1
|
Carvalho-Santos A, Ballard Kuhnert LR, Hahne M, Vasconcellos R, Carvalho-Pinto CE, Villa-Verde DMS. Anti-inflammatory role of APRIL by modulating regulatory B cells in antigen-induced arthritis. PLoS One 2024; 19:e0292028. [PMID: 38691538 PMCID: PMC11062543 DOI: 10.1371/journal.pone.0292028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
APRIL (A Proliferation-Inducing Ligand), a member of the TNF superfamily, was initially described for its ability to promote proliferation of tumor cells in vitro. Moreover, this cytokine has been related to the pathogenesis of different chronic inflammatory diseases, such as rheumatoid arthritis. This study aimed to evaluate the ability of APRIL in regulating B cell-mediated immune response in the antigen-induced arthritis (AIA) model in mice. AIA was induced in previously immunized APRIL-transgenic (Tg) mice and their littermates by administration of antigen (mBSA) into the knee joints. Different inflammatory cell populations in spleen and draining lymph nodes were analyzed using flow cytometry and the assay was performed in the acute and chronic phases of the disease, while cytokine levels were assessed by ELISA. In the acute AIA, APRIL-Tg mice developed a less severe condition and a smaller inflammatory infiltrate in articular tissues when compared with their littermates. We also observed that the total cellularity of draining lymph nodes was decreased in APRIL-Tg mice. Flow cytometry analysis revealed an increase of CD19+IgM+CD5+ cell population in draining lymph nodes and an increase of CD19+CD21hiCD23hi (B regulatory) cells in APRIL-Tg mice with arthritis as well as an increase of IL-10 and CXCL13 production in vitro.
Collapse
Affiliation(s)
- Adriana Carvalho-Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Experimental Pathology Laboratory, Department of Immunobiology, Biology Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - Lia Rafaella Ballard Kuhnert
- Experimental Pathology Laboratory, Department of Immunobiology, Biology Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Label "Equipe FRM", Montpellier, France
| | - Rita Vasconcellos
- Experimental Pathology Laboratory, Department of Immunobiology, Biology Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - Carla Eponina Carvalho-Pinto
- Experimental Pathology Laboratory, Department of Immunobiology, Biology Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - Déa Maria Serra Villa-Verde
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Li Q, Yang C, Liu C, Zhang Y, An N, Ma X, Zheng Y, Cui X, Li Q. The circulating IL-35 + regulatory B cells are associated with thyroid associated opthalmopathy. Immun Inflamm Dis 2024; 12:e1304. [PMID: 38804861 PMCID: PMC11131934 DOI: 10.1002/iid3.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Thyroid-associated ophthalmopathy (TAO) is the most common orbital disease in adults, potentially leading to disfigurement and visual impairment. However, the causes of TAO are not fully understood. IL-35+B cells are a newly identified regulatory B cells (Bregs) in maintaining immune balance in various autoimmune diseases. Yet, the influence of IL-35+Bregs in TAO remains unexplored. METHODS This study enrolled 36 healthy individuals and 14 TAO patients. We isolated peripheral blood mononuclear cells and stimulated them with IL-35 and CpG for 48 h. Flow cytometry was used to measure the percentages of IL-35+Bregs. RESULTS The percentage of circulating IL-35+Bregs was higher in TAO patients, and this increase correlated positively with disease activity. IL-35 significantly increased the generation of IL-35+Bregs in healthy individuals. However, B cells from TAO patients exhibited potential impairment in transitioning into IL-35+Breg phenotype under IL-35 stimulation. CONCLUSIONS Our results suggest a potential role of IL-35+Bregs in the development of TAO, opening new avenues for understanding disease mechanisms and developing therapeutic approaches.
Collapse
Affiliation(s)
- Qian Li
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Cuixia Yang
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Cheng Liu
- Medical Science Research Institution of Ningxia Hui Autonomous RegionMedical Sci‐Tech Research Center of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Yuehui Zhang
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Ningyu An
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Xiumei Ma
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Yang Zheng
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Xiaomin Cui
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Qian Li
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| |
Collapse
|
3
|
Jung M, Lee S, Park S, Hong J, Kim C, Cho I, Sohn HS, Kim K, Park IW, Yoon S, Kwon S, Shin J, Lee D, Kang M, Go S, Moon S, Chung Y, Kim Y, Kim BS. A Therapeutic Nanovaccine that Generates Anti-Amyloid Antibodies and Amyloid-specific Regulatory T Cells for Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207719. [PMID: 36329674 DOI: 10.1002/adma.202207719] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a complex condition characterized by multiple pathophysiological mechanisms including amyloid-β (Aβ) plaque accumulation and neuroinflammation in the brain. The current immunotherapy approaches, such as anti-Aβ monoclonal antibody (mAb) therapy, Aβ vaccines, and adoptive regulatory T (Treg) cell transfer, target a single pathophysiological mechanism, which may lead to unsatisfactory therapeutic efficacy. Furthermore, Aβ vaccines often induce T helper 1 (Th1) cell-mediated inflammatory responses. Here, a nanovaccine composed of lipid nanoparticles loaded with Aβ peptides and rapamycin is developed, which targets multiple pathophysiological mechanisms, exhibits the combined effects of anti-Aβ antibody therapy and adoptive Aβ-specific Treg cell transfer, and can overcome the limitations of current immunotherapy approaches for AD. The Nanovaccine effectively delivers rapamycin and Aβ peptides to dendritic cells, produces both anti-Aβ antibodies and Aβ-specific Treg cells, removes Aβ plaques in the brain, alleviates neuroinflammation, prevents Th1 cell-mediated excessive immune responses, and inhibits cognitive impairment in mice. The nanovaccine shows higher efficacy in cognitive recovery than an Aβ vaccine. Unlike anti-Aβ mAb therapy and adoptive Treg cell transfer, both of which require complicated and costly manufacturing processes, the nanovaccine is easy-to-prepare and cost-effective. The nanovaccines can represent a novel treatment option for AD.
