1
|
Garg M, Liu X, Lin J, Vassilaki M, Petersen RC, St Sauver J, Kapoor E, Sohn S. Sex Disparities in Cognitive Impairment Research: A Scoping Review in Informatics Literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.27.24319704. [PMID: 39763541 PMCID: PMC11703294 DOI: 10.1101/2024.12.27.24319704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Rationale A scoping review was conducted to investigate knowledge gaps in the informatics research literature regarding sex differences in cognitive decline, identifying existing studies and areas where further studies are needed. Materials and Methods We searched Ovid and other databases for studies on sex differences and cognitive decline, focusing on publications in peer-reviewed informatics journals and conference proceedings from 2000 to 2023. The selected manuscripts were analyzed and summarized through discussion among three reviewers. Results A total of 13 articles were selected and examined for metadata and attributes analysis. Most studies are conducted in United States (n=5) and European Union (n=4), about a half are published after 2020 (n=6), and most studies are published in Springer and Elsevier. Our attributes-based analysis highlights the different aspects of reported studies such as task, method, dataset and its size, and sex-specific inferences. Discussion Sex-specific disparities in cognitive decline remain a critical issue in healthcare, yet most informatics research has primarily concentrated on identifying basic sex differences, such as tracking the progression of cognitive decline in men and women. While these studies are valuable, they fall short of addressing the more complex underlying causes of these sex-specific disparities in progression of cognitive decline. Conclusion There is a significant gap using informatics in understanding how biological, social, and behavioral factors contribute to sex-specific disparities. This limited focus restricts the development of effective intervention strategies for mitigating sex-specific differences in cognitive health outcomes, underscoring the need for more comprehensive research that goes beyond mere identification to find the root cause of these disparities in healthcare.
Collapse
|
2
|
Battineni G, Hossain MA, Chintalapudi N, Traini E, Dhulipalla VR, Ramasamy M, Amenta F. Improved Alzheimer's Disease Detection by MRI Using Multimodal Machine Learning Algorithms. Diagnostics (Basel) 2021; 11:diagnostics11112103. [PMID: 34829450 PMCID: PMC8623867 DOI: 10.3390/diagnostics11112103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Adult-onset dementia disorders represent a challenge for modern medicine. Alzheimer's disease (AD) represents the most diffused form of adult-onset dementias. For half a century, the diagnosis of AD was based on clinical and exclusion criteria, with an accuracy of 85%, which did not allow for a definitive diagnosis, which could only be confirmed by post-mortem evaluation. Machine learning research applied to Magnetic Resonance Imaging (MRI) techniques can contribute to a faster diagnosis of AD and may contribute to predicting the evolution of the disease. It was also possible to predict individual dementia of older adults with AD screening data and ML classifiers. To predict the AD subject status, the MRI demographic information and pre-existing conditions of the patient can help to enhance the classifier performance. In this work, we proposed a framework based on supervised learning classifiers in the dementia subject categorization as either AD or non-AD based on longitudinal brain MRI features. Six different supervised classifiers are incorporated for the classification of AD subjects and results mentioned that the gradient boosting algorithm outperforms other models with 97.58% of accuracy.
Collapse
Affiliation(s)
- Gopi Battineni
- Telemedicine and Telepharmacy Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (M.A.H.); (N.C.); (E.T.); (F.A.)
- Correspondence: ; Tel.: +39-3331728206
| | - Mohmmad Amran Hossain
- Telemedicine and Telepharmacy Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (M.A.H.); (N.C.); (E.T.); (F.A.)
| | - Nalini Chintalapudi
- Telemedicine and Telepharmacy Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (M.A.H.); (N.C.); (E.T.); (F.A.)
| | - Enea Traini
- Telemedicine and Telepharmacy Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (M.A.H.); (N.C.); (E.T.); (F.A.)
| | - Venkata Rao Dhulipalla
- The Research Centre of the ECE Department, V.R. Siddhartha Engineering College, Vijayawada 521002, Andhra Pradesh, India; (V.R.D.); (M.R.)
| | - Mariappan Ramasamy
- The Research Centre of the ECE Department, V.R. Siddhartha Engineering College, Vijayawada 521002, Andhra Pradesh, India; (V.R.D.); (M.R.)
| | - Francesco Amenta
- Telemedicine and Telepharmacy Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (M.A.H.); (N.C.); (E.T.); (F.A.)
| |
Collapse
|
3
|
Battineni G, Chintalapudi N, Amenta F, Traini E. A Comprehensive Machine-Learning Model Applied to Magnetic Resonance Imaging (MRI) to Predict Alzheimer's Disease (AD) in Older Subjects. J Clin Med 2020; 9:jcm9072146. [PMID: 32650363 PMCID: PMC7408873 DOI: 10.3390/jcm9072146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/24/2023] Open
Abstract
Increasing evidence suggests the utility of magnetic resonance imaging (MRI) as an important technique for the diagnosis of Alzheimer’s disease (AD) and for predicting the onset of this neurodegenerative disorder. In this study, we present a sophisticated machine learning (ML) model of great accuracy to diagnose the early stages of AD. A total of 373 MRI tests belonging to 150 subjects (age ≥ 60) were examined and analyzed in parallel with fourteen distinct features related to standard AD diagnosis. Four ML models, such as naive Bayes (NB), artificial neural networks (ANN), K-nearest neighbor (KNN), and support-vector machines (SVM), and the receiver operating characteristic (ROC) curve metric were used to validate the model performance. Each model evaluation was done in three independent experiments. In the first experiment, a manual feature selection was used for model training, and ANN generated the highest accuracy in terms of ROC (0.812). In the second experiment, automatic feature selection was conducted by wrapping methods, and the NB achieved the highest ROC of 0.942. The last experiment consisted of an ensemble or hybrid modeling developed to combine the four models. This approach resulted in an improved accuracy ROC of 0.991. We conclude that the involvement of ensemble modeling, coupled with selective features, can predict with better accuracy the development of AD at an early stage.
