1
|
Zhang C, Lan Y, Guo H, Gao Z, Song J, Chen W. The adhesion behavior of the retina. Exp Eye Res 2023:109541. [PMID: 37321365 DOI: 10.1016/j.exer.2023.109541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Ocular diseases and treatment related to rhegmatogenous retinal detachment (RRD) are highly correlated with retinal adhesion behavior. Therefore, this paper proposes to study the adhesion behavior of the intact retina. This can provide theoretical guidance for the treatment and research of retinal detachment (RD) related diseases. To systematically analyze this aspect, two experiments were performed on the porcine retina. The pull-off test combined with the modified JKR theory was used to study the adhesion behavior of the vitreoretinal interface, while the peeling test was used to study the adhesion behavior of the chorioretinal interface. In addition, the adhesion phase involved in the pull-off test was simulated and analyzed by building the corresponding finite element method (FEM). The experimental results of adhesion force on the vitreoretinal interface were obtained by pull-off test with five sizes of rigid punch. The experimental value of the pull-off force FPO tends to increase gradually with increasing punch radius in the range of 0.5-4 mm. A comparison of the experimental results with the simulation results shows that they are in a well agreement. And there is no statistical difference between the experimental and theoretical values of the pull-off force FPO. In addition, the values of retinal adhesion work were also obtained by pull-off test. Interestingly, there is a significant scale effect of the retinal work of adhesion. Finally, the peeling test gave a maximum peeling strength TMax of about 13 mN/mm and a stable peeling strength TD of about 11 mN/mm between the retina and the choroid. The pull-off test well shows the process of retinal traction by the diseased vitreous at the beginning of RRD. A comparison of the experimental results with the finite element results verifies the accuracy of the simulation. The peeling test well investigated the adhesion behavior between the retina and the choroid and obtained key biomechanical data (peeling strength, etc.). The combination of the two experiments allows a more systematic study of the whole retina. This research can provide more complete material parameters for finite element modeling of retina-related diseases, and it also can provide the theoretical guidance for individualized design of retinal repair surgery.
Collapse
Affiliation(s)
- Chenxi Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yunfei Lan
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hongmei Guo
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital), Taiyuan, 030032, China.
| | - Zhipeng Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jie Song
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
2
|
Explosive eye injuries: characteristics, traumatic mechanisms, and prognostic factors for poor visual outcomes. Mil Med Res 2023; 10:3. [PMID: 36631894 PMCID: PMC9835351 DOI: 10.1186/s40779-022-00438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Explosions can produce blast waves, high-speed medium, thermal radiation, and chemical spatter, leading to complex and compound eye injuries. However, few studies have comprehensively investigated the clinical features of different eye injury types or possible risk factors for poor prognosis. METHODS We retrospectively reviewed all consecutive records of explosive eye injuries (1449 eyes in 1115 inpatients) in 14 tertiary referral hospitals in China over 12 years (between January 2008 and December 2019). Data on demographics, eye injury types, ocular findings, treatments, and factors affecting visual prognosis were extracted from a standardized database of eye injuries and statistically analyzed. RESULTS Mechanical ocular trauma accounted for 94.00% of explosion-related eye injuries, among which intraocular foreign bodies (IOFBs) resulted in 55.17% of open globe injuries (OGIs) and contusion caused 60.22% of close globe injuries (CGIs). Proliferative vitreous retinopathy (PVR) was more common in perforating (47.06%) and IOFB (26.84%) than in penetrating (8.79%) injuries, and more common with laceration (24.25%) than rupture (9.22%, P < 0.01). However, no difference was observed between rupture and contusion. Ultimately, 9.59% of eyes were removed and the final vision was ≤ 4/200 in 45.82% of patients. Poor presenting vision [odds ratio (OR) = 5.789], full-thickness laceration of the eyeball ≥ 5 mm (OR = 3.665), vitreous hemorrhage (OR = 3.474), IOFB (OR = 3.510), non-mechanical eye injury (NMEI, OR = 2.622, P < 0.001), rupture (OR = 2.362), traumatic optic neuropathy (OR = 2.102), retinal detachment (RD, OR = 2.033), endophthalmitis (OR = 3.281, P < 0.01), contusion (OR = 1.679), ciliary body detachment (OR = 6.592), zone III OGI (OR = 1.940), and PVR (OR = 1.615, P < 0.05) were significant negative predictors for poor visual outcomes. CONCLUSIONS Explosion ocular trauma has complex mechanisms, with multiple eyes involved and poor prognosis. In lethal level I explosion injuries, eyeball rupture is a serious condition, whereas contusion is more likely to improve. In level II injuries, IOFBs are more harmful than penetrating injuries, and level IV represents burn-related eye injuries. PVR is more associated with penetrating mechanisms than with OGI. Identifying the risk predictors for visual prognosis can guide clinicians in the evaluation and treatment of ocular blast injuries.
