1
|
Wang LT, Idris AH, Kisalu NK, Crompton PD, Seder RA. Monoclonal antibodies to the circumsporozoite proteins as an emerging tool for malaria prevention. Nat Immunol 2024; 25:1530-1545. [PMID: 39198635 DOI: 10.1038/s41590-024-01938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Despite various public health strategies, malaria caused by Plasmodium falciparum parasites remains a major global health challenge that requires development of new interventions. Extended half-life human monoclonal antibodies targeting the P. falciparum circumsporozoite protein on sporozoites, the infective form of malaria parasites, prevent malaria in rodents and humans and have been advanced into clinical development. The protective epitopes on the circumsporozoite protein targeted by monoclonal antibodies have been defined. Cryogenic electron and multiphoton microscopy have enabled mechanistic structural and functional investigations of how antibodies bind to the circumsporozoite protein and neutralize sporozoites. Moreover, innovations in bioinformatics and antibody engineering have facilitated enhancement of antibody potency and durability. Here, we summarize the latest scientific advances in understanding how monoclonal antibodies to the circumsporozoite protein prevent malaria and highlight existing clinical data and future plans for how this emerging intervention can be used alone or alongside existing antimalarial interventions to control malaria across at-risk populations.
Collapse
Affiliation(s)
- Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Neville K Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- PATH's Center for Vaccine Innovation and Access, Washington, DC, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Ray R, Schiffner T, Wang X, Yan Y, Rantalainen K, Lee CCD, Parikh S, Reyes RA, Dale GA, Lin YC, Pecetta S, Giguere S, Swanson O, Kratochvil S, Melzi E, Phung I, Madungwe L, Kalyuzhniy O, Warner J, Weldon SR, Tingle R, Lamperti E, Kirsch KH, Phelps N, Georgeson E, Adachi Y, Kubitz M, Nair U, Crotty S, Wilson IA, Schief WR, Batista FD. Affinity gaps among B cells in germinal centers drive the selection of MPER precursors. Nat Immunol 2024; 25:1083-1096. [PMID: 38816616 PMCID: PMC11147770 DOI: 10.1038/s41590-024-01844-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
Current prophylactic human immunodeficiency virus 1 (HIV-1) vaccine research aims to elicit broadly neutralizing antibodies (bnAbs). Membrane-proximal external region (MPER)-targeting bnAbs, such as 10E8, provide exceptionally broad neutralization, but some are autoreactive. Here, we generated humanized B cell antigen receptor knock-in mouse models to test whether a series of germline-targeting immunogens could drive MPER-specific precursors toward bnAbs. We found that recruitment of 10E8 precursors to germinal centers (GCs) required a minimum affinity for germline-targeting immunogens, but the GC residency of MPER precursors was brief due to displacement by higher-affinity endogenous B cell competitors. Higher-affinity germline-targeting immunogens extended the GC residency of MPER precursors, but robust long-term GC residency and maturation were only observed for MPER-HuGL18, an MPER precursor clonotype able to close the affinity gap with endogenous B cell competitors in the GC. Thus, germline-targeting immunogens could induce MPER-targeting antibodies, and B cell residency in the GC may be regulated by a precursor-competitor affinity gap.
Collapse
Affiliation(s)
- Rashmi Ray
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Institute for Drug Discovery, Leipzig University Medical Faculty, Leipzig, Germany
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Yu Yan
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Kimmo Rantalainen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Chang-Chun David Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Shivang Parikh
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Raphael A Reyes
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Gordon A Dale
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ying-Cing Lin
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Simone Pecetta
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Moderna, Inc., Cambridge, MA, USA
| | - Sophie Giguere
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Olivia Swanson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Sven Kratochvil
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Eleonora Melzi
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ivy Phung
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lisa Madungwe
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - John Warner
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Stephanie R Weldon
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ryan Tingle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Edward Lamperti
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Kathrin H Kirsch
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ian A Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - William R Schief
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.
- Moderna, Inc., Cambridge, MA, USA.
| | - Facundo D Batista
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Ellis D, Dosey A, Boyoglu-Barnum S, Park YJ, Gillespie R, Syeda H, Hutchinson GB, Tsybovsky Y, Murphy M, Pettie D, Matheson N, Chan S, Ueda G, Fallas JA, Carter L, Graham BS, Veesler D, Kanekiyo M, King NP. Antigen spacing on protein nanoparticles influences antibody responses to vaccination. Cell Rep 2023; 42:113552. [PMID: 38096058 PMCID: PMC10801709 DOI: 10.1016/j.celrep.2023.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Immunogen design approaches aim to control the specificity and quality of antibody responses elicited by next-generation vaccines. Here, we use computational protein design to generate a nanoparticle vaccine platform based on the receptor-binding domain (RBD) of influenza hemagglutinin (HA) that enables precise control of antigen conformation and spacing. HA RBDs are presented as either monomers or native-like closed trimers that are connected to the underlying nanoparticle by a rigid linker that is modularly extended to precisely control antigen spacing. Nanoparticle immunogens with decreased spacing between trimeric RBDs elicit antibodies with improved hemagglutination inhibition and neutralization potency as well as binding breadth across diverse H1 HAs. Our "trihead" nanoparticle immunogen platform provides insights into anti-HA immunity, establishes antigen spacing as an important parameter in structure-based vaccine design, and embodies several design features that could be used in next-generation vaccines against influenza and other viruses.