Collapse
Affiliation(s)
- Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Songmin Lee
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Sohui Park
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Illhwan Cho
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyunghwan Kim
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - In Wook Park
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Soljee Yoon
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon, 21983, Republic of Korea
| | - Sungpil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Donghee Lee
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyung Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon, 21983, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Wang C, Xu H, Gao R, Leng F, Huo F, Li Y, Liu S, Xu M, Bai J. CD19 +CD24 hiCD38 hi regulatory B cells deficiency revealed severity and poor prognosis in patients with sepsis. BMC Immunol 2022; 23:54. [PMID: 36357845 PMCID: PMC9648441 DOI: 10.1186/s12865-022-00528-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Background Sepsis still remains a major challenge in intensive care medicine with unacceptably high mortality among patients with septic shock. Due to current limitations of human CD19+CD24hiCD38hi Breg cells (Bregs) studies among sepsis, here, we tried to evaluate Bregs in severity and prognostic value in patients with sepsis. Methods Peripheral blood from 58 patients with sepsis and 22 healthy controls was analyzed using flow cytometry to evaluate the frequency and number of Bregs. All cases were divided into non-survived or survived group after 28 days followed up. Spearman's correlation analysis was performed on Bregs frequency and clinical indices. The area under the curve was acquired using the receiver operating characteristic analysis to assess the sensitivity and specificity of Bregs for outcome of sepsis. Survival curve analysis and binary logistic regression were applied to estimate the value of Bregs in prognosis among cases with sepsis. Results Sepsis patients had decreased proportions and number of Bregs. Sepsis patients with low frequency of Bregs were associated with an increased risk of septic shock. Bregs frequency is inversely associated with lactate, SOFA, and APACHE II and positively correlated with Tregs frequency. Low levels of Bregs closely correlated with septic outcomes. Numbers of Bregs were prediction factors for poor prognosis. Conclusions Frequency and number of Bregs decreased, and Bregs deficiency revealed poor prognosis in patients with sepsis. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00528-x.
Collapse
Affiliation(s)
- Chunmei Wang
- grid.89957.3a0000 0000 9255 8984Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, 211166 Jiangsu Province China ,grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Huihui Xu
- grid.9227.e0000000119573309Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gao
- grid.452252.60000 0004 8342 692XDepartment of Respiratory and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, 272067 Shandong Province China
| | - Fengying Leng
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Fangjie Huo
- Department of Respiratory Medicine, Xi’an No. 4 Hospital, Xi’an, 710004 Shanxi Province China
| | - Yinzhen Li
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China ,grid.24516.340000000123704535Medical School, Tongji University, Shanghai, 200120 China
| | - Siting Liu
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Mingzheng Xu
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Jianwen Bai
- grid.89957.3a0000 0000 9255 8984Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, 211166 Jiangsu Province China ,grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| |
Collapse
|
5
|
Patel AJ, Willsmore ZN, Khan N, Richter A, Naidu B, Drayson MT, Papa S, Cope A, Karagiannis SN, Perucha E, Middleton GW. Regulatory B cell repertoire defects predispose lung cancer patients to immune-related toxicity following checkpoint blockade. Nat Commun 2022; 13:3148. [PMID: 35672305 PMCID: PMC9174492 DOI: 10.1038/s41467-022-30863-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 05/22/2022] [Indexed: 12/20/2022] Open
Abstract
Checkpoint blockade with Pembrolizumab, has demonstrated durable clinical responses in advanced non-small cell lung cancer, however, treatment is offset by the development of high-grade immune related adverse events (irAEs) in some patients. Here, we show that in these patients a deficient Breg checkpoint fails to limit self-reactive T cell enhanced activity and auto-antibody formation enabled by PD-1/PD-L1 blockade, leading to severe auto-inflammatory sequelae. Principally a failure of IL-10 producing regulatory B cells as demonstrated through functional ex vivo assays and deep phenotyping mass cytometric analysis, is a major and significant finding in patients who develop high-grade irAEs when undergoing treatment with anti-PD1/PD-L1 checkpoint blockade. There is currently a lack of biomarkers to identify a priori those patients at greatest risk of developing severe auto-inflammatory syndrome. Pre-therapy B cell profiling could provide an important tool to identify lung cancer patients at high risk of developing severe irAEs on checkpoint blockade.