Collapse
|
4
|
Payrovnaziri SN, Chen Z, Rengifo-Moreno P, Miller T, Bian J, Chen JH, Liu X, He Z. Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review. J Am Med Inform Assoc 2020; 27:1173-1185. [PMID: 32417928 PMCID: PMC7647281 DOI: 10.1093/jamia/ocaa053] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To conduct a systematic scoping review of explainable artificial intelligence (XAI) models that use real-world electronic health record data, categorize these techniques according to different biomedical applications, identify gaps of current studies, and suggest future research directions. MATERIALS AND METHODS We searched MEDLINE, IEEE Xplore, and the Association for Computing Machinery (ACM) Digital Library to identify relevant papers published between January 1, 2009 and May 1, 2019. We summarized these studies based on the year of publication, prediction tasks, machine learning algorithm, dataset(s) used to build the models, the scope, category, and evaluation of the XAI methods. We further assessed the reproducibility of the studies in terms of the availability of data and code and discussed open issues and challenges. RESULTS Forty-two articles were included in this review. We reported the research trend and most-studied diseases. We grouped XAI methods into 5 categories: knowledge distillation and rule extraction (N = 13), intrinsically interpretable models (N = 9), data dimensionality reduction (N = 8), attention mechanism (N = 7), and feature interaction and importance (N = 5). DISCUSSION XAI evaluation is an open issue that requires a deeper focus in the case of medical applications. We also discuss the importance of reproducibility of research work in this field, as well as the challenges and opportunities of XAI from 2 medical professionals' point of view. CONCLUSION Based on our review, we found that XAI evaluation in medicine has not been adequately and formally practiced. Reproducibility remains a critical concern. Ample opportunities exist to advance XAI research in medicine.
Collapse
Affiliation(s)
| | - Zhaoyi Chen
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Pablo Rengifo-Moreno
- College of Medicine, Florida State University, Tallahassee, Florida, USA
- Tallahassee Memorial Hospital, Tallahassee, Florida, USA
| | - Tim Miller
- School of Computing and Information Systems, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Jonathan H Chen
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
- Division of Hospital Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Xiuwen Liu
- Department of Computer Science, Florida State University, Tallahassee, Florida, USA
| | - Zhe He
- School of Information, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
5
|
Alonso SG, de la Torre-Díez I, Hamrioui S, López-Coronado M, Barreno DC, Nozaleda LM, Franco M. Data Mining Algorithms and Techniques in Mental Health: A Systematic Review. J Med Syst 2018; 42:161. [PMID: 30030644 DOI: 10.1007/s10916-018-1018-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Data Mining in medicine is an emerging field of great importance to provide a prognosis and deeper understanding of disease classification, specifically in Mental Health areas. The main objective of this paper is to present a review of the existing research works in the literature, referring to the techniques and algorithms of Data Mining in Mental Health, specifically in the most prevalent diseases such as: Dementia, Alzheimer, Schizophrenia and Depression. Academic databases that were used to perform the searches are Google Scholar, IEEE Xplore, PubMed, Science Direct, Scopus and Web of Science, taking into account as date of publication the last 10 years, from 2008 to the present. Several search criteria were established such as 'techniques' AND 'Data Mining' AND 'Mental Health', 'algorithms' AND 'Data Mining' AND 'dementia' AND 'schizophrenia' AND 'depression', etc. selecting the papers of greatest interest. A total of 211 articles were found related to techniques and algorithms of Data Mining applied to the main Mental Health diseases. 72 articles have been identified as relevant works of which 32% are Alzheimer's, 22% dementia, 24% depression, 14% schizophrenia and 8% bipolar disorders. Many of the papers show the prediction of risk factors in these diseases. From the review of the research articles analyzed, it can be said that use of Data Mining techniques applied to diseases such as dementia, schizophrenia, depression, etc. can be of great help to the clinical decision, diagnosis prediction and improve the patient's quality of life.
Collapse
Affiliation(s)
- Susel Góngora Alonso
- Department of Signal Theory and Communications, and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47011, Valladolid, Spain
| | - Isabel de la Torre-Díez
- Department of Signal Theory and Communications, and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47011, Valladolid, Spain.
| | - Sofiane Hamrioui
- Bretagne Loire and Nantes Universities, UMR 6164, IETR Polytech Nantes, Nantes, France
| | - Miguel López-Coronado
- Department of Signal Theory and Communications, and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47011, Valladolid, Spain
| | - Diego Calvo Barreno
- Department of Signal Theory and Communications, and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47011, Valladolid, Spain
| | - Lola Morón Nozaleda
- Nozaleda and Lafora Mental Health Clinic, C/ José Ortega Y Gasset, 44, 28006, Madrid, Spain
| | - Manuel Franco
- Psiquiatry Service, Hospital Zamora, Hernán Cortés, Zamora, Spain
| |
Collapse
|