Collapse
Affiliation(s)
- Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Rebecca Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Geoffrey B Hutchinson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nick Matheson
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - George Ueda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jorge A Fallas
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Thai E, Murugan R, Binter Š, Burn Aschner C, Prieto K, Kassardjian A, Obraztsova AS, Kang RW, Flores-Garcia Y, Mathis-Torres S, Li K, Horn GQ, Huntwork RHC, Bolscher JM, de Bruijni MHC, Sauerwein R, Dennison SM, Tomaras GD, Zavala F, Kellam P, Wardemann H, Julien JP. Molecular determinants of cross-reactivity and potency by VH3-33 antibodies against the Plasmodium falciparum circumsporozoite protein. Cell Rep 2023; 42:113330. [PMID: 38007690 PMCID: PMC10720262 DOI: 10.1016/j.celrep.2023.113330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/27/2023] Open
Abstract
IGHV3-33-encoded antibodies are prevalent in the human humoral response against the Plasmodium falciparum circumsporozoite protein (PfCSP). Among VH3-33 antibodies, cross-reactivity between PfCSP major repeat (NANP), minor (NVDP), and junctional (NPDP) motifs is associated with high affinity and potent parasite inhibition. However, the molecular basis of antibody cross-reactivity and the relationship with efficacy remain unresolved. Here, we perform an extensive structure-function characterization of 12 VH3-33 anti-PfCSP monoclonal antibodies (mAbs) with varying degrees of cross-reactivity induced by immunization of mice expressing a human immunoglobulin gene repertoire. We identify residues in the antibody paratope that mediate cross-reactive binding and delineate four distinct epitope conformations induced by antibody binding, with one consistently associated with high protective efficacy and another that confers comparably potent inhibition of parasite liver invasion. Our data show a link between molecular features of cross-reactive VH3-33 mAb binding to PfCSP and mAb potency, relevant for the development of antibody-based interventions against malaria.
Collapse
Affiliation(s)
- Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Špela Binter
- Kymab Ltd./Sanofi, The Bennet Building (B930), Babraham Research Campus, Cambridge CB22 3AT, UK; RQ Biotechnology Limited, 7th Floor Lynton House, 7-12 Tavistock Square, London WC1H 9LT, UK
| | - Clare Burn Aschner
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anna S Obraztsova
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Biosciences Faculty, University of Heidelberg, 69117 Heidelberg, Germany
| | - Ryu Won Kang
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kan Li
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Gillian Q Horn
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Richard H C Huntwork
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | | | | | | | - S Moses Dennison
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Paul Kellam
- Kymab Ltd./Sanofi, The Bennet Building (B930), Babraham Research Campus, Cambridge CB22 3AT, UK; RQ Biotechnology Limited, 7th Floor Lynton House, 7-12 Tavistock Square, London WC1H 9LT, UK; Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
5
|
Wang W, Li Y, Lin K, Wang X, Tu Y, Zhuo Z. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Animal Model Exp Med 2023; 6:381-398. [PMID: 37679891 PMCID: PMC10614132 DOI: 10.1002/ame2.12349] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Patient-derived tumor xenograft (PDX) models, a method involving the surgical extraction of tumor tissues from cancer patients and subsequent transplantation into immunodeficient mice, have emerged as a pivotal approach in translational research, particularly in advancing precision medicine. As the first stage of PDX development, the patient-derived orthotopic xenograft (PDOX) models implant tumor tissue in mice in the corresponding anatomical locations of the patient. The PDOX models have several advantages, including high fidelity to the original tumor, heightened drug sensitivity, and an elevated rate of successful transplantation. However, the PDOX models present significant challenges, requiring advanced surgical techniques and resource-intensive imaging technologies, which limit its application. And then, the humanized mouse models, as well as the zebrafish models, were developed. Humanized mouse models contain a human immune environment resembling the tumor and immune system interplay. The humanized mouse models are a hot topic in PDX model research. Regarding zebrafish patient-derived tumor xenografts (zPDX) and patient-derived organoids (PDO) as promising models for studying cancer and drug discovery, zPDX models are used to transplant tumors into zebrafish as novel personalized medical animal models with the advantage of reducing patient waiting time. PDO models provide a cost-effective approach for drug testing that replicates the in vivo environment and preserves important tumor-related information for patients. The present review highlights the functional characteristics of each new phase of PDX and provides insights into the challenges and prospective developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Yongshu Li