Collapse
Affiliation(s)
- Akshay J Patel
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zena N Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Babu Naidu
- Institute of Inflammation and Ageing (IIA), College of Medical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark T Drayson
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sophie Papa
- Immunoengineering Group, King's College London, London, SE1 9RT, UK
- Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, SE1 9RT, UK
| | - Andrew Cope
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
- Centre for Rheumatic Diseases, King's College London, SE1 1UL, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, SE1 9RT, UK
| | - Esperanza Perucha
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
- Centre for Rheumatic Diseases, King's College London, SE1 1UL, London, UK
| | - Gary W Middleton
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
IL-10 producing B cells regulated 1,3-β-glucan induced Th responses in coordinated with Treg. Immunol Lett 2021; 235:15-21. [PMID: 33951473 DOI: 10.1016/j.imlet.2021.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/17/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
Repeated exposure to fungi-contaminated dust can lead to multiple adverse effects on the lung, such as hypersensitivity pneumonitis, granuloma even irreversible fibrosis. 1,3-β-glucan, a major cell wall component of fungi, is considered as its exposure biomarker. Existing studies showed that a series of Th responses were involved in 1,3-β-glucan induced hypersensitivity pneumonitis, in which macrophages, Treg, and IL-10 producing B cells were reported to participate. The reciprocal interaction among those critical immune cells in 1,3-β-glucan induced inflammation was not investigated yet. To clarify the regulatory mechanism of IL-10 producing B cells on Th and Treg, the current study set up a primary cell co-culture system. The anti-CD22 antibody was injected intraperitoneally to generate IL-10 producing B cells deficiency mouse model. Cells were isolated and purified from C57BL∖6 mice in different groups. Flow cytometry was used to check the phenotype of different cell subtypes. CBA assay and real-time PCR were used to examine the levels of multiple cytokines. Our results indicated that IL-10 producing B cells could modulate the 1,3-β-glucan induced inflammatory response. The modulation of IL-10 producing B cells on Th response after 1,3-β-glucan treatment was cell contact independent. What's more, the modulation pattern of IL-10 producing B cells might be impaired without Treg response. IL-10-producing B cells regulated 1,3-β-glucan induced Th responses in co-ordination with Treg cells.
Collapse
|
7
|
Interleukin 35 Regulatory B Cells. J Mol Biol 2020; 433:166607. [PMID: 32755620 DOI: 10.1016/j.jmb.2020.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.
Collapse
|
8
|
Wu H, Su Z, Barnie PA. The role of B regulatory (B10) cells in inflammatory disorders and their potential as therapeutic targets. Int Immunopharmacol 2019; 78:106111. [PMID: 31881524 DOI: 10.1016/j.intimp.2019.106111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Over the past decade, studies have identified subset of B cells, which play suppressive functions in additions to the conventional functions of B cells: antigen processing and presentation, activation of T cells and antibody productions. Because of their regulatory function, they were named as B regulatory cells (Bregs). Bregs restrict the severity of autoimmune disorders in animal disease models such as experimental autoimmune myocarditis (EAM), experimental autoimmune encephalitis (EAE), and collagen-induced arthritis (CIA) but can contribute to the development of infection and cancer. In humans, the roles of B regulatory cells in autoimmune diseases have not been clearly established because of the inconsistent findings from many researchers. This is believed to arise from the speculated fact that Bregs lack specific marker, which can be used to identify and characterize them in human diseases. The CD19+CD24hiCD38hiCD1dhiB cells have been associated with the regulatory function. Available evidences highlight the relevance of increasing IL-10-producing B cells in autoimmune diseases and the possibility of serving as new therapeutic targets in inflammatory disorders. This review empanels the functions of Bregs in autoimmune diseases in both human and animal models, and further evaluates the possibility of Bregs as therapeutic targets in inflammatory disorders. Consequently, this might help identify possible research gaps, which need to be clarified as researchers speculate the possibility of targeting some subsets of Bregs in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Hongxia Wu
- Department of Laboratory, People's Hospital of Jiangyin, Jiangsu 214400, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Prince Amoah Barnie
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Ghana.
| |
Collapse
|
9
|
Wei B, Deng Y, Huang Y, Gao X, Wu W. IL-10-producing B cells attenuate cardiac inflammation by regulating Th1 and Th17 cells in acute viral myocarditis induced by coxsackie virus B3. Life Sci 2019; 235:116838. [PMID: 31493482 DOI: 10.1016/j.lfs.2019.116838] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022]
Abstract
AIMS This work aimed to evaluate the regulatory function of IL-10-producing B cells in viral myocarditis (VMC). MAIN METHODS We adoptively transferred purified IL-10-producing B cells to VMC mice via the tail vein. We observed the inflammatory responses and cardiac lesions by histological analysis, examined the proportions of spleen Th1 and T17 cells by flow cytometry and expression levels of related transcription factors (T-bet and RORγt) by reverse transcription polymerase chain reaction (RT-PCR), and calculated the cardiac pathological scores and the mean survival times. KEY FINDINGS IL-10-producing B cells were found to be T cell-dependent in the pathogenesis of VMC. They mainly downregulated T-bet and RORγt mRNA levels to decrease the proportions of Th1 and Th17 cells, thereby restraining the inflammation and damage in the myocardium in B cell-deficient VMC mice. Adoptive transfer of IL-10-producing B cells before VMC induction also normalized the inflammatory responses and prolonged the survival time in wild-type (WT) VMC mice. While the transfer of IL-10-producing B cells on day 3 of VMC alleviated the severity of disease, it did not extend the mean survival time of VMC mice. By contrast, IL-10-producing B cells showed no effect on day 7 of VMC. In conclusion, IL-10-producing B cells downregulate the proportion of Th1 and Th17 cells to alleviate inflammatory damage in the myocardium during VMC before the induction or the early phase of disease. SIGNIFICANCE These findings suggest that IL-10-producing B cells may be a new therapeutic target for modulating the immune response in VMC.
Collapse
Affiliation(s)
- Bin Wei
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Deng
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yanlan Huang
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xingcui Gao
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weifeng Wu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
10
|
Zhao XS, Huang XJ. Seeking biomarkers for acute graft-versus-host disease: where we are and where we are heading? Biomark Res 2019; 7:17. [PMID: 31406575 PMCID: PMC6685226 DOI: 10.1186/s40364-019-0167-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is one of the most important complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT), which would seriously affect the clinical outcomes of patients. Early diagnosis and early intervention are keys for improving its curative efficacy. Thus, seeking the biomarkers of aGVHD that can accurately identify and diagnose aGVHD is very important to guiding the intervention and treatment of aGVHD. For the past decades, many studies have focused on searching for aGVHD-related biological markers to assist in diagnosis, early warning, and risk stratification. Unfortunately, until now, no reliable aGVHD biomarker is available that is recognized and widely used in clinical practice. With the continuous development of biological technology, as well as our in-depth understanding of the pathophysiologic mechanism of aGVHD, the selection, examination and application of biological markers have changed much. In this review, we summarized the progress of aGVHD biological marker screening, identification, preliminary clinical application, and look forward to a promising development direction in the future.