Collapse
|
3
|
Foster WJ, Berg BW, Luminais SN, Hadayer A, Schaal S. Computational Modeling of Ophthalmic Procedures: Computational Modeling of Ophthalmic Procedures. Am J Ophthalmol 2022; 241:87-107. [PMID: 35358485 PMCID: PMC9444883 DOI: 10.1016/j.ajo.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/16/2022] [Accepted: 03/17/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To explore how finite-element calculations can continue to contribute to diverse problems in ophthalmology and vision science, we describe our recent work on modeling the force on the peripheral retina in intravitreal injections and how that force increases with shorter, smaller gauge needles. We also present a calculation that determines the location and stress on a retinal pigment epithelial detachment during an intravitreal injection, the possibility that stress induced by the injection can lead to a tear of the retinal pigment epithelium. BACKGROUND Advanced computational models can provide a critical insight into the underlying physics in many surgical procedures, which may not be intuitive. METHODS The simulations were implemented using COMSOL Multiphysics. We compared the monkey retinal adhesive force of 18 Pa with the results of this study to quantify the maximum retinal stress that occurs during intravitreal injections. CONCLUSIONS Currently used 30-gauge needles produce stress on the retina during intravitreal injections that is only slightly below the limit that can create retinal tears. As retina specialists attempt to use smaller needles, the risk of complications may increase. In addition, we find that during an intravitreal injection, the stress on the retina in a pigment epithelial detachment occurs at the edge of the detachment (found clinically), and the stress is sufficient to tear the retina. These findings may guide physicians in future clinical research. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- William J Foster
- From the Department of Bioengineering (W.J.F.), Lewes Katz School of Medicine (B.W.B., S.N.L.), Temple University, Philadelphia, Pennsylvania, USA; Altasciences, Montréal, Québec, Canada (W.J.F.).
| | - Brian W Berg
- From the Department of Bioengineering (W.J.F.), Lewes Katz School of Medicine (B.W.B., S.N.L.), Temple University, Philadelphia, Pennsylvania, USA
| | - Steven N Luminais
- From the Department of Bioengineering (W.J.F.), Lewes Katz School of Medicine (B.W.B., S.N.L.), Temple University, Philadelphia, Pennsylvania, USA
| | - Amir Hadayer
- Department of Ophthalmology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.H.)
| | - Shlomit Schaal
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, USA (S.S.)
| |
Collapse
|
4
|
Karimi A, Razaghi R, Rahmati SM, Downs JC, Acott TS, Wang RK, Johnstone M. Modeling the biomechanics of the conventional aqueous outflow pathway microstructure in the human eye. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106922. [PMID: 35660940 PMCID: PMC10424784 DOI: 10.1016/j.cmpb.2022.106922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Intraocular pressure (IOP) is determined by aqueous humor outflow resistance, which is a function of the combined resistance of Schlemm's canal (SC) endothelium and the trabecular meshwork (TM) and their interactions in the juxtacanalicular connective tissue (JCT) region. Aqueous outflow in the conventional outflow pathway results in pressure gradient across the TM, JCT, and SC inner wall, and induces mechanical stresses and strains that influence the geometry and homeostasis of the outflow system. The outflow resistance is affected by alteration in tissues' geometry, so there is potential for active, two-way, fluid-structure interaction (FSI) coupling between the aqueous humor (fluid) and the TM, JCT, and SC inner wall (structure). However, our understanding of the biomechanical interactions of the aqueous humor with the outflow connective tissues and its contribution to the outflow resistance regulation is incomplete. METHODS In this study, a microstructural finite element (FE) model of a human eye TM, JCT, and SC inner wall was constructed from a segmented, high-resolution histologic 3D reconstruction of the human outflow system. Three different elastic moduli (0.004, 0.128, and 51.5 MPa based on prior reports) were assigned to the TM/JCT complex while the elastic modulus of the SC inner wall was kept constant at 0.00748 MPa. The hydraulic conductivity was programmed separately for the TM, JCT, and SC inner wall using a custom subroutine. Cable elements were embedded into the TM and JCT extracellular matrix to represent the directional stiffness imparted by anisotropic collagen fibril orientation. The resultant stresses and strains in the outflow system were calculated using fluid-structure interaction method. RESULTS The higher TM/JCT stiffness resulted in larger stresses, but smaller strains in the outflow connective tissues, and resulted in a 4- and 5-fold larger pressure drop across the SC inner wall, respectively, compared to the most compliant model. Funneling through µm-sized SC endothelial pores was evident in the models at lower tissue stiffness, but aqueous flow was more turbulent in models with higher TM/JCT stiffness. CONCLUSIONS The mechanical properties of the outflow tissues play a crucial role in the hydrodynamics of the aqueous humor in the conventional outflow system.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 372B, Birmingham, AL 35294, USA.