- College of Life SciencesHubei Normal UniversityHuangshiChina
- Shenzhen Institute for Technology InnovationNational Institute of MetrologyShenzhenChina
| | - Kaida Lin
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Yanyang Tu
- Research Center, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhou CityChina
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
6
|
Martin GM, Torres JL, Pholcharee T, Oyen D, Flores-Garcia Y, Gibson G, Moskovitz R, Beutler N, Jung DD, Copps J, Lee WH, Gonzalez-Paez G, Emerling D, MacGill RS, Locke E, King CR, Zavala F, Wilson IA, Ward AB. Affinity-matured homotypic interactions induce spectrum of PfCSP structures that influence protection from malaria infection. Nat Commun 2023; 14:4546. [PMID: 37507365 PMCID: PMC10382551 DOI: 10.1038/s41467-023-40151-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The generation of high-quality antibody responses to Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP), the primary surface antigen of Pf sporozoites, is paramount to the development of an effective malaria vaccine. Here we present an in-depth structural and functional analysis of a panel of potent antibodies encoded by the immunoglobulin heavy chain variable (IGHV) gene IGHV3-33, which is among the most prevalent and potent antibody families induced in the anti-PfCSP immune response and targets the Asn-Ala-Asn-Pro (NANP) repeat region. Cryo-electron microscopy (cryo-EM) reveals a remarkable spectrum of helical antibody-PfCSP structures stabilized by homotypic interactions between tightly packed fragments antigen binding (Fabs), many of which correlate with somatic hypermutation. We demonstrate a key role of these mutated homotypic contacts for high avidity binding to PfCSP and in protection from Pf malaria infection. Together, these data emphasize the importance of anti-homotypic affinity maturation in the frequent selection of IGHV3-33 antibodies and highlight key features underlying the potent protection of this antibody family.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Biochemistry, University of Oxford, Oxford, OX1 3DR, UK
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Pfizer Inc, San Diego, CA, 92121, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Grace Gibson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Re'em Moskovitz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Diana D Jung
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gonzalo Gonzalez-Paez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | | | - Emily Locke
- PATH's Malaria Vaccine Initiative, Washington, DC, 20001, USA
| | - C Richter King
- PATH's Malaria Vaccine Initiative, Washington, DC, 20001, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
Holt GT, Gorman J, Wang S, Lowegard AU, Zhang B, Liu T, Lin BC, Louder MK, Frenkel MS, McKee K, O'Dell S, Rawi R, Shen CH, Doria-Rose NA, Kwong PD, Donald BR. Improved HIV-1 neutralization breadth and potency of V2-apex antibodies by in silico design. Cell Rep 2023; 42:112711. [PMID: 37436900 PMCID: PMC10528384 DOI: 10.1016/j.celrep.2023.112711] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV can reduce viral transmission in humans, but an effective therapeutic will require unusually high breadth and potency of neutralization. We employ the OSPREY computational protein design software to engineer variants of two apex-directed bNAbs, PGT145 and PG9RSH, resulting in increases in potency of over 100-fold against some viruses. The top designed variants improve neutralization breadth from 39% to 54% at clinically relevant concentrations (IC80 < 1 μg/mL) and improve median potency (IC80) by up to 4-fold over a cross-clade panel of 208 strains. To investigate the mechanisms of improvement, we determine cryoelectron microscopy structures of each variant in complex with the HIV envelope trimer. Surprisingly, we find the largest increases in breadth to be a result of optimizing side-chain interactions with highly variable epitope residues. These results provide insight into mechanisms of neutralization breadth and inform strategies for antibody design and improvement.