Collapse
Affiliation(s)
- Xiao-Su Zhao
- 1Peking University Peopl's Hospital, Peking University Institute of Hematology, No.11 Xizhimen South Street, Beijing, 100044 China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,3Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- 1Peking University Peopl's Hospital, Peking University Institute of Hematology, No.11 Xizhimen South Street, Beijing, 100044 China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,3Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,4Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
11
|
Regulation of CD11b by HIF-1α and the STAT3 signaling pathway contributes to the immunosuppressive function of B cells in inflammatory bowel disease. Mol Immunol 2019; 111:162-171. [PMID: 31063937 DOI: 10.1016/j.molimm.2019.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
B cells have been reported to have a suppressive function in autoimmune diseases, which appears to require an increase of CD11b expression on B cells. However, little is known how CD11b is induced in B cells to play the function. In this study, we found that the high expression of CD11b in B cells occurred not only in the mucosal immune organs, but also in systemically immune organs such as the spleen during dextran sulfate sodium (DSS)-induced colitis. Since the inflammatory lesions in mouse models of inflammatory bowel disease (IBD) were revealed to be significantly hypoxic or even anoxic, the B cells from colitic mice Peyer's patches (PP) were investigated to express higher levels of hypoxia-inducible factor-1α (HIF-1α) than naïve B cells from wildtype (WT) mice. HIF-1α siRNA transfection or HIF-1α protein inhibition led to decreased CD11b expression at both the mRNA and protein levels in vitro. B cells with HIF-1α specific knockdown were then adoptively transferred to Rag-1-/- mice. The result displayed that CD11b expression was decreased in B cells and an exacerbated colitis occurred. The bio-informatics promoter analysis and ChIP assay showed that HIF-1α was the critical transcription factor for CD11b and cooperatively formed a complex with the p-STAT3 homodimers to bind onto hypoxia-responsive element (HRE) regions, which was guaranteed by MEK/ERK pathway activation and IL-10 secretion. In conclusion, our study demonstrated the key function of the hypoxia-associated transcription factor HIF-1α together with p-STAT3 in driving CD11b transcription in B cells and controlling B cell's protective activity in experimental inflammatory bowel disease (IBD).
Collapse
|
12
|
Lundqvist S, Modvig S, Fischer EA, Frederiksen JL, Degn M. Frequency and immunophenotype of IL10-producing regulatory B cells in optic neuritis. Immunology 2018; 156:259-269. [PMID: 30452090 DOI: 10.1111/imm.13024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022] Open
Abstract
Mouse models of multiple sclerosis (MS) have shown the importance of interleukin-10 (IL-10) -producing regulatory B (Breg) cells in dampening disease activity and inhibiting disease initiation and progression. In MS and other autoimmune diseases decreased frequency and functionality of Breg cells correlate with disease activity and the percentage of IL-10-producing Breg cells decreases during relapse and normalizes in remission. Optic neuritis (ON) is a common first clinical manifestation of MS and IL-10-producing Breg cells may be crucial in the transition from ON to MS, we therefore investigate the frequency and function of Breg cells in ON as a clinical model of early demyelinating disease. B cells were purified from 27 patients with ON sampled close to symptom onset (median 23 days, range 7-41 days) and 13 healthy controls. The B cells were stimulated and cultured for 48 hr with CD40 ligand and CpG before measurement of intracellular IL-10 and the surface markers CD19, CD1d, CD5, CD24, CD38 and CD27 by flow cytometry. The frequency of B-cell subsets was analysed in peripheral blood and cerebral spinal fluid (CSF) of patients. Sixty-five per cent of the IL-10-producing Breg cells co-expressed CD24 and CD38, and only 14% were CD24high CD27+ , suggesting that the naive B cells are the primary source of IL-10 in the B-cell culture, followed by memory cells in both healthy controls and patients. The frequency of naive CD19+ CD24+ CD38+ Breg cells was higher in patients with ON compared with controls. The ability of Breg cells to produce IL-10 was at normal levels in both ON patients with high risk and those with low risk of progression to MS. We found no correlation between Breg cell function and the presence of brain white matter lesions by magnetic resonance imaging or CSF oligoclonal bands indicative of ON patients carrying a higher risk of conversion to MS. The frequencies of IL-10-producing B cells did not correlate with the conversion to MS at 2-year follow up. Interleukin-10 was primarily produced by naive and memory B cells. The frequency of IL-10-secreting B cells did not correlate with risk factors of MS. Breg cell function at clinical onset of ON is not a determining factor for conversion to MS.
