moreover, this activation of TAMs results in the stimulation of T cell-mediated antitumor immunity through effective antigen presentation.
Collapse
Affiliation(s)
- Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yale Yue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lizhuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Tianjiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaoyu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
16
|
Lipopolysaccharide-Induced Immunological Tolerance in Monocyte-Derived Dendritic Cells. IMMUNO 2022. [DOI: 10.3390/immuno2030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial lipopolysaccharides (LPS), also referred to as endotoxins, are major outer surface membrane components present on almost all Gram-negative bacteria and are major determinants of sepsis-related clinical complications including septic shock. LPS acts as a strong stimulator of innate or natural immunity in a wide variety of eukaryotic species ranging from insects to humans including specific effects on the adaptive immune system. However, following immune stimulation, lipopolysaccharide can induce tolerance which is an essential immune-homeostatic response that prevents overactivation of the inflammatory response. The tolerance induced by LPS is a state of reduced immune responsiveness due to persistent and repeated challenges, resulting in decreased expression of pro-inflammatory modulators and up-regulation of antimicrobials and other mediators that promote a reduction of inflammation. The presence of environmental-derived LPS may play a key role in decreasing autoimmune diseases and gut tolerance to the plethora of ingested antigens. The use of LPS may be an important immune adjuvant as demonstrated by the promotion of IDO1 increase when present in the fusion protein complex of CTB-INS (a chimera of the cholera toxin B subunit linked to proinsulin) that inhibits human monocyte-derived DC (moDC) activation, which may act through an IDO1-dependent pathway. The resultant state of DC tolerance can be further enhanced by the presence of residual E. coli lipopolysaccharide (LPS) which is almost always present in partially purified CTB-INS preparations. The approach to using an adjuvant with an autoantigen in immunotherapy promises effective treatment for devastating tissue-specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D).
Collapse
|
17
|
Kim YS, Hwang J, Lee SG, Jo HY, Oh MJ, Liyanage NM, Je JG, An HJ, Jeon YJ. Structural characteristics of sulfated polysaccharides from Sargassum horneri and immune-enhancing activity of polysaccharides combined with lactic acid bacteria. Food Funct 2022; 13:8214-8227. [PMID: 35833451 DOI: 10.1039/d1fo03946f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sargassum horneri (SH), a marine brown alga, is known to contain a variety of bioactive ingredients and previous studies reported sulfated polysaccharides in SH as a potential candidate for a functional ingredient. However, immune-enhancing activity combined with Lactobacillus plantarum (LAB) is not yet studied. In the present study, we attempted to characterize sulfated polysaccharides (SHCPs) in SH by MALDI-TOF/TOF mass spectrometry and evaluate their immune-enhancing effect on macrophage cells. The main residue of SHCPs in SH is 2-sulfated 1,4-linked L-fucose and this epitope combined with LAB shows immune enhancement properties through cytokine production at the cellular level and increases the population of lymphocytes and myelomonocytes in the adult zebrafish kidney. These results indicate that SHCPs, along with LAB, have potent immune-enhancing activity and may be utilized as a potential immunomodulatory ingredient.
Collapse
Affiliation(s)
- Young-Sang Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
- Marine Science Institute, Jeju National University, Jeju Self-governing Province 63333, Republic of Korea
| | - Jin Hwang
- Natural Products Laboratory, Daebong LS Co., Ltd, 40., Chemdan-ro 8-gil, Jeju-si, Jeju-do, Republic of Korea
| | - Sang Gil Lee
- Asia Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Hee Young Jo
- Asia Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Myung Jin Oh
- Asia Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - N M Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| | - Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| | - Hyun Joo An
- Asia Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
18
|
Husain K, Villalobos-Ayala K, Laverde V, Vazquez OA, Miller B, Kazim S, Blanck G, Hibbs ML, Krystal G, Elhussin I, Mori J, Yates C, Ghansah T. Apigenin Targets MicroRNA-155, Enhances SHIP-1 Expression, and Augments Anti-Tumor Responses in Pancreatic Cancer. Cancers (Basel) 2022; 14:3613. [PMID: 35892872 PMCID: PMC9331563 DOI: 10.3390/cancers14153613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) is a deadly disease with a grim prognosis. Pancreatic tumor derived factors (TDF) contribute to the induction of an immunosuppressive tumor microenvironment (TME) that impedes the effectiveness of immunotherapy. PC-induced microRNA-155 (miRNA-155) represses expression of Src homology 2 (SH2) domain-containing Inositol 5'-phosphatase-1 (SHIP-1), a regulator of myeloid cell development and function, thus impacting anti-tumor immunity. We recently reported that the bioflavonoid apigenin (API) increased SHIP-1 expression which correlated with the expansion of tumoricidal macrophages (TAM) and improved anti-tumor immune responses in the TME of mice with PC. We now show that API transcriptionally regulates SHIP-1 expression via the suppression of miRNA-155, impacting anti-tumor immune responses in the bone marrow (BM) and TME of mice with PC. We discovered that API reduced miRNA-155 in the PC milieu, which induced SHIP-1 expression. This promoted the restoration of myelopoiesis and increased anti-tumor immune responses in the TME of heterotopic, orthotopic and transgenic SHIP-1 knockout preclinical mouse models of PC. Our results suggest that manipulating SHIP-1 through miR-155 may assist in augmenting anti-tumor immune responses and aid in the therapeutic intervention of PC.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Krystal Villalobos-Ayala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Valentina Laverde
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Oscar A. Vazquez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Bradley Miller
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Samra Kazim
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Margaret L. Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne 3004, Australia;
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Isra Elhussin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Joakin Mori
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Tomar Ghansah
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
19
|
Yin J, Zhao X, Chen X, Shen G. Emodin suppresses hepatocellular carcinoma growth by regulating macrophage polarization via microRNA-26a/transforming growth factor beta 1/protein kinase B. Bioengineered 2022; 13:9548-9563. [PMID: 35387564 PMCID: PMC9208510 DOI: 10.1080/21655979.2022.2061295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Accumulating evidence has demonstrated that M2 macrophages contribute to the progression of hepatocellular carcinoma (HCC). Emodin is an anti-tumor agent and potentially regulates macrophage polarization. This study aims to explore the effect of emodin on M2 polarization in HCC and its underlying mechanism. After co-culture systems of M2 macrophages and HCC (HepG2 and Huh7) cells were established, it was shown that co-culture with M2 macrophages could promote both the proliferation and invasion of HepG2 and Huh7 cells. Emodin induces the transformation of M2 to M1 macrophages, thereby inhibiting the proliferation and invasion of HepG2 and Huh7 cells mediated by co-culturing with M2 macrophages. Based on bioinformatics analysis and in vitro validation, it was found that the effect of emodin on M2 polarization was regulated by the microRNA-26a (miR-26)/Transforming growth factor beta 1 (TGF-β1)/Protein kinase B (Akt) axis. In vivo analysis showed that co-culturing with M2 macrophages markedly facilitated the growth of HepG2 cells, which was significantly inhibited by emodin. Western blot analysis on xenografts confirmed that emodin could induce transformation of M2 to M1 macrophages and reverse the up-regulation of PCNA, TGF-β1, and p-Akt induced by M2 macrophages. In summary, our findings uncover a novel mechanism behind the anti-tumor effects of emodin that regulates M2 polarization via miR-26a/TGF-β1/Akt to suppress HCC growth.