Collapse
Affiliation(s)
- Graham T Holt
- Department of Computer Science, Duke University, Durham, NC, USA; Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Siyu Wang
- Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Anna U Lowegard
- Department of Computer Science, Duke University, Durham, NC, USA; Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC, USA; Department of Biochemistry, Duke University, Durham, NC, USA; Department of Mathematics, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Chuang YM, Alameh MG, Abouneameh S, Raduwan H, Ledizet M, Weissman D, Fikrig E. A mosquito AgTRIO mRNA vaccine contributes to immunity against malaria. NPJ Vaccines 2023; 8:88. [PMID: 37286568 PMCID: PMC10244833 DOI: 10.1038/s41541-023-00679-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Malaria begins when an infected mosquito injects saliva containing Plasmodium sporozoites into the skin of a vertebrate host. To prevent malaria, vaccination is the most effective strategy and there is an urgent need for new strategies to enhance current pathogen-based vaccines. Active or passive immunization against a mosquito saliva protein, AgTRIO, contributes to protection against Plasmodium infection of mice. In this study, we generated an AgTRIO mRNA-lipid nanoparticle (LNP) and assessed its potential usefulness as a vaccine against malaria. Immunization of mice with an AgTRIO mRNA-LNP generated a robust humoral response, including AgTRIO IgG2a isotype antibodies that have been associated with protection. AgTRIO mRNA-LNP immunized mice exposed to Plasmodium berghei-infected mosquitoes had markedly reduced initial Plasmodium hepatic infection levels and increased survival compared to control mice. In addition, as the humoral response to AgTRIO waned over 6 months, additional mosquito bites boosted the AgTRIO IgG titers, including IgG1 and IgG2a isotypes, which offers a unique advantage compared to pathogen-based vaccines. These data will aid in the generation of future malaria vaccines that may include both pathogen and vector antigens.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Mohamad-Gabriel Alameh
- Institute for RNA Innovation and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Drew Weissman
- Institute for RNA Innovation and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Ellis D, Dosey A, Boyoglu-Barnum S, Park YJ, Gillespie R, Syeda H, Tsybovsky Y, Murphy M, Pettie D, Matheson N, Chan S, Ueda G, Fallas JA, Carter L, Graham BS, Veesler D, Kanekiyo M, King NP. Antigen spacing on protein nanoparticles influences antibody responses to vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541980. [PMID: 37292995 PMCID: PMC10245855 DOI: 10.1101/2023.05.23.541980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunogen design approaches aim to control the specificity and quality of antibody responses to enable the creation of next-generation vaccines with improved potency and breadth. However, our understanding of the relationship between immunogen structure and immunogenicity is limited. Here we use computational protein design to generate a self-assembling nanoparticle vaccine platform based on the head domain of influenza hemagglutinin (HA) that enables precise control of antigen conformation, flexibility, and spacing on the nanoparticle exterior. Domain-based HA head antigens were presented either as monomers or in a native-like closed trimeric conformation that prevents exposure of trimer interface epitopes. These antigens were connected to the underlying nanoparticle by a rigid linker that was modularly extended to precisely control antigen spacing. We found that nanoparticle immunogens with decreased spacing between closed trimeric head antigens elicited antibodies with improved hemagglutination inhibition (HAI) and neutralization potency as well as binding breadth across diverse HAs within a subtype. Our "trihead" nanoparticle immunogen platform thus enables new insights into anti-HA immunity, establishes antigen spacing as an important parameter in structure-based vaccine design, and embodies several design features that could be used to generate next-generation vaccines against influenza and other viruses.
Collapse
Affiliation(s)
- Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
- These authors contributed equally: Daniel Ellis and Annie Dosey
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- These authors contributed equally: Daniel Ellis and Annie Dosey
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rebecca Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nick Matheson
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - George Ueda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jorge A. Fallas
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Sheng Z, Bimela JS, Wang M, Li Z, Guo Y, Ho DD. An optimized thermodynamics integration protocol for identifying beneficial mutations in antibody design. Front Immunol 2023; 14:1190416. [PMID: 37275896 PMCID: PMC10235760 DOI: 10.3389/fimmu.2023.1190416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
Accurate identification of beneficial mutations is central to antibody design. Many knowledge-based (KB) computational approaches have been developed to predict beneficial mutations, but their accuracy leaves room for improvement. Thermodynamic integration (TI) is an alchemical free energy algorithm that offers an alternative technique for identifying beneficial mutations, but its performance has not been evaluated. In this study, we developed an efficient TI protocol with high accuracy for predicting binding free energy changes of antibody mutations. The improved TI method outperforms KB methods at identifying both beneficial and deleterious mutations. We observed that KB methods have higher accuracies in predicting deleterious mutations than beneficial mutations. A pipeline using KB methods to efficiently exclude deleterious mutations and TI to accurately identify beneficial mutations was developed for high-throughput mutation scanning. The pipeline was applied to optimize the binding affinity of a broadly sarbecovirus neutralizing antibody 10-40 against the circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant. Three identified beneficial mutations show strong synergy and improve both binding affinity and neutralization potency of antibody 10-40. Molecular dynamics simulation revealed that the three mutations improve the binding affinity of antibody 10-40 through the stabilization of an altered binding mode with increased polar and hydrophobic interactions. Above all, this study presents an accurate and efficient TI-based approach for optimizing antibodies and other biomolecules.