Collapse
Affiliation(s)
- Sara Lundqvist
- MS Clinic, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Signe Modvig
- MS Clinic, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Emilie A Fischer
- MS Clinic, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Jette L Frederiksen
- MS Clinic, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Matilda Degn
- MS Clinic, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
13
|
Liu M, Zhao X, Ma Y, Zhou Y, Deng M, Ma Y. Transcription factor c-Maf is essential for IL-10 gene expression in B cells. Scand J Immunol 2018; 88:e12701. [PMID: 29974486 DOI: 10.1111/sji.12701] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/02/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Min Liu
- Department of Immunology; School of Medicine; Wuhan University; Wuhan China
| | - Xiaoqi Zhao
- Department of Pharmacology; School of Medicine; Wuhan University; Wuhan China
| | - Yunfeng Ma
- Department of Pathogenic Microbiology and Immunology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an, Shaanxi China
| | - Yan Zhou
- Department of Orthopaedics; Renmin Hospital; Wuhan University; Wuhan City China
| | - Ming Deng
- Department of Orthopaedics; Renmin Hospital; Wuhan University; Wuhan City China
| | - Yonggang Ma
- Department of Orthopaedics; Renmin Hospital; Wuhan University; Wuhan City China
| |
Collapse
|
14
|
Li S, Ma F, Hao H, Wang D, Gao Y, Zhou J, Li F, Lin HC, Xiao X, Zeng Q. Marked elevation of circulating CD19 +CD38 hiCD24 hi transitional B cells give protection against neonatal sepsis. Pediatr Neonatol 2018; 59:296-304. [PMID: 29239829 DOI: 10.1016/j.pedneo.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Adequate functions of immunoregulation, mediated by regulatory cells such as IL-10 producing CD19+CD38hiCD24hi transitional B cells (Trans), play an important role in control of excessive inflammatory response. Yet, the role of Trans in neonatal sepsis is incompletely understood. We investigated the role of Trans in late-onset sepsis (LOS). METHODS We used multicolor flow cytometry to analyse the phenotypes of B cells drawn from a cohort of 16 neonatal late-onset sepsis (LOS) (12 survivors and 4 non-survivors) and 20 healthy neonates over time. RESULTS Patients undergone a serious decline of lymphocytes at the beginning of sepsis and then noticeable elevation during one week of follow-up had a good prognosis. Intriguingly, peripheral blood B cells, especially Trans, were the marked increase lymphocyte subset and maintained a high level of producing IL-10 during the 7 days of follow-up. CONCLUSION The level of IL-10 producing Trans was significantly elevated in peripheral blood of good prognosis newborns with LOS and might contribute to the successful immunoprotective state of the disease.
Collapse
Affiliation(s)
- Sitao Li
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fei Ma
- Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hu Hao
- Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Desheng Wang
- Department of Neonatology, The Fifth People's Hospital of Dongguan, Dongguan, China
| | - Yu Gao
- Department of Obstetrics & Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jialiang Zhou
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Fei Li
- Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hung-Chih Lin
- Division of Neonatology, China Medical University Children Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Asia University Hospital, Asia University, Taichung, Taiwan
| | - Xin Xiao
- Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Post-transcriptional regulator Rbm47 elevates IL-10 production and promotes the immunosuppression of B cells. Cell Mol Immunol 2018; 16:580-589. [PMID: 29844590 PMCID: PMC6804925 DOI: 10.1038/s41423-018-0041-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022] Open
Abstract
Regulatory B cells (Bregs) are a functionally defined B cell subset, and IL-10 is crucial for the suppressive functions of Bregs. However, little is known regarding how IL-10 production is regulated in B cells. To explore the mechanisms by which IL-10 is regulated in B cells, we used mRNA microarrays to screen for molecules that are upregulated in IL-10-producing B cells and identified RNA-binding motif protein 47 (Rbm47) as a post-transcriptional regulator. Rbm47 was found to promote IL-10 production in B cells. We found that Rbm47 promotes the stability of IL-10 mRNA by binding to AU-rich elements in the 3′ untranslated region of Il10 mRNA. In addition, we demonstrated that the overexpression of Rbm47 enabled B cells to facilitate Foxp3+ regulator T-cell induction and reduce the severity of DSS-induced ulcerative colitis. Taken together, these results suggest that Rbm47 plays an important role in regulating IL-10 at the post-transcriptional level, thus promoting the regulatory functions of B cells. The findings presented in this study not only increase our understanding of the post-translational regulation of IL-10 in B cells but also identify a novel strategy for the potential application of Bregs.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Glucocorticosteroids (GCSs) remain the cornerstone of therapy for treating the inflammatory component of asthma. Clinical response to GCS is heterogeneous, varying both within asthma 'endotypes', as well as the same individual. Different factors and micro-environment can alter the canonical GCS-induced signalling pathways leading to reduced efficacy, collectively termed as GCS subsensitivity, which includes the entire spectrum of steroid insensitivity and steroid resistance. RECENT FINDINGS In the past, steroid subsensitivity has been associated with dysregulated expression of glucocorticoid-receptor isoforms, neutrophilic inflammation and Th17 cytokines, oxidative stress-inducing factors and their downstream effect on histone deacetylase activities and gene expression. The review highlights recent observations, such as GCS-induced dysregulation of key transcription factors involved in host defence, role of airway infections altering expression of critical regulatory elements like the noncoding microRNAs, and the importance of interleukin (IL)-10 in reinstating steroid response in key immune cells. Further, emerging concepts of autoimmunity triggered because of delayed resolution of eosinophilic inflammation (due to GCS subsensitivity) and observed lymphopenia (plausibly a side-effect of continued GCS use) are discussed. SUMMARY This review bridges concepts that have been known, and those under current investigation, providing both molecular and clinical insights to aid therapeutic strategies for optimal management of asthmatics with varying degree of steroid subsensitivity and disease severity, with particular emphasis on the PI3 kinase pathways.