Collapse
Affiliation(s)
- Jiao Yin
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiansheng Zhao
- Department of Hepatology Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xuejiao Chen
- Department of Immunology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
AKT Isoforms in Macrophage Activation, Polarization, and Survival. Curr Top Microbiol Immunol 2022; 436:165-196. [DOI: 10.1007/978-3-031-06566-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Shimada A, Murata M, Aoyagi S, Asano H, Obara A, Hasegawa-Ishii S. Delayed microglial activation associated with the resolution of neuroinflammation in a mouse model of sublethal endotoxemia-induced systemic inflammation. Toxicol Rep 2022; 9:1380-1390. [DOI: 10.1016/j.toxrep.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
|
22
|
Xu Y, Xu W, Liu W, Chen G, Jiang S, Chen J, Jian X, Zhang H, Liu P, Mu Y. Yiguanjian decoction inhibits macrophage M1 polarization and attenuates hepatic fibrosis induced by CCl 4/2-AAF. PHARMACEUTICAL BIOLOGY 2021; 59:1150-1160. [PMID: 34425061 PMCID: PMC8436970 DOI: 10.1080/13880209.2021.1961820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/14/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Our previous studies indicated that Yiguanjian decoction (YGJ) has an anti-hepatic-fibrosis effect and could regulate macrophage status. OBJECTIVE To elucidate the mechanism of YGJ in regulating macrophages. MATERIALS AND METHODS Liver cirrhosis was induced by CCl4 for 12 weeks combined with 2-acetylaminofluorene (2-AAF) for the last 4 weeks in male Wistar rats. YGJ (3.56 mg/kg) orally administered in the last 4 weeks, and SORA (1 mg/kg) as control. In vitro, RAW264.7 cells were treated with lipopolysaccharides (LPSs) to induce macrophage polarization to the M1 phenotype, and they were co-cultured with WB-F344 cells and allocated to M group, YGJ group (2 μg/mL) and WIF-1 group (1 μg/mL) with untreated cells as control. The differentiation direction of WB-F344 cell line was observed in the presence or absence of YGJ. Pathology, fibrosis-related cytokines, macrophage polarization-related components, and Wnt signalling pathway components were detected. RESULTS In vivo, the expression levels of α-SMA, Col (1), OV6, SOX9, EpCAM and M1 macrophage-related components (STAT1, IRF3, IRF5, IRF8, SOCS3) significantly decreased in the YGJ group compared with those in the 2-AAF/CCl4 group (p < 0.01 or 0.05). In vitro, the expression levels of M1 macrophage-related components, including STAT1, NF-κB, IRF3, IRF5, and SOCS3, in RAW264.7 cells decreased significantly in the YGJ group compared with those in the M group (p < 0.05 or p < 0.01). The expression levels of Wnt3A, FZD5, LRP-5/-6, and β-catenin significantly increased in the YGJ group compared with those in the M group (p < 0.05 or p < 0.01). In addition, the expression levels of Wnt-4/-5A/-5B, and FZD2 significantly decreased in the YGJ group compared with those in the M group (p < 0.05 or p < 0.01). CONCLUSION This study suggests that the anti-cirrhosis effect of YGJ is associated with its ability to inhibit macrophage M1-polarization, which provides a scientific basis for the clinical application of YGJ.
Collapse
Affiliation(s)
- Ying Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
| | - Wen Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
| | - Wei Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
| | - Gaofeng Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai, China
| | - Shili Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
| | - Jiamei Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai, China
| | - Xun Jian
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
| | - Hua Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai, China
| | - Ping Liu
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai, China
- Clinical Key Laboratory of TCM of Shanghai, Shanghai, Pudong District, China
| | - Yongping Mu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai, China
| |
Collapse
|
23
|
Peng Y, Li Z, Chen S, Zhou J. DHFR silence alleviated the development of liver fibrosis by affecting the crosstalk between hepatic stellate cells and macrophages. J Cell Mol Med 2021; 25:10049-10060. [PMID: 34626074 PMCID: PMC8572769 DOI: 10.1111/jcmm.16935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 01/20/2023] Open
Abstract
Liver fibrogenesis is a dynamic cellular and tissue process which has the potential to progress into cirrhosis of even liver cancer and liver failure. The activation of hepatic stellate cells (HSCs) is the central event underlying liver fibrosis. Besides, hepatic macrophages have been proposed as potential targets in combatting fibrosis. As for the relationship between HSCs and hepatic macrophages in liver fibrosis, it is generally considered that macrophages promoted liver fibrosis via activating HSCs. However, whether activated HSCs could in turn affect macrophage polarization has rarely been studied. In this study, mRNAs with significant differences were explored using exosomal RNA‐sequencing of activated Lx‐2 cells and normal RNA‐sequencing of DHFR loss‐of‐function Lx‐2 cell models. Cell functional experiments in both Lx‐2 cells and macrophages animal model experiments were performed. The results basically confirmed exosomes secreted from activated HSCs could promote M1 polarization of macrophages further. Exosome harbouring DHFR played an important role in this process. DHFR silence in HSCs could decrease Lx‐2 activation and M1 polarization of M0 macrophages and then alleviate the development of liver fibrosis both in vitro and vivo. Our work brought a new insight that exosomal DHFR derived from HSCs had a crucial role in crosstalk between HSCs activation and macrophage polarization, which may be a potential therapeutic target in liver fibrosis.
Collapse
Affiliation(s)
- Yu Peng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zedong Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Motta JM, Rumjanek VM, Mantovani A, Locati M. Tumor-Released Products Promote Bone Marrow-Derived Macrophage Survival and Proliferation. Biomedicines 2021; 9:biomedicines9101387. [PMID: 34680504 PMCID: PMC8533124 DOI: 10.3390/biomedicines9101387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophages play a central role within the tumor microenvironment, with relevant implications for tumor progression. The modulation of their phenotype is one of the mechanisms used by tumors to escape from effective immune responses. This study was designed to analyze the influence of soluble products released by tumors, here represented by the tumor-conditioned media of two tumor cell lines (3LL from Lewis lung carcinoma and MN/MCA from fibrosarcoma), on murine macrophage differentiation and polarization in vitro. Data revealed that tumor-conditioned media stimulated macrophage differentiation but influenced the expression levels of macrophage polarization markers, cytokine production, and microRNAs of relevance for macrophage biology. Interestingly, tumor-derived soluble products supported the survival and proliferation rate of bone marrow precursor cells, an effect observed even with mature macrophages in the presence of M2 but not M1 inducers. Despite presenting low concentrations of macrophage colony-stimulating factor (M-CSF), tumor-conditioned media alone also supported the proliferation of cells to a similar extent as exogenous M-CSF. This effect was only evident in cells positive for the expression of the M-CSF receptor (CD115) and occurred preferentially within the CD16+ subset. Blocking CD115 partially reversed the effect on proliferation. These results suggest that tumors release soluble products that not only promote macrophage development from bone marrow precursors but also stimulate the proliferation of cells with specific phenotypes that could support protumoral functions.
Collapse
Affiliation(s)
- Juliana Maria Motta
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.M.); (V.M.R.)
- Humanitas Clinical and Research Center—IRCCS, 20089 Rozzano, Italy;
| | - Vivian Mary Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.M.); (V.M.R.)
| | | | - Massimo Locati
- Humanitas Clinical and Research Center—IRCCS, 20089 Rozzano, Italy;
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
25
|
Li J, Wu H, Liu Y, Nan J, Park HJ, Chen Y, Yang L. The chemical structure and immunomodulatory activity of an exopolysaccharide produced by Morchella esculenta under submerged fermentation. Food Funct 2021; 12:9327-9338. [PMID: 34606556 DOI: 10.1039/d1fo01683k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extracellular polysaccharide of Morchella esculenta cultivated under submerged fermentation was extracted. A single polysaccharide was purified through DEAE-Cellulose 52 and Sephadex G 100, and named as MEP 2a. The molecular weight of MEP 2a was determined by HPGPC and it is about 1391.5 kDa. MEP 2a is composed of mannose and glucose as the monosaccharide unit with a molar ratio of 8.15 : 1.07. The main polysaccharide chemical structure was analyzed by 1D and 2D NMR. Methylation and NMR analysis revealed that the backbone of MEP 2a consists of 1,3,4-linked-Manp, 1,2-linked-Manp and 1,6-linked-Glcp. 1D and 2D NMR results indicated that the main chain is based on →1)-β-D-Glcp-(6→, →1)-α-D-Manp-(3,4→, →1)-α-D-Manp-(2→) and the branch chain is composed of α-D-Manp-(1→, →1)-β-D-Glcp-(6→ and α-D-Glcp-(1→). MEP 2a promoted the phagocytosis function and secretion of NO, IL-1β, IL-6 and TNF-α of macrophages. In the present study, the chemical structure and immunomodulatory ability of an extracellular polysaccharide of Morchella esculenta was investigated which guarantees further research studies and promising applications.