Collapse
Affiliation(s)
- Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Jude S. Bimela
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Zhiteng Li
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
11
|
Ullah A, Waqas M, Aziz S, Rahman SU, Khan S, Khalid A, Abdalla AN, Uddin J, Halim SA, Khan A, Al-Harrasi A. Bioinformatics and immunoinformatics approach to develop potent multi-peptide vaccine for coxsackievirus B3 capable of eliciting cellular and humoral immune response. Int J Biol Macromol 2023; 239:124320. [PMID: 37004935 DOI: 10.1016/j.ijbiomac.2023.124320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Coxsackievirus B3 (CVB3) is a viral pathogen of various human disorders with no effective preventative interventions. Herein, we aimed to design a chimeric vaccine construct for CVB3 using reverse vaccinology and immunoinformatics approaches by screening the whole viral polyprotein sequence. Firstly, screening and mapping of viral polyprotein to predict 21 immunodominant epitopes (B-cell, CD8+ and CD4+ T-cell epitopes), fused with an adjuvant (Resuscitation-promoting factor), appropriate linkers, HIV-TAT peptide, Pan DR epitope, and 6His-tag to assemble a multi-epitope vaccine construct. The chimeric construct is predicted as probable antigen, non-allergen, stable, possess encouraging physicochemical features, and indicates a broader population coverage (98 %). The tertiary structure of the constructed vaccine was predicted and refined, and its interaction with the Toll-like receptor 4 (TLR4) was investigated through molecular docking and dynamics simulation. Computational cloning of the construct was carried out in pET28a (+) plasmid to guarantee the higher expression of the vaccine protein. Lastly, in silico immune simulation foreseen that humoral and cellular immune responses would be elicited in response to the administration of such a potent chimeric construct. Thus, the design constructed could vaccinate against CVB3 infection and various CVB serotypes. However, further in vitro/in vivo research must assess its safety and effectiveness.
Collapse
|
12
|
Cable J, Saphire EO, Hayday AC, Wiltshire TD, Mousa JJ, Humphreys DP, Breij ECW, Bruhns P, Broketa M, Furuya G, Hauser BM, Mahévas M, Carfi A, Cantaert T, Kwong PD, Tripathi P, Davis JH, Brewis N, Keyt BA, Fennemann FL, Dussupt V, Sivasubramanian A, Kim PM, Rawi R, Richardson E, Leventhal D, Wolters RM, Geuijen CAW, Sleeman MA, Pengo N, Donnellan FR. Antibodies as drugs-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1519:153-166. [PMID: 36382536 PMCID: PMC10103175 DOI: 10.1111/nyas.14915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.
Collapse
Affiliation(s)
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College London, London, UK.,Cancer Research UK Cancer Immunotherapy Accelerator, London, UK.,Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | | | - Jarrod J Mousa
- Department of Infectious Diseases and Center for Vaccines and Immunology, College of Veterinary Medicine, Athens, Georgia, USA.,Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA.,Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Esther C W Breij
- Translational Research and Precision Medicine, Genmab BV, Utrecht, the Netherlands
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Matteo Broketa
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Genta Furuya
- Department of Preventive Medicine and Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Matthieu Mahévas
- Service de Médecine Interne, Centre de Référence des Cytopénies Auto-immunes de l'adulte, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Andrea Carfi
- Moderna Inc., Cambridge, Massachusetts, USA.,Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Prabhanshu Tripathi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Bruce A Keyt
- IGM Biosciences, Inc., Mountainview, California, USA
| | | | - Vincent Dussupt
- Emerging Infectious Diseases Branch, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | - Philip M Kim
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eve Richardson
- Department of Statistics, University of Oxford, Oxford, UK
| | | | - Rachael M Wolters
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
13
|
Huang S, Zhang C, Li J, Dai Z, Huang J, Deng F, Wang X, Yue X, Hu X, Li Y, Deng Y, Wang Y, Zhao W, Zhong Z, Wang Y. Designing a multi-epitope vaccine against coxsackievirus B based on immunoinformatics approaches. Front Immunol 2022; 13:933594. [PMID: 36439191 PMCID: PMC9682020 DOI: 10.3389/fimmu.2022.933594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/18/2022] [Indexed: 12/11/2023] Open
Abstract
Coxsackievirus B (CVB) is one of the major viral pathogens of human myocarditis and cardiomyopathy without any effective preventive measures; therefore, it is necessary to develop a safe and efficacious vaccine against CVB. Immunoinformatics methods are both economical and convenient as in-silico simulations can shorten the development time. Herein, we design a novel multi-epitope vaccine for the prevention of CVB by using immunoinformatics methods. With the help of advanced immunoinformatics approaches, we predicted different B-cell, cytotoxic T lymphocyte (CTL), and helper T lymphocyte (HTL) epitopes, respectively. Subsequently, we constructed the multi-epitope vaccine by fusing all conserved epitopes with appropriate linkers and adjuvants. The final vaccine was found to be antigenic, non-allergenic, and stable. The 3D structure of the vaccine was then predicted, refined, and evaluated. Molecular docking and dynamics simulation were performed to reveal the interactions between the vaccine with the immune receptors MHC-I, MHC-II, TLR3, and TLR4. Finally, to ensure the complete expression of the vaccine protein, the sequence of the designed vaccine was optimized and further performed in-silico cloning. In conclusion, the molecule designed in this study could be considered a potential vaccine against CVB infection and needed further experiments to evaluate its safety and efficacy.