Collapse
|
17
|
Liu R, Lu Z, Gu J, Liu J, Huang E, Liu X, Wang L, Yang J, Deng Y, Qian J, Luo F, Wang Z, Zhang H, Jiang X, Zhang D, Qian J, Liu G, Zhu H, Qian Y, Liu Z, Chu Y. MicroRNAs 15A and 16-1 Activate Signaling Pathways That Mediate Chemotaxis of Immune Regulatory B cells to Colorectal Tumors. Gastroenterology 2018; 154:637-651.e7. [PMID: 29031499 DOI: 10.1053/j.gastro.2017.09.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/11/2017] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS B cells infiltrate tumors, but little is known about how they affect tumor growth and progression. microRNA15A (MIR15A or miRNA15A) and microRNA16-1 (MIR16-1 or miRNA16-1) regulate cell proliferation, apoptosis, and drug resistance. We investigated their involvement in B-cell-mediated immune suppression by colorectal tumors. METHODS Mice with disruptions of the gene cluster that encodes MIR15A and MIR16-1 (knockout mice), and control (C57BL/B6) mice were given azoxymethane with dextran sodium sulfate (AD) to induce formation of colorectal tumors. Mice were given anti-CD20 to delete B cells, or injections of agomir to increase MIR15A and MIR16-1. Proliferation of CD8+T cells was measured by carboxyfluorescein-succinimidyl-ester analysis. Colon tissues were collected from mice and analyzed by flow cytometry, microRNA (miRNA) sequencing, and for cytokine production. Intestinal epithelial cells (IECs) were isolated and transfected with miRNA mimics, to identify their targets. We analyzed miRNA expression patterns and quantified B cells in colorectal cancer tissue microarrays derived from 90 patients who underwent surgical resection, from July 2006 through April 2008, in Shanghai, China; expression data were compared with clinical outcomes. RESULTS Tumors that developed in knockout mice following administration of AD were larger and contained greater numbers of B cells than tumors that grew in control mice. Most of the B cells in the tumors were positive for immunoglobulin A (IgA+). IgA+ B cells expressed high levels of immune regulatory molecules (programmed death ligand 1, interleukin 10, and transforming growth factor beta), and repressed the proliferation and activation of CD8+ T cells. Levels of MIR15A and MIR16-1 were reduced in colon tumors from mice, compared with nontumor colon tissue. Incubation of IECs with IL17A reduced expression of MIR15A and MIR16-1. Transgenic expression of MIR15A and MIR16-1 in IECs decreased activation of NF-κB and STAT1 by reducing expression of I-kappaB kinases; this resulted in reduced production of chemokine (C-X-C motif) ligands 9 and 10 and decreased chemotaxis of IgA+ B cells. Tumors in mice injected with AD and agomir grew more slowly than tumors in mice not given in agomir and contained fewer IgA+ B cells. We found a negative correlation between levels of MIR15A and MIR16-1 and numbers of IgA+B cells in human colorectal tumor tissues; high levels of MIR15A and MIR16-1 and low numbers of IgA+B cells were associated with longer survival times of patients. CONCLUSIONS We found increased levels of MIR15A and MIR16-1 to reduce numbers of IgA+ B cells in colorectal tumor tissues and correlate with increased survival time of patients. In mice that lack MIR15A and MIR16-1, colon tumors grow more rapidly and contain increased numbers of IgA+ B cells. MIR15A and MIR16-1 appear to activate signaling pathways required for B-cell-mediated immune suppression.
Collapse
Affiliation(s)
- Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Zhou Lu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Jie Gu
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai, P.R. China
| | - Jiajing Liu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Enyu Huang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Xiaoming Liu
- Department of Dermatology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, P.R. China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Jiao Yang
- Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Yuting Deng
- Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Jiawen Qian
- Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Zhiming Wang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Hushan Zhang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Xuechao Jiang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Dan Zhang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Jing Qian
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Guangwei Liu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Hongguang Zhu
- Division of Surgical Pathology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Youcun Qian
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Shanghai, P.R. China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, P.R. China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China; Biotherapy Research Center, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
18
|
Mukherjee M, Nair P. Autoimmune Responses in Severe Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:428-447. [PMID: 30088364 PMCID: PMC6082822 DOI: 10.4168/aair.2018.10.5.428] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
Asthma and autoimmune diseases both result from a dysregulated immune system, and have been conventionally considered to have mutually exclusive pathogenesis. Autoimmunity is believed to be an exaggerated Th1 response, while asthma with a Th2 underpinning is congruent with the well-accepted Th1/Th2 paradigm. The hypothesis of autoimmune involvement in asthma has received much recent interest, particularly in the adult late-onset non-atopic patients (the “intrinsic asthma”). Over the past decades, circulating autoantibodies against diverse self-targets (beta-2-adrenergic receptors, epithelial antigens, nuclear antigens, etc.) have been reported and subsequently dismissed to be epiphenomena resulting from a chronic inflammatory condition, primarily due to lack of evidence of causality/pathomechanism. Recent evidence of ‘granulomas’ in the lung biopsies of severe asthmatics, detection of pathogenic sputum autoantibodies against autologous eosinophil proteins (e.g., eosinophil peroxidase) and inadequate response to monoclonal antibody therapies (e.g., subcutaneous mepolizumab) in patients with evidence of airway autoantibodies suggest that the role of autoimmune mechanisms be revisited. In this review, we have gathered available reports of autoimmune responses in the lungs, reviewed the evidence in the context of immunogenic tissue-response and danger-associated molecular patterns, and constructed the possibility of an autoimmune-associated pathomechanism that may contribute to the severity of asthma.