Collapse
Affiliation(s)
- Jinglei Li
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| | - Haishan Wu
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| | - Yuting Liu
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| | - Jian Nan
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yanping Chen
- Department of Respiratory Medicine, Hunan Children's Hospital, 410007 Changsha, Hunan, China
| | - Liu Yang
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| |
Collapse
|
26
|
Glial cell line-derived neurotrophic factor ameliorates dextran sulfate sodium-induced colitis in mice via a macrophage-mediated pathway. Int Immunopharmacol 2021; 100:108143. [PMID: 34543979 DOI: 10.1016/j.intimp.2021.108143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 02/08/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has been reported to protect mice from intestinal inflammation, but its anti-inflammatory mechanisms are poorly understood. Here we found that there was a downregulation in intestinal expression of GDNF accompanied by an increase of M1 macrophages in dextran sulfate sodium (DSS)-induced colitis in mice. GDNF treatment could facilitate the macrophages polarization towards the M2-like phenotype in DSS-treated mice and LPS-stimulated RAW264.7 cells, and reduce pro-inflammatory cytokines and increase anti-inflammatory cytokines. Mechanistically, the activation of PI3K/AKT pathway might contribute to the regulation of GDNF on macrophage phenotypes and inflammatory response. Moreover, the administration of GDNF significantly ameliorated colitis in DSS-treated mice, but this benefit of GDNF was diminished by macrophage depletion. Therefore, we propose a new mechanism whereby GDNF suppresses DSS-induced colitis in mice via a macrophage-mediated pathway.
Collapse
|
27
|
Shi L, Bian Z, Kidder K, Liang H, Liu Y. Non-Lyn Src Family Kinases Activate SIRPα-SHP-1 to Inhibit PI3K-Akt2 and Dampen Proinflammatory Macrophage Polarization. THE JOURNAL OF IMMUNOLOGY 2021; 207:1419-1427. [PMID: 34348974 DOI: 10.4049/jimmunol.2100266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
Macrophage functional plasticity plays a central role in responding to proinflammatory stimuli. The molecular basis underlying the dynamic phenotypic activation of macrophages, however, remains incompletely understood. In this article, we report that SIRPα is a chief negative regulator of proinflammatory macrophage polarization. In response to TLR agonists, proinflammatory cytokines, or canonical M1 stimulation, Src family kinases (SFK) excluding Lyn phosphorylate SIRPα ITIMs, leading to the preferential recruitment and activation of SHP-1, but not SHP-2. Solely extracellular ligation of SIRPα by CD47 does not greatly induce phosphorylation of SIRPα ITIMs, but it enhances proinflammatory stimuli-induced SIRPα phosphorylation. Examination of downstream signaling elicited by IFN-γ and TLR3/4/9 agonists found that SIRPα-activated SHP-1 moderately represses STAT1, NF-κB, and MAPK signaling but markedly inhibits Akt2, resulting in dampened proinflammatory cytokine production and expression of Ag presentation machinery. Pharmacological inhibition of SHP-1 or deficiency of SIRPα conversely attenuates SIRPα-mediated inhibition and, as such, augments macrophage proinflammatory polarization that in turn exacerbates proinflammation in mouse models of type I diabetes and peritonitis. Our results reveal an SFK-SIRPα-SHP-1 mechanism that fine-tunes macrophage proinflammatory phenotypic activation via inhibition of PI3K-Akt2, which controls the transcription and translation of proinflammatory cytokines, Ag presentation machinery, and other cellular programs.
Collapse
Affiliation(s)
- Lei Shi
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Center for Diagnostics and Therapeutics, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA
| | - Zhen Bian
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Center for Diagnostics and Therapeutics, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA
| | - Koby Kidder
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Center for Diagnostics and Therapeutics, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA
| | - Hongwei Liang
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Center for Diagnostics and Therapeutics, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA
| | - Yuan Liu
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Center for Diagnostics and Therapeutics, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA
| |
Collapse
|
28
|
Macrophage Polarization States in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22136995. [PMID: 34209703 PMCID: PMC8268869 DOI: 10.3390/ijms22136995] [Citation(s) in RCA: 692] [Impact Index Per Article: 230.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
The M1/M2 macrophage paradigm plays a key role in tumor progression. M1 macrophages are historically regarded as anti-tumor, while M2-polarized macrophages, commonly deemed tumor-associated macrophages (TAMs), are contributors to many pro-tumorigenic outcomes in cancer through angiogenic and lymphangiogenic regulation, immune suppression, hypoxia induction, tumor cell proliferation, and metastasis. The tumor microenvironment (TME) can influence macrophage recruitment and polarization, giving way to these pro-tumorigenic outcomes. Investigating TME-induced macrophage polarization is critical for further understanding of TAM-related pro-tumor outcomes and potential development of new therapeutic approaches. This review explores the current understanding of TME-induced macrophage polarization and the role of M2-polarized macrophages in promoting tumor progression.
Collapse
|
29
|
Li M, Guo X, Qi W, Wu Z, de Bruijn JD, Xiao Y, Bao C, Yuan H. Macrophage polarization plays roles in bone formation instructed by calcium phosphate ceramics. J Mater Chem B 2021; 8:1863-1877. [PMID: 32067012 DOI: 10.1039/c9tb02932j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate the roles of macrophages in material-instructed bone formation, two calcium phosphate (TCP) ceramics with the same chemistry but various scales of surface topography were employed in this study. After being implanted subcutaneously in FVB mice for 8 weeks, TCPs (TCP ceramics with submicron surface topography) gave rise to bone formation, while TCPb (TCP ceramics with micron surface topography) did not, showing the crucial role of surface topography scale in material-instructed bone formation. Depletion of macrophages with liposomal clodronate (LipClod) blocked such bone formation instructed by TCPs, confirming the role of macrophages in material-instructed bone formation. Macrophage cells (i.e. RAW 264.7 cells) cultured on TCPs in vitro polarized to tissue repair macrophages as evidenced by gene expression and cytokine production, while polarizing to pro-inflammatory macrophages on TCPb. Submicron surface topography of TCP ceramics directed macrophage polarization via PI3K/AKT pathways with the synergistic regulation of integrin β1. Finally, the tissue repair macrophage polarization on TCPs resulted in osteogenic differentiation of mesenchymal stem cells in vitro. At early implantation in FVB mice, TCPs recruited more macrophages which polarized towards tissue repair macrophages with time. The present data demonstrate the important roles of macrophage polarization in bone formation instructed by calcium phosphate ceramics.