Collapse
Affiliation(s)
- Sichao Huang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Congcong Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jianing Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zongmao Dai
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jingjing Huang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Fengzhen Deng
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xumeng Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xinxin Yue
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xinnan Hu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yuxuan Li
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yushu Deng
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yanhang Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Kucharska I, Binter Š, Murugan R, Scally SW, Ludwig J, Prieto K, Thai E, Costa G, Li K, Horn GQ, Flores-Garcia Y, Bosch A, Sicard T, Rubinstein JL, Zavala F, Dennison SM, Tomaras GD, Levashina EA, Kellam P, Wardemann H, Julien JP. High-density binding to Plasmodium falciparum circumsporozoite protein repeats by inhibitory antibody elicited in mouse with human immunoglobulin repertoire. PLoS Pathog 2022; 18:e1010999. [PMID: 36441829 PMCID: PMC9762590 DOI: 10.1371/journal.ppat.1010999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Antibodies targeting the human malaria parasite Plasmodium falciparum circumsporozoite protein (PfCSP) can prevent infection and disease. PfCSP contains multiple central repeating NANP motifs; some of the most potent anti-infective antibodies against malaria bind to these repeats. Multiple antibodies can bind the repeating epitopes concurrently by engaging into homotypic Fab-Fab interactions, which results in the ordering of the otherwise largely disordered central repeat into a spiral. Here, we characterize IGHV3-33/IGKV1-5-encoded monoclonal antibody (mAb) 850 elicited by immunization of transgenic mice with human immunoglobulin loci. mAb 850 binds repeating NANP motifs with picomolar affinity, potently inhibits Plasmodium falciparum (Pf) in vitro and, when passively administered in a mouse challenge model, reduces liver burden to a similar extent as some of the most potent anti-PfCSP mAbs yet described. Like other IGHV3-33/IGKV1-5-encoded anti-NANP antibodies, mAb 850 primarily utilizes its HCDR3 and germline-encoded aromatic residues to recognize its core NANP motif. Biophysical and cryo-electron microscopy analyses reveal that up to 19 copies of Fab 850 can bind the PfCSP repeat simultaneously, and extensive homotypic interactions are observed between densely-packed PfCSP-bound Fabs to indirectly improve affinity to the antigen. Together, our study expands on the molecular understanding of repeat-induced homotypic interactions in the B cell response against PfCSP for potently protective mAbs against Pf infection.
Collapse
Affiliation(s)
- Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Špela Binter
- Kymab Ltd., The Bennet Building (B930) Babraham Research Campus, Cambridge, United Kingdom
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Stephen W. Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Julia Ludwig
- B Cell Immunology, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kan Li
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Gillian Q. Horn
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Alexandre Bosch
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - John L. Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - S. Moses Dennison
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Elena A. Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Paul Kellam
- Kymab Ltd., The Bennet Building (B930) Babraham Research Campus, Cambridge, United Kingdom
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Dacon C, Tucker C, Peng L, Lee CCD, Lin TH, Yuan M, Cong Y, Wang L, Purser L, Williams JK, Pyo CW, Kosik I, Hu Z, Zhao M, Mohan D, Cooper AJR, Peterson M, Skinner J, Dixit S, Kollins E, Huzella L, Perry D, Byrum R, Lembirik S, Drawbaugh D, Eaton B, Zhang Y, Yang ES, Chen M, Leung K, Weinberg RS, Pegu A, Geraghty DE, Davidson E, Douagi I, Moir S, Yewdell JW, Schmaljohn C, Crompton PD, Holbrook MR, Nemazee D, Mascola JR, Wilson IA, Tan J. Broadly neutralizing antibodies target the coronavirus fusion peptide. Science 2022; 377:728-735. [PMID: 35857439 PMCID: PMC9348754 DOI: 10.1126/science.abq3773] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023]
Abstract
The potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. COV44-62 and COV44-79 broadly neutralize alpha- and betacoronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2 and BA.4/5, albeit with lower potency than receptor binding domain-specific antibodies. In crystal structures of COV44-62 and COV44-79 antigen-binding fragments with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine residue at the S2' cleavage site. COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings highlight the fusion peptide as a candidate epitope for next-generation coronavirus vaccine development.