Collapse
Affiliation(s)
- Manali Mukherjee
- Division of Respirology, Department of Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Canada
| | - Parameswaran Nair
- Division of Respirology, Department of Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Canada.
| |
Collapse
|
19
|
Mukherjee M, Bulir DC, Radford K, Kjarsgaard M, Huang CM, Jacobsen EA, Ochkur SI, Catuneanu A, Lamothe-Kipnes H, Mahony J, Lee JJ, Lacy P, Nair PK. Sputum autoantibodies in patients with severe eosinophilic asthma. J Allergy Clin Immunol 2017; 141:1269-1279. [PMID: 28751233 DOI: 10.1016/j.jaci.2017.06.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The persistence of eosinophils in sputum despite high doses of corticosteroids indicates disease severity in asthmatic patients. Chronic inflamed airways can lose tolerance over time to immunogenic entities released on frequent eosinophil degranulation, which further contributes to disease severity and necessitates an increase in maintenance corticosteroids. OBJECTIVES We sought to investigate the possibility of a polyclonal autoimmune event in the airways of asthmatic patients and to identify associated clinical and molecular characteristics. METHODS The presence of autoantibodies against eosinophil peroxidase (EPX) and anti-nuclear antibodies was investigated in patients with eosinophilic asthma maintained on high-dose corticosteroids, prednisone, or both. The ability of sputum immunoglobulins to induce eosinophil degranulation in vitro was assessed. In addition, the associated inflammatory microenvironment in patients with detectable autoantibodies was examined. RESULTS We report a "polyclonal" autoimmune event occurring in the airways of prednisone-dependent asthmatic patients with increased eosinophil activity, recurrent pulmonary infections, or both, as evident by the concomitant presence of sputum anti-EPX and anti-nuclear antibodies of the IgG subtype. Extensive cytokine profiling of sputum revealed a TH2-dominated microenvironment (eotaxin-2, IL-5, IL-18, and IL-13) and increased signalling molecules that support the formation of ectopic lymphoid structures (B-cell activating factor and B cell-attracting chemokine 1). Immunoprecipitated sputum immunoglobulins from patients with increased autoantibody levels triggered eosinophil degranulation in vitro, with release of extensive histone-rich extracellular traps, an event unsuppressed by dexamethasone and possibly contributing to the steroid-unresponsive nature of these eosinophilic patients. CONCLUSION This study identifies an autoimmune endotype of severe asthma that can be identified by the presence of sputum autoantibodies against EPX and autologous cellular components.
Collapse
Affiliation(s)
- Manali Mukherjee
- Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - David C Bulir
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine Radford
- Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | - Sergei I Ochkur
- Division of Pulmonary Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Ana Catuneanu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - James Mahony
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - James J Lee
- Division of Pulmonary Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
20
|
Hu Y, He GL, Zhao XY, Zhao XS, Wang Y, Xu LP, Zhang XH, Yu XZ, Liu KY, Chang YJ, Huang XJ. Regulatory B cells promote graft-versus-host disease prevention and maintain graft-versus-leukemia activity following allogeneic bone marrow transplantation. Oncoimmunology 2017; 6:e1284721. [PMID: 28405514 DOI: 10.1080/2162402x.2017.1284721] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 01/15/2023] Open
Abstract
Regulatory B cells (Bregs) are involved in the pathogenesis of graft-versus-host disease (GVHD). However, whether Bregs can alleviate acute GVHD without compromising graft-versus-leukemia (GVL) effects remains unclear. Here, we evaluated the role of Bregs in acute GVHD and GVL activity in both a mouse model and a clinical cohort study. In the acute GVHD mouse model, co-transplantation of Bregs prevents onset through inhibiting Th1 and Th17 differentiation and expanding regulatory T cells. In the GVL mouse model, Bregs contributed to the suppression of acute GVHD but had no adverse effect on GVL activity. In the clinical cohort study, a higher dose of Bregs in allografts was associated with a lower cumulative incidence of acute GVHD but not with increased risk of relapse. Our data demonstrate that Bregs can prevent acute GVHD and maintain GVL effects and suggest that Bregs have potential as a novel strategy for acute GVHD alleviation.
Collapse
Affiliation(s)
- Yue Hu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Xicheng District, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Gan-Lin He
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Xicheng District, Beijing, China; Department of Hematology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang-Yu Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Xiao-Su Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Lan-Ping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Xiao-Hui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Xue-Zhong Yu
- Departments of Microbiology and Immunology and Medicine, Medical University of South Carolina , Charleston, SC, USA
| | - Kai-Yan Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Ying-Jun Chang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Xiao-Jun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Xicheng District, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; Collabrative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
21
|
IL-10+ regulatory B cells are enriched in cord blood and may protect against cGVHD after cord blood transplantation. Blood 2016; 128:1346-61. [PMID: 27439912 DOI: 10.1182/blood-2016-01-695122] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
Cord blood (CB) offers a number of advantages over other sources of hematopoietic stem cells, including a lower rate of chronic graft-versus-host disease (cGVHD) in the presence of increased HLA disparity. Recent research in experimental models of autoimmunity and in patients with autoimmune or alloimmune disorders has identified a functional group of interleukin-10 (IL-10)-producing regulatory B cells (Bregs) that negatively regulate T-cell immune responses. At present, however, there is no consensus on the phenotypic signature of Bregs, and their prevalence and functional characteristics in CB remain unclear. Here, we demonstrate that CB contains an abundance of B cells with immunoregulatory function. Bregs were identified in both the naive and transitional B-cell compartments and suppressed T-cell proliferation and effector function through IL-10 production as well as cell-to-cell contact involving CTLA-4. We further show that the suppressive capacity of CB-derived Bregs can be potentiated through CD40L signaling, suggesting that inflammatory environments may induce their function. Finally, there was robust recovery of IL-10-producing Bregs in patients after CB transplantation, to higher frequencies and absolute numbers than seen in the peripheral blood of healthy donors or in patients before transplant. The reconstituting Bregs showed strong in vitro suppressive activity against allogeneic CD4(+) T cells, but were deficient in patients with cGVHD. Together, these findings identify a rich source of Bregs and suggest a protective role for CB-derived Bregs against cGVHD development in CB recipients. This advance could propel the development of Breg-based strategies to prevent or ameliorate this posttransplant complication.