Collapse
Affiliation(s)
- Mingzheng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| | - Xiaodong Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| | - Wenting Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| | - Zhenzhen Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| | - Joost D de Bruijn
- School of Engineering and Materials Science, Queen Mary University of London, UK
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| | - Huipin Yuan
- Kuros Biosciences BV, Prof. Bronkhorstlaan 10, 3723 MB Bilthoven, The Netherlands and MERLN Institute, Maastricht University, The Netherlands
| |
Collapse
|
30
|
Mroweh M, Roth G, Decaens T, Marche PN, Lerat H, Macek Jílková Z. Targeting Akt in Hepatocellular Carcinoma and Its Tumor Microenvironment. Int J Mol Sci 2021; 22:1794. [PMID: 33670268 PMCID: PMC7917860 DOI: 10.3390/ijms22041794] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related deaths worldwide, and its incidence is rising. HCC develops almost exclusively on the background of chronic liver inflammation, which can be caused by chronic alcohol consumption, viral hepatitis, or an unhealthy diet. The key role of chronic inflammation in the process of hepatocarcinogenesis, including in the deregulation of innate and adaptive immune responses, has been demonstrated. The inhibition of Akt (also known as Protein Kinase B) directly affects cancer cells, but this therapeutic strategy also exhibits indirect anti-tumor activity mediated by the modulation of the tumor microenvironment, as demonstrated by using Akt inhibitors AZD5363, MK-2206, or ARQ 092. Moreover, the isoforms of Akt converge and diverge in their designated roles, but the currently available Akt inhibitors fail to display an isoform specificity. Thus, selective Akt inhibition needs to be better explored in the context of HCC and its possible combination with immunotherapy. This review presents a compact overview of the current knowledge concerning the role of Akt in HCC and the effect of Akt inhibition on the HCC and liver tumor microenvironment.
Collapse
Affiliation(s)
- Mariam Mroweh
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (G.R.); (T.D.); (P.N.M.); (H.L.)
- Université Grenoble-Alpes, 38000 Grenoble, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath Beirut 6573-14, Lebanon
| | - Gaël Roth
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (G.R.); (T.D.); (P.N.M.); (H.L.)
- Université Grenoble-Alpes, 38000 Grenoble, France
- Service D’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (G.R.); (T.D.); (P.N.M.); (H.L.)
- Université Grenoble-Alpes, 38000 Grenoble, France
- Service D’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Patrice N. Marche
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (G.R.); (T.D.); (P.N.M.); (H.L.)
- Université Grenoble-Alpes, 38000 Grenoble, France
| | - Hervé Lerat
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (G.R.); (T.D.); (P.N.M.); (H.L.)
- Université Grenoble-Alpes, 38000 Grenoble, France
| | - Zuzana Macek Jílková
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (G.R.); (T.D.); (P.N.M.); (H.L.)
- Université Grenoble-Alpes, 38000 Grenoble, France
- Service D’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| |
Collapse
|
31
|
Zhang S, Chu C, Wu Z, Liu F, Xie J, Yang Y, Qiu H. IFIH1 Contributes to M1 Macrophage Polarization in ARDS. Front Immunol 2021; 11:580838. [PMID: 33519803 PMCID: PMC7841399 DOI: 10.3389/fimmu.2020.580838] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022] Open
Abstract
Accumulated evidence has demonstrated that the macrophage phenotypic switch from M0 to M1 is crucial in the initiation of the inflammatory process of acute respiratory distress syndrome (ARDS). Better insight into the molecular control of M1 macrophages in ARDS may identify potential therapeutic targets. In the current study, 36 candidate genes associated with the severity of ARDS and simultaneously involved in M1-polarized macrophages were first screened through a weighted network algorithm on all gene expression profiles from the 26 ARDS patients and empirical Bayes analysis on the gene expression profiles of macrophages. STAT1, IFIH1, GBP1, IFIT3, and IRF1 were subsequently identified as hub genes according to connectivity degree analysis and multiple external validations. Among these candidate genes, IFIH1 had the strongest connection with ARDS through the RobustRankAggreg algorithm. It was selected as a crucial gene for further investigation. For in vitro validation, the RAW264.7 cell line and BMDMs were transfected with shIFIH1 lentivirus and plasmid expression vectors of IFIH1. Cellular experimental studies further confirmed that IFIH1 was a novel regulator for promoting M1 macrophage polarization. Moreover, gene set enrichment analysis (GSEA) and in vitro validations indicated that IFIH1 regulated M1 polarization by activating IRF3. In addition, previous studies demonstrated that activation of IFIH1-IRF3 was stimulated by viral RNAs or RNA mimics. Surprisingly, the current study found that LPS could also induce IFIH1-IRF3 activation via a MyD88-dependent mechanism. We also found that only IFIH1 expression without LPS or RNA mimic stimulation could not affect IRF3 activation and M1 macrophage polarization. These findings were validated on two types of macrophages, RAW264.7 cells and BMDMs, which expanded the knowledge on the inflammatory roles of IFIH1 and IRF3, suggesting IFIH1 as a potential target for ARDS treatment.
Collapse
Affiliation(s)
- Shi Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Cuilin Chu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zongsheng Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
32
|
Wang Y, Zhang L, Wu GR, Zhou Q, Yue H, Rao LZ, Yuan T, Mo B, Wang FX, Chen LM, Sun F, Song J, Xiong F, Zhang S, Yu Q, Yang P, Xu Y, Zhao J, Zhang H, Xiong W, Wang CY. MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program. SCIENCE ADVANCES 2021; 7:sciadv.abb6075. [PMID: 33277324 PMCID: PMC7775789 DOI: 10.1126/sciadv.abb6075] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/29/2020] [Indexed: 05/22/2023]
Abstract
Despite past extensive studies, the mechanisms underlying pulmonary fibrosis (PF) still remain poorly understood. Here, we demonstrated that lungs originating from different types of patients with PF, including coronavirus disease 2019, systemic sclerosis-associated interstitial lung disease, and idiopathic PF, and from mice following bleomycin (BLM)-induced PF are characterized by the altered methyl-CpG-binding domain 2 (MBD2) expression in macrophages. Depletion of Mbd2 in macrophages protected mice against BLM-induced PF. Mbd2 deficiency significantly attenuated transforming growth factor-β1 (TGF-β1) production and reduced M2 macrophage accumulation in the lung following BLM induction. Mechanistically, Mbd2 selectively bound to the Ship promoter in macrophages, by which it repressed Ship expression and enhanced PI3K/Akt signaling to promote the macrophage M2 program. Therefore, intratracheal administration of liposomes loaded with Mbd2 siRNA protected mice from BLM-induced lung injuries and fibrosis. Together, our data support the possibility that MBD2 could be a viable target against PF in clinical settings.
Collapse
Affiliation(s)
- Yi Wang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Lei Zhang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Guo-Rao Wu
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Qing Zhou
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Huihui Yue
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Li-Zong Rao
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, 212 Renmin Road, Guilin 541000, China
| | - Ting Yuan
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, 212 Renmin Road, Guilin 541000, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, 212 Renmin Road, Guilin 541000, China
| | - Fa-Xi Wang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Long-Min Chen
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Fei Sun
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Jia Song
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Fei Xiong
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Shu Zhang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Qilin Yu
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Ping Yang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Yongjian Xu
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Jianping Zhao
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Huilan Zhang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China.
| | - Weining Xiong
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China.
- Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai 200011, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave., Wuhan 430030, China.
| |
Collapse
|
33
|
Merecz-Sadowska A, Sitarek P, Śliwiński T, Zajdel R. Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages. Int J Mol Sci 2020; 21:ijms21249605. [PMID: 33339446 PMCID: PMC7766727 DOI: 10.3390/ijms21249605] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The plant kingdom is a source of important therapeutic agents. Therefore, in this review, we focus on natural compounds that exhibit efficient anti-inflammatory activity via modulation signaling transduction pathways in macrophage cells. Both extracts and pure chemicals from different species and parts of plants such as leaves, roots, flowers, barks, rhizomes, and seeds rich in secondary metabolites from various groups such as terpenes or polyphenols were included. Selected extracts and phytochemicals control macrophages biology via modulation signaling molecules including NF-κB, MAPKs, AP-1, STAT1, STAT6, IRF-4, IRF-5, PPARγ, KLF4 and especially PI3K/AKT. Macrophages are important immune effector cells that take part in antigen presentation, phagocytosis, and immunomodulation. The M1 and M2 phenotypes are related to the production of pro- and anti-inflammatory agents, respectively. The successful resolution of inflammation mediated by M2, or failed resolution mediated by M1, may lead to tissue repair or chronic inflammation. Chronic inflammation is strictly related to several disorders. Thus, compounds of plant origin targeting inflammatory response may constitute promising therapeutic strategies.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland
- Correspondence: (A.M.-S.); (T.Ś.)