Collapse
Affiliation(s)
- Cherrelle Dacon
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Courtney Tucker
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Cong
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren Purser
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe Hu
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Rockville, MD 20852, USA
| | - Divya Mohan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Andrew J. R. Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mary Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Saurabh Dixit
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin Kollins
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Louis Huzella
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Donna Perry
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Russell Byrum
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Sanae Lembirik
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - David Drawbaugh
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Brett Eaton
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rona S. Weinberg
- New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Moir
- B Cell Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connie Schmaljohn
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Michael R. Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
16
|
Banach BB, Tripathi P, Da Silva Pereira L, Gorman J, Nguyen TD, Dillon M, Fahad AS, Kiyuka PK, Madan B, Wolfe JR, Bonilla B, Flynn B, Francica JR, Hurlburt NK, Kisalu NK, Liu T, Ou L, Rawi R, Schön A, Shen CH, Teng IT, Zhang B, Pancera M, Idris AH, Seder RA, Kwong PD, DeKosky BJ. Highly protective antimalarial antibodies via precision library generation and yeast display screening. J Exp Med 2022; 219:e20220323. [PMID: 35736810 PMCID: PMC9242090 DOI: 10.1084/jem.20220323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/03/2023] Open
Abstract
The monoclonal antibody CIS43 targets the Plasmodium falciparum circumsporozoite protein (PfCSP) and prevents malaria infection in humans for up to 9 mo following a single intravenous administration. To enhance the potency and clinical utility of CIS43, we used iterative site-saturation mutagenesis and DNA shuffling to screen precise gene-variant yeast display libraries for improved PfCSP antigen recognition. We identified several mutations that improved recognition, predominately in framework regions, and combined these to produce a panel of antibody variants. The most improved antibody, CIS43_Var10, had three mutations and showed approximately sixfold enhanced protective potency in vivo compared to CIS43. Co-crystal and cryo-electron microscopy structures of CIS43_Var10 with the peptide epitope or with PfCSP, respectively, revealed functional roles for each of these mutations. The unbiased site-directed mutagenesis and screening pipeline described here represent a powerful approach to enhance protective potency and to enable broader clinical use of antimalarial antibodies.
Collapse
Affiliation(s)
- Bailey B. Banach
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS
| | - Prabhanshu Tripathi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Lais Da Silva Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Thuy Duong Nguyen
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Ahmed S. Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Patience K. Kiyuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Jacy R. Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Brian Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Barbara Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Joseph R. Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Nicholas K. Hurlburt
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA
| | - Neville K. Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA
| | - Azza H. Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Brandon J. DeKosky
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
17
|
Visweswaran GRR, Vijayan K, Chandrasekaran R, Trakhimets O, Brown SL, Vigdorovich V, Yang A, Raappana A, Watson A, Selman W, Zuck M, Dambrauskas N, Kaushansky A, Sather DN. Germinal center activity and B cell maturation are associated with protective antibody responses against Plasmodium pre-erythrocytic infection. PLoS Pathog 2022; 18:e1010671. [PMID: 35793394 PMCID: PMC9292112 DOI: 10.1371/journal.ppat.1010671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/18/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Blocking Plasmodium, the causative agent of malaria, at the asymptomatic pre-erythrocytic stage would abrogate disease pathology and prevent transmission. However, the lack of well-defined features within vaccine-elicited antibody responses that correlate with protection represents a major roadblock to improving on current generation vaccines. We vaccinated mice (BALB/cJ and C57BL/6J) with Py circumsporozoite protein (CSP), the major surface antigen on the sporozoite, and evaluated vaccine-elicited humoral immunity and identified immunological factors associated with protection after mosquito bite challenge. Vaccination achieved 60% sterile protection and otherwise delayed blood stage patency in BALB/cJ mice. In contrast, all C57BL/6J mice were infected similar to controls. Protection was mediated by antibodies and could be passively transferred from immunized BALB/cJ mice into naïve C57BL/6J. Dissection of the underlying immunological features of protection revealed early deficits in antibody titers and polyclonal avidity in C57BL/6J mice. Additionally, PyCSP-vaccination in BALB/cJ induced a significantly higher proportion of antigen-specific B-cells and class-switched memory B-cell (MBCs) populations than in C57BL/6J mice. Strikingly, C57BL/6J mice also had markedly fewer CSP-specific germinal center experienced B cells and class-switched MBCs compared to BALB/cJ mice. Analysis of the IgG γ chain repertoires by next generation sequencing in PyCSP-specific memory B-cell repertoires also revealed higher somatic hypermutation rates in BALB/cJ mice than in C57BL/6J mice. These findings