1
|
Jowett GM, Read E, Roberts LB, Coman D, Vilà González M, Zabinski T, Niazi U, Reis R, Trieu TJ, Danovi D, Gentleman E, Vallier L, Curtis MA, Lord GM, Neves JF. Organoids capture tissue-specific innate lymphoid cell development in mice and humans. Cell Rep 2022; 40:111281. [PMID: 36044863 PMCID: PMC9638027 DOI: 10.1016/j.celrep.2022.111281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 01/06/2022] [Accepted: 08/05/2022] [Indexed: 12/21/2022] Open
Abstract
Organoid-based models of murine and human innate lymphoid cell precursor (ILCP) maturation are presented. First, murine intestinal and pulmonary organoids are harnessed to demonstrate that the epithelial niche is sufficient to drive tissue-specific maturation of all innate lymphoid cell (ILC) groups in parallel, without requiring subset-specific cytokine supplementation. Then, more complex human induced pluripotent stem cell (hiPSC)-based gut and lung organoid models are used to demonstrate that human epithelial cells recapitulate maturation of ILC from a stringent systemic human ILCP population, but only when the organoid-associated stromal cells are depleted. These systems offer versatile and reductionist models to dissect the impact of environmental and mucosal niche cues on ILC maturation. In the future, these could provide insight into how ILC activity and development might become dysregulated in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Geraldine M Jowett
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK; Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK; Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK; Wellcome Trust Cell Therapies and Regenerative Medicine Ph.D. Programme, London SE1 9RT, UK
| | - Emily Read
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK; Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Luke B Roberts
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Diana Coman
- Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK
| | - Marta Vilà González
- Wellcome and MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Hills Road, Cambridge CB2 0QQ, UK
| | - Tomasz Zabinski
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Umar Niazi
- Guy's and St. Thomas' National Health Service Foundation Trust and King's College London National Institute for Health and Care Research Biomedical Research Centre Translational Bioinformatics Platform, Guy's Hospital, London SE1 9RT, UK
| | - Rita Reis
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Tung-Jui Trieu
- Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK; Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Davide Danovi
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK; bit.bio, Babraham Research Campus, The Dorothy Hodgkin Building, Cambridge CB22 3FH, UK
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Ludovic Vallier
- Wellcome and MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael A Curtis
- Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK
| | - Graham M Lord
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Joana F Neves
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK.
| |
Collapse
|
3
|
Apraiz A, Benedicto A, Marquez J, Agüera-Lorente A, Asumendi A, Olaso E, Arteta B. Innate Lymphoid Cells in the Malignant Melanoma Microenvironment. Cancers (Basel) 2020; 12:cancers12113177. [PMID: 33138017 PMCID: PMC7692065 DOI: 10.3390/cancers12113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs) are the innate counterparts of adaptive immune cells. Emerging data indicate that they are also key players in the progression of multiple tumors. In this review we briefly describe ILCs’ functions in the skin, lungs and liver. Next, we analyze the role of ILCs in primary cutaneous melanoma and in its most frequent and deadly metastases, those in liver and lung. We focus on their dual anti– and pro-tumoral functions, depending on the cross-interactions among them and with the surrounding stromal cells that form the tumor microenvironment (TME) in each organ. Next, we detail the role of extracellular vesicles secreted to the TME by ILCs and melanoma on both cell populations. We conclude that the identification of markers and tools to allow the modulation of individual ILC subsets, in addition to the development of standardized protocols, is essential for addressing the therapeutic modulation of ILCs. Abstract The role of innate lymphoid cells (ILCs) in cancer progression has been uncovered in recent years. ILCs are classified as Type 1, Type 2, and Type 3 ILCs, which are characterized by the transcription factors necessary for their development and the cytokines and chemokines they produce. ILCs are a highly heterogeneous cell population, showing both anti– and protumoral properties and capable of adapting their phenotypes and functions depending on the signals they receive from their surrounding environment. ILCs are considered the innate counterparts of the adaptive immune cells during physiological and pathological processes, including cancer, and as such, ILC subsets reflect different types of T cells. In cancer, each ILC subset plays a crucial role, not only in innate immunity but also as regulators of the tumor microenvironment. ILCs’ interplay with other immune and stromal cells in the metastatic microenvironment further dictates and influences this dichotomy, further strengthening the seed-and-soil theory and supporting the formation of more suitable and organ-specific metastatic environments. Here, we review the present knowledge on the different ILC subsets, focusing on their interplay with components of the tumor environment during the development of primary melanoma as well as on metastatic progression to organs, such as the liver or lung.
Collapse
|