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: (A.M.-S.); (T.Ś.)
| | - Radosław Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| |
Collapse
|
34
|
Villalobos-Ayala K, Ortiz Rivera I, Alvarez C, Husain K, DeLoach D, Krystal G, Hibbs ML, Jiang K, Ghansah T. Apigenin Increases SHIP-1 Expression, Promotes Tumoricidal Macrophages and Anti-Tumor Immune Responses in Murine Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123631. [PMID: 33291556 PMCID: PMC7761852 DOI: 10.3390/cancers12123631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) has an extremely poor prognosis due to the expansion of immunosuppressive myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) in the inflammatory tumor microenvironment (TME), which halts the recruitment of effector immune cells and renders immunotherapy ineffective. Thus, the identification of new molecular targets that can modulate the immunosuppressive TME is warranted for PC intervention. Src Homology-2 (SH2) domain-containing Inositol 5'-Phosphatase-1 (SHIP-1) is a lipid signaling protein and a regulator of myeloid cell development and function. Herein, we used the bioflavonoid apigenin (API) to reduce inflammation in different PC models. Wild type mice harboring heterotopic or orthotopic PC were treated with API, which induced SHIP-1 expression, reduced inflammatory tumor-derived factors (TDF), increased the proportion of tumoricidal macrophages and enhanced anti-tumor immune responses, resulting in a reduction in tumor burden compared to vehicle-treated PC mice. In contrast, SHIP-1-deficient mice exhibited an increased tumor burden and displayed augmented proportions of pro-tumor macrophages. These results provide further support for the importance of SHIP-1 expression in promoting pro-tumor macrophage development in the pancreatic TME. Our findings suggest that agents augmenting SHIP-1 expression may provide novel therapeutic options for the treatment of PC.
Collapse
Affiliation(s)
- Krystal Villalobos-Ayala
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - Ivannie Ortiz Rivera
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - Ciara Alvarez
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - Kazim Husain
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - DeVon DeLoach
- Comparative Medicine at the University of South Florida, Tampa, FL 33612, USA;
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Margaret L. Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne 3004, Australia;
| | - Kun Jiang
- Anatomic Pathology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Tomar Ghansah
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-1825
| |
Collapse
|
35
|
Tang B, Zhu J, Zhang B, Wu F, Wang Y, Weng Q, Fang S, Zheng L, Yang Y, Qiu R, Chen M, Xu M, Zhao Z, Ji J. Therapeutic Potential of Triptolide as an Anti-Inflammatory Agent in Dextran Sulfate Sodium-Induced Murine Experimental Colitis. Front Immunol 2020; 11:592084. [PMID: 33240279 PMCID: PMC7680904 DOI: 10.3389/fimmu.2020.592084] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), is a group of chronic and incurable inflammatory diseases involving the gastrointestinal tract. In this study, we investigated the anti-inflammatory effects of triptolide in a dextran sulfate sodium (DSS)-induced mouse colitis model and LPS-activated macrophages and explored the specific molecular mechanism(s). In mice, triptolide treatment showed significant relief and protection against colitis, and it markedly reduced the inflammatory responses of human monocytes and mouse macrophages. Pharmacological analysis and weighted gene co-expression network analysis (WGCNA) suggested that PDE4B may be an important potential targeting molecule for IBD. Exploration of the specific mechanism of action indicated that triptolide reduced the production of ROS, inhibited macrophage infiltration and M1-type polarization by activating the NRF2/HO-1 signaling pathway, and inhibited the PDE4B/AKT/NF-κB signaling cascade, which may help weaken the intestinal inflammatory response. Our findings laid a theoretical foundation for triptolide as a treatment for IBD and revealed PDE4B as a target molecule, thus providing new ideas for the treatment of IBD.
Collapse
Affiliation(s)
- Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, China
| | - Fazong Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Yajie Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Qiaoyou Weng
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Shiji Fang
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Liyun Zheng
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
36
|
Sun P, Meng LH. Emerging roles of class I PI3K inhibitors in modulating tumor microenvironment and immunity. Acta Pharmacol Sin 2020; 41:1395-1402. [PMID: 32939035 DOI: 10.1038/s41401-020-00500-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Immune system-mediated tumor killing has revolutionized anti-tumor therapies, providing long-term and durable responses in some patients. The phosphoinositide 3-kinase (PI3K) pathway controls multiple biological processes and is frequently dysregulated in malignancies. Enormous efforts have been made to develop inhibitors against class I PI3K. Notably, with the increasing understanding of PI3K, it has been widely accepted that PI3K inhibition not only restrains tumor progression, but also reshapes the immunosuppressive tumor microenvironment. In this review, we focus on the pivotal roles of class I PI3Ks in adaptive and innate immune cells, as well as other stromal components. We discuss the modulation by PI3K inhibitors of the tumor-supportive microenvironment, including eliminating the regulatory immune cells, restoring cytotoxic cells or regulating angiogenesis. The potential combinations of PI3K inhibitors with other therapies to enhance the anti-tumor immunity are also described.
Collapse
|
37
|
Jeong JH, Choi EB, Jang HM, Ahn YJ, An HS, Lee JY, Park G, Jeong EA, Shin HJ, Lee J, Kim KE, Roh GS. The Role of SHIP1 on Apoptosis and Autophagy in the Adipose Tissue of Obese Mice. Int J Mol Sci 2020; 21:ijms21197225. [PMID: 33007882 PMCID: PMC7582772 DOI: 10.3390/ijms21197225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023] Open
Abstract
Obesity-induced adipocyte apoptosis promotes inflammation and insulin resistance. Src homology domain-containing inositol 5'-phosphatase 1 (SHIP1) is a key factor of apoptosis and inflammation. However, the role of SHIP1 in obesity-induced adipocyte apoptosis and autophagy is unclear. We found that diet-induced obesity (DIO) mice have significantly greater crown-like structures and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL)-positive cells than ob/ob or control mice. Using RNA sequencing (RNA-seq) analysis, we identified that the apoptosis- and inflammation-related gene Ship1 is upregulated in DIO and ob/ob mice compared with control mice. In particular, DIO mice had more SHIP1-positive macrophages and lysosomal-associated membrane protein 1 (LAMP1) as well as a higher B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 ratio compared with ob/ob or control mice. Furthermore, caloric restriction attenuated adipose tissue inflammation, apoptosis, and autophagy by reversing increases in SHIP1-associated macrophages, Bax/Bcl2-ratio, and autophagy in DIO and ob/ob mice. These results demonstrate that DIO, not ob/ob, aggravates adipocyte inflammation, apoptosis, and autophagy due to differential SHIP1 expression. The evidence of decreased SHIP1-mediated inflammation, apoptosis, and autophagy indicates new therapeutic approaches for obesity-induced chronic inflammatory diseases.
Collapse
|
38
|
YAP Aggravates Inflammatory Bowel Disease by Regulating M1/M2 Macrophage Polarization and Gut Microbial Homeostasis. Cell Rep 2020; 27:1176-1189.e5. [PMID: 31018132 DOI: 10.1016/j.celrep.2019.03.028] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/17/2018] [Accepted: 03/07/2019] [Indexed: 12/30/2022] Open
Abstract
Inflammation, epithelial cell regeneration, macrophage polarization, and gut microbial homeostasis are critical for the pathological processes associated with inflammatory bowel disease (IBD). YAP (Yes-associated protein) is a key component of the Hippo pathway and was recently suggested to promote epithelial cell regeneration for IBD recovery. However, it is unclear how YAP regulates macrophage polarization, inflammation, and gut microbial homeostasis. Although YAP has been shown to promote epithelial regeneration and alleviate IBD, here we show that YAP in macrophages aggravates IBD, accompanied by the production of antimicrobial peptides and changes in gut microbiota. YAP impairs interleukin-4 (IL-4)/IL-13-induced M2 macrophage polarization while promoting lipopolysaccharide (LPS)/interferon γ (IFN-γ)-triggered M1 macrophage activation for IL-6 production. In addition, YAP expression is differently regulated during the induction of M2 versus M1 macrophages. This study suggests that fully understanding the multiple functions of YAP in different cell types is crucial for IBD therapy.