indicate that the development of protective antibody responses in BALB/cJ mice in response to vaccination with PyCSP was associated with increased germinal center activity and somatic mutation compared to C57BL/6J mice, highlighting the key role B cell maturation may have in the development of vaccine-elicited protective antibodies against CSP. Identifying specific features of vaccine-elicited antibody responses that are associated with protection from malaria infection is a key step toward the development of a safe and effective vaccine. Here we compared antibody and B cell responses in two mouse strains that exhibited a differential ability to generate antibodies that protect from infection challenge. We found that protection was due to the presence of vaccine-elicited antibodies and could be transferred between strains, and that the ability of antibodies to neutralize the parasite was directly linked to the strength (affinity) with which it binds CSP. Thus, we sought to understand if there were differences in the two strains in the process of B cell maturation that leads to generation of high affinity, protective antibody responses after vaccination. Overall, our comparative analysis indicates that germinal center (GC) activity, a key process in B cell maturation, was significantly diminished in the non-protected strain. Further, we observed evidence of higher levels of somatic mutation, which is a result of germinal center activity, in protected mice. Thus, our results indicate that the ability to generate protective antibody responses was linked to enhanced B cell maturation in the protected strain, providing a key clue to the type of responses that should be generated by future vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashton Yang
- Seattle Children’s Research Institute, Seattle, Washington
| | | | - Alex Watson
- Seattle Children’s Research Institute, Seattle, Washington
| | - William Selman
- Seattle Children’s Research Institute, Seattle, Washington
| | - Meghan Zuck
- Seattle Children’s Research Institute, Seattle, Washington
| | | | - Alexis Kaushansky
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Brotman Baty Research Institute, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington
- * E-mail: (AK); (DNS)
| | - D. Noah Sather
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- * E-mail: (AK); (DNS)
| |
Collapse
|
18
|
Dacon C, Tucker C, Peng L, Lee CCD, Lin TH, Yuan M, Cong Y, Wang L, Purser L, Williams JK, Pyo CW, Kosik I, Hu Z, Zhao M, Mohan D, Cooper A, Peterson M, Skinner J, Dixit S, Kollins E, Huzella L, Perry D, Byrum R, Lembirik S, Zhang Y, Yang ES, Chen M, Leung K, Weinberg RS, Pegu A, Geraghty DE, Davidson E, Douagi I, Moir S, Yewdell JW, Schmaljohn C, Crompton PD, Holbrook MR, Nemazee D, Mascola JR, Wilson IA, Tan J. Broadly neutralizing antibodies target the coronavirus fusion peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.11.487879. [PMID: 35441178 PMCID: PMC9016638 DOI: 10.1101/2022.04.11.487879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potential for future coronavirus outbreaks highlights the need to develop strategies and tools to broadly target this group of pathogens. Here, using an epitope-agnostic approach, we identified six monoclonal antibodies that bound to spike proteins from all seven human-infecting coronaviruses. Epitope mapping revealed that all six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. Two antibodies, COV44-62 and COV44-79, broadly neutralize a range of alpha and beta coronaviruses, including SARS-CoV-2 Omicron subvariants BA.1 and BA.2, albeit with lower potency than RBD-specific antibodies. In crystal structures of Fabs COV44-62 and COV44-79 with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine at the S2' cleavage site. Importantly, COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings identify the fusion peptide as the target of the broadest neutralizing antibodies in an epitope-agnostic screen, highlighting this site as a candidate for next-generation coronavirus vaccine development. One-Sentence Summary Rare monoclonal antibodies from COVID-19 convalescent individuals broadly neutralize coronaviruses by targeting the fusion peptide.
Collapse
Affiliation(s)
- Cherrelle Dacon
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Courtney Tucker
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Cong
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren Purser
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe Hu
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Rockville, MD 20852, USA
| | - Divya Mohan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Andrew Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mary Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Saurabh Dixit
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin Kollins
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Louis Huzella
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Donna Perry
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Russell Byrum
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Sanae Lembirik
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rona S. Weinberg
- New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Moir
- B Cell Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connie Schmaljohn
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Michael R. Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
19
|
Stalls V, Acharya P. How to train your antibody to fight malaria. Immunity 2021; 54:2692-2694. [PMID: 34910937 DOI: 10.1016/j.immuni.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Plasmodium falciparum circumsporozoite protein (PfCSP) is targeted by neutralizing antibodies and is a focus of malaria vaccine development. In this issue of Immunity, Kratochvil et al. (2021) combine vaccination and bioinformatics strategies to develop a best-in-class PfCSP-targeting antibody.
Collapse
Affiliation(s)
- Victoria Stalls
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA; Departments of Surgery and Biochemistry, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|