Collapse
|
22
|
Lei CJ, Liu JN, Wu R, Long ZX, Zhang JZ, Tao D, Liu YP. Change of the peripheral blood immune pattern and its correlation with prognosis in patients with liver cancer treated by sorafenib. ASIAN PAC J TROP MED 2016; 9:592-6. [DOI: 10.1016/j.apjtm.2016.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Indexed: 11/28/2022] Open
|
23
|
Rouce RH, Shaim H, Sekine T, Weber G, Ballard B, Ku S, Barese C, Murali V, Wu MF, Liu H, Shpall EJ, Bollard CM, Rabin KR, Rezvani K. The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia 2016; 30:800-11. [PMID: 26621337 PMCID: PMC4823160 DOI: 10.1038/leu.2015.327] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/28/2015] [Accepted: 10/15/2015] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) cells are key components of the innate immune system, providing potent antitumor immunity. Here, we show that the tumor growth factor-β (TGF-β)/SMAD signaling pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia (ALL). We characterized NK cells in 50 consecutive children with B-ALL at diagnosis, end induction and during maintenance therapy compared with age-matched controls. ALL-NK cells at diagnosis had an inhibitory phenotype associated with impaired function, most notably interferon-γ production and cytotoxicity. By maintenance therapy, these phenotypic and functional abnormalities partially normalized; however, cytotoxicity against autologous blasts remained impaired. We identified ALL-derived TGF-β1 to be an important mediator of leukemia-induced NK cell dysfunction. The TGF-β/SMAD signaling pathway was constitutively activated in ALL-NK cells at diagnosis and end induction when compared with healthy controls and patients during maintenance therapy. Culture of ALL blasts with healthy NK cells induced NK dysfunction and an inhibitory phenotype, mediated by activation of the TGF-β/SMAD signaling pathway, and abrogated by blocking TGF-β. These data indicate that by regulating the TGF-β/SMAD pathway, ALL blasts induce changes in NK cells to evade innate immune surveillance, thus highlighting the importance of developing novel therapies to target this inhibitory pathway and restore antileukemic cytotoxicity.
Collapse
Affiliation(s)
- Rayne H. Rouce
- Texas Children’s Cancer and Hematology Centers/Baylor College of Medicine, Houston
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
| | - Hila Shaim
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| | - Takuya Sekine
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| | - Gerrit Weber
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
| | - Brandon Ballard
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
| | - Stephanie Ku
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
| | - Cecilia Barese
- Program for Cell Enhancement and Technologies for Immunotherapy, and Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC
| | - Vineeth Murali
- Texas Children’s Cancer and Hematology Centers/Baylor College of Medicine, Houston
| | - Meng-Fen Wu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
| | - Hao Liu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
| | - Elizabeth J. Shpall
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| | - Catherine M. Bollard
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
- Program for Cell Enhancement and Technologies for Immunotherapy, and Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC
| | - Karen R. Rabin
- Texas Children’s Cancer and Hematology Centers/Baylor College of Medicine, Houston
| | - Katayoun Rezvani
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| |
Collapse
|
24
|
Wang H, Lin JX, Li P, Skinner J, Leonard WJ, Morse HC. New insights into heterogeneity of peritoneal B-1a cells. Ann N Y Acad Sci 2015; 1362:68-76. [PMID: 25988856 PMCID: PMC4651667 DOI: 10.1111/nyas.12791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peritoneal B-1a cells are characterized by their expression of CD5 and enrichment for germline-encoded IgM B cell receptors. Early studies showing expression of a diverse array of VDJ sequences among purified B-1a cells provided a molecular basis for understanding the heterogeneity of the B-1a cell repertoire. Antigen-driven positive selection and the identification of B-1a specific progenitors suggest multiple origins of B-1a cells. The introduction of new markers such as PD-L2, CD25, CD73, and PC1 (plasma cell alloantigen 1, also known as ectonucleotide phosphodiesterase/pyrophosphatase 1) further helped to identify phenotypically and functionally distinct B-1a subsets. Among many B-1a subsets defined by these new markers, PC1 is unique in that it subdivides B-1a cells into PC1(hi) and PC1(lo) subpopulations with distinct functions, such as production of natural IgM and gut IgA, response to the pneumococcal antigen PPS-3, secretion of interleukin-10, and support for T helper 1 (TH 1) cell differentiation. RNA sequencing of these subsets revealed differential expression of genes involved in cellular movement and immune cell trafficking. We will discuss these new insights underlying the heterogeneous nature of the B-1a cell repertoire.
Collapse
Affiliation(s)
- Hongsheng Wang
- The Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Jian-xin Lin
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Peng Li
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Warren J. Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Herbert C. Morse
- The Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
25
|
Gorosito Serrán M, Fiocca Vernengo F, Beccaria CG, Acosta Rodriguez EV, Montes CL, Gruppi A. The regulatory role of B cells in autoimmunity, infections and cancer: Perspectives beyond IL10 production. FEBS Lett 2015; 589:3362-9. [PMID: 26424657 DOI: 10.1016/j.febslet.2015.08.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 12/23/2022]
Abstract
The term regulatory B cells (B regs) is ascribed to a heterogeneous population of B cells with the function of suppressing inflammatory responses. They have been described mainly during the last decade in the context of different immune-mediated diseases. Most of the work on B regs has been focused on IL-10-producing B cells. However, B cells can exert regulatory functions independently of IL-10 production. Here we discuss the phenotypes, development and effector mechanisms of B regs and advances in their role in autoimmunity, infections and cancer.
Collapse
Affiliation(s)
- Melisa Gorosito Serrán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristian G Beccaria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Eva V Acosta Rodriguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|