Collapse
|
39
|
Qin S, Li J, Zhou C, Privratsky B, Schettler J, Deng X, Xia Z, Zeng Y, Wu H, Wu M. SHIP-1 Regulates Phagocytosis and M2 Polarization Through the PI3K/Akt-STAT5-Trib1 Circuit in Pseudomonas aeruginosa Infection. Front Immunol 2020; 11:307. [PMID: 32256487 PMCID: PMC7093384 DOI: 10.3389/fimmu.2020.00307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/06/2020] [Indexed: 02/05/2023] Open
Abstract
SHIP-1 is an inositol phosphatase that hydrolyzes phosphatidylinositol 3-kinase (PI3K) products and negatively regulates protein kinase B (Akt) activity, thereby modulating a variety of cellular processes in mammals. However, the role of SHIP-1 in bacterial-induced sepsis is largely unknown. Here, we show that SHIP-1 regulates inflammatory responses during Gram-negative bacterium Pseudomonas aeruginosa infection. We found that infected-SHIP-1-/- mice exhibited decreased survival rates, increased inflammatory responses, and susceptibility owing to elevated expression of PI3K than wild-type (WT) mice. Inhibiting SHIP-1 via siRNA silencing resulted in lipid raft aggregates, aggravated oxidative damage, and bacterial burden in macrophages after PAO1 infection. Mechanistically, SHIP-1 deficiency augmented phosphorylation of PI3K and nuclear transcription of signal transducer and activator of transcription 5 (STAT5) to induce the expression of Trib1, which is critical for differentiation of M2 but not M1 macrophages. These findings reveal a previously unrecognized role of SHIP-1 in inflammatory responses and macrophage homeostasis during P. aeruginosa infection through a PI3K/Akt-STAT5-Trib1 axis.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaxin Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Breanna Privratsky
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Jacob Schettler
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Xin Deng
- Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenwei Xia
- Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zeng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
40
|
Aluganti Narasimhulu C, Singla DK. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells 2020; 9:cells9020280. [PMID: 31979268 PMCID: PMC7073173 DOI: 10.3390/cells9020280] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein-7 is (BMP-7) is a potent anti-inflammatory growth factor belonging to the Transforming Growth Factor Beta (TGF-β) superfamily. It plays an important role in various biological processes, including embryogenesis, hematopoiesis, neurogenesis and skeletal morphogenesis. BMP-7 stimulates the target cells by binding to specific membrane-bound receptor BMPR 2 and transduces signals through mothers against decapentaplegic (Smads) and mitogen activated protein kinase (MAPK) pathways. To date, rhBMP-7 has been used clinically to induce the differentiation of mesenchymal stem cells bordering the bone fracture site into chondrocytes, osteoclasts, the formation of new bone via calcium deposition and to stimulate the repair of bone fracture. However, its use in cardiovascular diseases, such as atherosclerosis, myocardial infarction, and diabetic cardiomyopathy is currently being explored. More importantly, these cardiovascular diseases are associated with inflammation and infiltrated monocytes where BMP-7 has been demonstrated to be a key player in the differentiation of pro-inflammatory monocytes, or M1 macrophages, into anti-inflammatory M2 macrophages, which reduces developed cardiac dysfunction. Therefore, this review focuses on the molecular mechanisms of BMP-7 treatment in cardiovascular disease and its role as an anti-fibrotic, anti-apoptotic and anti-inflammatory growth factor, which emphasizes its potential therapeutic significance in heart diseases.
Collapse
|
41
|
Wang D, Huang J, Gui T, Yang Y, Feng T, Tzvetkov NT, Xu T, Gai Z, Zhou Y, Zhang J, Atanasov AG. SR-BI as a target of natural products and its significance in cancer. Semin Cancer Biol 2020; 80:18-38. [PMID: 31935456 DOI: 10.1016/j.semcancer.2019.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Scavenger receptor class B type I (SR-BI) protein is an integral membrane glycoprotein. SR-BI is emerging as a multifunctional protein, which regulates autophagy, efferocytosis, cell survival and inflammation. It is well known that SR-BI plays a critical role in lipoprotein metabolism by mediating cholesteryl esters selective uptake and the bi-directional flux of free cholesterol. Recently, SR-BI has also been identified as a potential marker for cancer diagnosis, prognosis, or even a treatment target. Natural products are a promising source for the discovery of new drug leads. Multiple natural products were identified to regulate SR-BI protein expression. There are still a number of challenges in modulating SR-BI expression in cancer and in using natural products for modulation of such protein expression. In this review, our purpose is to discuss the relationship between SR-BI protein and cancer, and the molecular mechanisms regulating SR-BI expression, as well as to provide an overview of natural products that regulate SR-BI expression.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, 318 Preston Research Building, 2200 Pierce Avenue, Nashville, Tennessee, 37232, USA
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yaxin Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Tingting Feng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi university town, 550025, Guiyang, China
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi university town, 550025, Guiyang, China.
| | - Jingjie Zhang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China.
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552, Jastrzębiec, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
42
|
Persson EK, Verstraete K, Heyndrickx I, Gevaert E, Aegerter H, Percier JM, Deswarte K, Verschueren KHG, Dansercoer A, Gras D, Chanez P, Bachert C, Gonçalves A, Van Gorp H, De Haard H, Blanchetot C, Saunders M, Hammad H, Savvides SN, Lambrecht BN. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science 2019; 364:364/6442/eaaw4295. [PMID: 31123109 DOI: 10.1126/science.aaw4295] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/05/2019] [Indexed: 01/05/2023]
Abstract
Although spontaneous protein crystallization is a rare event in vivo, Charcot-Leyden crystals (CLCs) consisting of galectin-10 (Gal10) protein are frequently observed in eosinophilic diseases, such as asthma. We found that CLCs derived from patients showed crystal packing and Gal10 structure identical to those of Gal10 crystals grown in vitro. When administered to the airways, crystalline Gal10 stimulated innate and adaptive immunity and acted as a type 2 adjuvant. By contrast, a soluble Gal10 mutein was inert. Antibodies directed against key epitopes of the CLC crystallization interface dissolved preexisting CLCs in patient-derived mucus within hours and reversed crystal-driven inflammation, goblet-cell metaplasia, immunoglobulin E (IgE) synthesis, and bronchial hyperreactivity (BHR) in a humanized mouse model of asthma. Thus, protein crystals may promote hallmark features of asthma and are targetable by crystal-dissolving antibodies.
Collapse
Affiliation(s)
- Emma K Persson
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kenneth Verstraete
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Ines Heyndrickx
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Elien Gevaert
- Upper Airways Research Laboratory, ENT Department, Ghent University Hospital, Ghent, Belgium
| | - Helena Aegerter
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Kim Deswarte
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Koen H G Verschueren
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Ann Dansercoer
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Delphine Gras
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
| | - Pascal Chanez
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France.,Clinique des Bronches, Allergies et Sommeil, Hôpital Nord, AP-HM, Marseille, France
| | - Claus Bachert
- Upper Airways Research Laboratory, ENT Department, Ghent University Hospital, Ghent, Belgium.,Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Amanda Gonçalves
- BioImaging Core, VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Hanne Van Gorp
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | | | | | - Hamida Hammad
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Savvas N Savvides
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, ErasmusMC, Rotterdam, Netherlands
| |
Collapse
|
43
|
Dakhlallah D, Wang Y, Bobo TA, Ellis E, Mo X, Piper MG, Eubank TD, Marsh CB. Constitutive AKT Activity Predisposes Lung Fibrosis by Regulating Macrophage, Myofibroblast and Fibrocyte Recruitment and Changes in Autophagy. ACTA ACUST UNITED AC 2019; 10:346-373. [PMID: 31750010 PMCID: PMC6866236 DOI: 10.4236/abb.2019.1010027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The etiology and pathogenesis of pulmonary fibrosis is poorly understood. We and others reported that M-CSF/CSF-1, M-CSF-R and downstream AKT activation plays an important role in lung fibrosis in mice models and in IPF patients. To understand potential molecular pathways used by M-CSF-R activation to direct lung fibrosis, we used a novel transgenic mouse model that expresses a constitutively-active form of AKT, myristoylated AKT (Myr-Akt), driven by the c-fms (M-CSF-R) promoter. We were particularly interested in the basal immune state of the lungs of these Myr-Akt mice to assess M-CSF-R-related priming for lung fibrosis. In support of a priming effect, macrophages isolated from the lungs of unchallenged Myr-Akt mice displayed an M2-tropism, enhanced co-expression of M-CSF-R and α-SMA, reduced autophagy reflected by reduced expression of the key autophagy genes Beclin-1, MAP1-Lc3a(Lc3a), and MAP1-Lc3b(Lc3b), and increased p62/STSQM1 expression compared with littermate WT mice. Furthermore, Myr-Akt mice had more basal circulating fibrocytes than WT mice. Lastly, upon bleomycin challenge, Myr-Akt mice showed enhanced collagen deposition, increased F4/80+ and CD45+ cells, reduced autophagy genes Beclin-1, Lc3a, and Lc3b expression, and a shorter life-span than WT littermates. These data provide support that M-CSF-R/AKT activation may have a priming effect which can predispose lung tissue to pulmonary fibrosis.
Collapse
Affiliation(s)
- Duaa Dakhlallah
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.,Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Yijie Wang
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Tierra A Bobo
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.,Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Emily Ellis
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Xiaokui Mo
- The Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Melissa G Piper
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Timothy D Eubank
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.,Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.,Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Clay B Marsh
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.,Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
44
|
Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol 2019; 60:57-71. [PMID: 31605751 DOI: 10.1016/j.semcancer.2019.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is a cause of drug resistance in a plethora of tumors. More recent evidence indicates additional contribution of these transporters to other processes, such as tumor cell dissemination and metastasis, thereby extending their possible roles in tumor progression. While the role of some ABC transporters, such as ABCB1, ABCC1 and ABCG2, in multidrug resistance is well documented, the mechanisms by which ABC transporters affect the proliferation, differentiation, migration and invasion of cancer cells are still poorly defined and are frequently controversial. This review, summarizes recent advances that highlight the role of subfamily A members in cancer. Emerging evidence highlights the potential value of ABCA members as biomarkers of risk and response in different tumors, but information is disperse and very little is known about their possible mechanisms of action. The only clear evidence is that ABCA members are involved in lipid metabolism and homeostasis. In particular, the relationship between ABCA1 and cholesterol is becoming evident in different fields of biology, including cancer. In parallel, emerging findings indicate that cholesterol, the main component of cell membranes, can influence many physiological and pathological processes, including cell migration, cancer progression and metastasis. This review aims to link the dispersed knowledge regarding the relationship of ABCA members with lipid metabolism and cancer in an effort to stimulate and guide readers to areas that the writers consider to have significant impact and relevant potentialities.
Collapse
Affiliation(s)
- Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Anna Maria Giudice
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, 40126, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| |
Collapse
|
45
|
Lo Y, Sauve JP, Menzies SC, Steiner TS, Sly LM. Phosphatidylinositol 3-kinase p110δ drives intestinal fibrosis in SHIP deficiency. Mucosal Immunol 2019; 12:1187-1200. [PMID: 31358861 DOI: 10.1038/s41385-019-0191-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/23/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023]
Abstract
Crohn's disease is an immune-mediated disease characterized by inflammation along the gastrointestinal tract. Fibrosis requiring surgery occurs in one-third of people with Crohn's disease but there are no treatments for intestinal fibrosis. Mice deficient in the SH2 domain-containing inositolpolyphosphate 5'-phosphatase (SHIP), a negative regulator of phosphatidylinositol 3-kinase (PI3K) develop spontaneous Crohn's disease-like intestinal inflammation and arginase I (argI)-dependent fibrosis. ArgI is up-regulated in SHIP deficiency by PI3Kp110δ activity. Thus, we hypothesized that SHIP-deficient mice develop fibrosis due to increased PI3Kp110δ activity. In SHIP-deficient mice, genetic ablation or pharmacological inhibition of PI3Kp110δ activity reduced intestinal fibrosis, including muscle thickening, accumulation of vimentin+ mesenchymal cells, and collagen deposition. PI3Kp110δ deficiency or inhibition also reduced ileal inflammation in SHIP-deficient mice suggesting that PI3Kp110δ may contribute to inflammation. Targeting PI3Kp110δ activity may be an effective strategy to reduce intestinal fibrosis, and may be particularly effective in the subset of people with Crohn's disease, who have low SHIP activity.
Collapse
Affiliation(s)
- Young Lo
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jean Philippe Sauve
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Susan C Menzies
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Theodore S Steiner
- Division of Infectious Diseases, Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
46
|
Goossens P, Rodriguez-Vita J, Etzerodt A, Masse M, Rastoin O, Gouirand V, Ulas T, Papantonopoulou O, Van Eck M, Auphan-Anezin N, Bebien M, Verthuy C, Vu Manh TP, Turner M, Dalod M, Schultze JL, Lawrence T. Membrane Cholesterol Efflux Drives Tumor-Associated Macrophage Reprogramming and Tumor Progression. Cell Metab 2019; 29:1376-1389.e4. [PMID: 30930171 DOI: 10.1016/j.cmet.2019.02.016] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/01/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
Macrophages possess intrinsic tumoricidal activity, yet tumor-associated macrophages (TAMs) rapidly adopt an alternative phenotype within the tumor microenvironment that is marked by tumor-promoting immunosuppressive and trophic functions. The mechanisms that promote such TAM polarization remain poorly understood, but once identified, they may represent important therapeutic targets to block the tumor-promoting functions of TAMs and restore their anti-tumor potential. Here, we have characterized TAMs in a mouse model of metastatic ovarian cancer. We show that ovarian cancer cells promote membrane-cholesterol efflux and depletion of lipid rafts from macrophages. Increased cholesterol efflux promoted IL-4-mediated reprogramming, including inhibition of IFNγ-induced gene expression. Genetic deletion of ABC transporters, which mediate cholesterol efflux, reverts the tumor-promoting functions of TAMs and reduces tumor progression. These studies reveal an unexpected role for membrane-cholesterol efflux in driving TAM-mediated tumor progression while pointing to a potentially novel anti-tumor therapeutic strategy.
Collapse
Affiliation(s)
- Pieter Goossens
- CNRS, Aix Marseille University, INSERM, CIML, Marseille 13009, France; Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, the Netherlands
| | - Juan Rodriguez-Vita
- CNRS, Aix Marseille University, INSERM, CIML, Marseille 13009, France; Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Anders Etzerodt
- CNRS, Aix Marseille University, INSERM, CIML, Marseille 13009, France; Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Marion Masse
- CNRS, Aix Marseille University, INSERM, CIML, Marseille 13009, France
| | - Olivia Rastoin
- CNRS, Aix Marseille University, INSERM, CIML, Marseille 13009, France
| | - Victoire Gouirand
- CNRS, Aix Marseille University, INSERM, CIML, Marseille 13009, France
| | - Thomas Ulas
- Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn 53115, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn 53127, Germany
| | - Olympia Papantonopoulou
- Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn 53115, Germany
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Universiteit Leiden, 2300 Leiden, the Netherlands
| | | | - Magali Bebien
- CNRS, Aix Marseille University, INSERM, CIML, Marseille 13009, France
| | | | | | - Martin Turner
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Marc Dalod
- CNRS, Aix Marseille University, INSERM, CIML, Marseille 13009, France
| | - Joachim L Schultze
- Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn 53115, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn 53127, Germany
| | - Toby Lawrence
- CNRS, Aix Marseille University, INSERM, CIML, Marseille 13009, France; Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Micriboal Sciences, King's College London, London SE1 1UL, UK; Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, China.
| |
Collapse
|
47
|
Linton MF, Moslehi JJ, Babaev VR. Akt Signaling in Macrophage Polarization, Survival, and Atherosclerosis. Int J Mol Sci 2019; 20:ijms20112703. [PMID: 31159424 PMCID: PMC6600269 DOI: 10.3390/ijms20112703] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
The PI3K/Akt pathway plays a crucial role in the survival, proliferation, and migration of macrophages, which may impact the development of atherosclerosis. Changes in Akt isoforms or modulation of the Akt activity levels in macrophages significantly affect their polarization phenotype and consequently atherosclerosis in mice. Moreover, the activity levels of Akt signaling determine the viability of monocytes/macrophages and their resistance to pro-apoptotic stimuli in atherosclerotic lesions. Therefore, elimination of pro-apoptotic factors as well as factors that antagonize or suppress Akt signaling in macrophages increases cell viability, protecting them from apoptosis, and this markedly accelerates atherosclerosis in mice. In contrast, inhibition of Akt signaling by the ablation of Rictor in myeloid cells, which disrupts mTORC2 assembly, significantly decreases the viability and proliferation of blood monocytes and macrophages with the suppression of atherosclerosis. In addition, monocytes and macrophages exhibit a threshold effect for Akt protein levels in their ability to survive. Ablation of two Akt isoforms, preserving only a single Akt isoform in myeloid cells, markedly compromises monocyte and macrophage viability, inducing monocytopenia and diminishing early atherosclerosis. These recent advances in our understanding of Akt signaling in macrophages in atherosclerosis may have significant relevance in the burgeoning field of cardio-oncology, where PI3K/Akt inhibitors being tested in cancer patients can have significant cardiovascular and metabolic ramifications.
Collapse
Affiliation(s)
- MacRae F Linton
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232-6300, USA.
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232-6300, USA.
| | - Javid J Moslehi
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232-6300, USA.
| | - Vladimir R Babaev
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232-6300, USA.
| |
Collapse
|
48
|
Ponziani FR, Nicoletti A, Gasbarrini A, Pompili M. Diagnostic and therapeutic potential of the gut microbiota in patients with early hepatocellular carcinoma. Ther Adv Med Oncol 2019; 11:1758835919848184. [PMID: 31205505 PMCID: PMC6535703 DOI: 10.1177/1758835919848184] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota is involved in the maintenance of the homeostasis of the human body and its alterations are associated with the development of different pathological conditions. The liver is the organ most exposed to the influence of the gut microbiota, and recently important connections between the intestinal flora and hepatocellular carcinoma (HCC) have been described. In fact, HCC is commonly associated with liver cirrhosis and develops in a microenvironment where inflammation, immunological alterations, and cellular aberrations are dramatically evident. Prevention and diagnosis in the earliest stages are still the most effective weapons in fighting this tumor. Animal models show that the gut microbiota can be involved in the promotion and progression of HCC directly or through different pathogenic mechanisms. Recent data in humans have confirmed these preclinical findings, shedding new light on HCC pathogenesis. Limitations due to the different experimental design, the ethnic and hepatological setting make it difficult to compare the results and draw definitive conclusions, but these studies lay the foundations for a pathogenetic redefinition of HCC. Therefore, it is evident that the characterization of the gut microbiota and its modulation can have an enormous diagnostic, preventive, and therapeutic potential, especially in patients with early stage HCC.
Collapse
Affiliation(s)
- Francesca Romana Ponziani
- Division of Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, Rome, 00168, Italy
| | - Alberto Nicoletti
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Maurizio Pompili
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
49
|
Triptolide Inhibits Preformed Fibril-Induced Microglial Activation by Targeting the MicroRNA155-5p/SHIP1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6527638. [PMID: 31182996 PMCID: PMC6512043 DOI: 10.1155/2019/6527638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Evidence suggests that various forms of α-synuclein- (αSyn-) mediated microglial activation are associated with the progression of Parkinson's disease. MicroRNA-155-5p (miR155-5p) is one of the most important microRNAs and enables a robust inflammatory response. Triptolide (T10) is a natural anti-inflammatory component, isolated from a traditional Chinese herb. The objective of the current study was to identify the role and potential regulatory mechanism of T10 in αSyn-induced microglial activation via the miR155-5p mediated SHIP1 signaling pathway. Mouse primary microglia were exposed to monomers, oligomers, and preformed fibrils (PFFs) of human wild-type αSyn, respectively. The expressions of TNFα and IL-1β, measured by enzyme-linked immunosorbent assay (ELISA) and qPCR, demonstrated that PFFs initiated the strongest immunogenicity in microglia. Application of inhibitors of toll-like receptor (TLR) 1/2, TLR4, and TLR9 indicated that PFFs activated microglia mainly via the NF-κB pathway by binding TLR1/2 and TLR4. Treatment with T10 significantly suppressed PFF-induced microglial activation and attenuated the release of proinflammatory cytokines including TNFα and IL-1β. Levels of IRAK1, TRAF6, IKKα/β, p-IKKα/β, NF-κB, p-NF-κB, PI3K, p-PI3K, t-Akt, p-Akt and SHIP1 were measured via Western blot. Levels of miR155-5p were measured by qPCR. The results demonstrated that SHIP1 acted as a downstream target molecule of miR155-5p. Treatment with T10 did not alter the expression of IRAK1 and TRAF6, but significantly decreased the expression of miR155-5p, resulting in upregulation of SHIP1 and repression of NF-κB activity, suggesting inhibition of inflammation and microglial activation. The protective effects of T10 were abolished by the use of SHIP1 siRNA and its inhibitor, 3AC, and miR155-5p mimics. In conclusion, our results demonstrated that treatment with T10 suppressed microglial activation and attenuated the release of proinflammatory cytokines by suppressing NF-κB activity via targeting the miR155-5p/SHIP1 pathway in PFFs-induced microglial activation.
Collapse
|
50
|
Hibbs ML, Raftery AL, Tsantikos E. Regulation of hematopoietic cell signaling by SHIP-1 inositol phosphatase: growth factors and beyond. Growth Factors 2018; 36:213-231. [PMID: 30764683 DOI: 10.1080/08977194.2019.1569649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SHIP-1 is a hematopoietic-specific inositol phosphatase activated downstream of a multitude of receptors including those for growth factors, cytokines, antigen, immunoglobulin and toll-like receptor agonists where it exerts inhibitory control. While it is constitutively expressed in all immune cells, SHIP-1 expression is negatively regulated by the inflammatory and oncogenic micro-RNA miR-155. Knockout mouse studies have shown the importance of SHIP-1 in various immune cell subsets and have revealed a range of immune-mediated pathologies that are engendered due to loss of SHIP-1's regulatory activity, impelling investigations into the role of SHIP-1 in human disease. In this review, we provide an overview of the literature relating to the role of SHIP-1 in hematopoietic cell signaling and function, we summarize recent reports that highlight the dysregulation of the SHIP-1 pathway in cancers, autoimmune disorders and inflammatory diseases, and lastly we discuss the importance of SHIP-1 in restraining myeloid growth factor signaling.
Collapse
Affiliation(s)
- Margaret L Hibbs
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - April L Raftery
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - Evelyn Tsantikos
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| |
Collapse
|