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 372B, Birmingham, AL 35294, USA
| | | | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 372B, Birmingham, AL 35294, USA
| | - Ted S Acott
- Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ruikang K Wang
- Department of Ophthalmology, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Ocular biomechanics during improvised explosive device blast: A computational study using eye-specific models. Injury 2022; 53:1401-1415. [PMID: 35144807 PMCID: PMC8940691 DOI: 10.1016/j.injury.2022.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Eye injuries comprise 10-13% of civilian improvised explosive device (IED) injuries. The bomb blast wave induces a normal and shear forces on the tissues, causing a large acute IOP elevation. This study calculated the biomechanical stresses and strains in the eye due to IED explosion via eye-specific fluid-structure interaction (FSI) models. METHODS Blast occurred at 2, 3, and 4 m from the front and side of the victim and the weights of the IED were 1 and 2 kg. The ground was covered with the deformable soil to mimic the realistic IED explosion condition and reflect the blast wave. RESULTS The IOP elevation of ∼6,000-48,000 mmHg was observed in the eyes while the highest IOP was occurred with the IED weight and distance of 2 kg and 2 m (front) and the lowest was occurred with the IED weight and distance of 1 kg and 4 m (side). Our findings suggest the importance of the victim location and orientation concerning the blast wave when it comes to ocular injury assessment. IOP elevation of ∼2900 and ∼2700 mmHg were observed in ∼1.6 ms after the blast for the IEDS weight of 2 kg and a victim distance of 2 m in front and side blasts, respectively, in consistence with the literature. Nonetheless, IOPs were considerably higher after ∼1.6 ms due to the merging of the bomb blast wave and its reflection off the ground. CONCLUSIONS The stresses and strains were highest for the frontal blast. Both side and frontal blasts caused higher stresses and strains at the rectus muscle insertions where the sclera is thinnest and prone to rupture. Blast angle has no considerable role in the resultant IOP. Front blast with a heavier IED resulted a higher stresses and deformations in the eye connective tissues compared to the side blast.
Collapse
|
6
|
Karimi A, Razaghi R, Girkin CA, Downs JC. Ocular biomechanics due to ground blast reinforcement. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 211:106425. [PMID: 34598082 PMCID: PMC8577623 DOI: 10.1016/j.cmpb.2021.106425] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/14/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Bomb blast injuries exerts a shearing force on the air-tissue interfaces, causing devastating ocular injury from the blast wave. Improvised explosive devices (IEDs) are usually placed at different heights from the ground to induce more severe injury through ground blast reinforcement (GBR). However, there is still a lack of knowledge of the role of GBR and IED height from the ground on ocular biomechanics, and how they can affect the intraocular pressure (IOP) in the eye. This study aimed to estimate the IOP due to frontal IED explosion at different heights from the ground using a fluid-structure interaction model with and without GBR effects. METHODS A 2 kg IED was placed within 5 m of the victim at 5 different heights from the ground, including 0, 0.42, 0.85, 1.27, and 1.70 m. Two different blast formulations were used to simulate the IED explosion: (a) spherical airburst, with no amplification of the initial shock wave due to interaction with the ground-surface, and (b) hemispherical surface-burst, where the initial blast wave is immediately reflected and reinforced by the ground (GBR). RESULTS Results revealed that the blast wave due to GBR reaches to the skull prior to the IED blast itself. The GBR also reached to the skull ∼ 0.6 ms earlier when the IED was on the ground compared to the height of 1.70 m. The highest and lowest IOPs of ∼ 17,000 and ∼ 15,000 mmHg were observed at the IED heights of 1.70 and 0 m from the ground considering GBR. However, when the role of the GBR is ignored, IOP of ∼ 9,000 mmHg was observed regardless of the IED height from the ground. The deformation in the apex of the cornea was higher when considering the GBR (∼ 0.75 cm) versus no GBR (∼ 0.65 cm). Considering GBR led to higher stresses and strains in the sclera. CONCLUSIONS When the role of GBR was ignored, the results showed similar patterns and magnitudes of stresses and deformations in the skull and eye regardless of the height of the IED from the ground, which was not the case when GBR was considered. The findings of this study suggest the critical role of GBR in ocular blast simulations.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 390A, Birmingham, AL 35294, United States.
| | - Reza Razaghi
- Research Department, Heel of Scene Ltd., 2 Chome-12-3 Honmachi, Shibuya City, Tokyo, Japan.
| | - Christopher A Girkin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 390A, Birmingham, AL 35294, United States.
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 390A, Birmingham, AL 35294, United States.
| |
Collapse
|
7
|
Topuz B, Aydin HM. Preparation of decellularized optic nerve grafts. Artif Organs 2021; 46:618-632. [PMID: 34714559 DOI: 10.1111/aor.14098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Decellularized tissues based on well-conserved extracellular matrices (ECMs) are a common area of research in tissue engineering. Although several decellularization protocols have been suggested for several types of tissues, studies on the optic nerve have been limited. METHODS We report decellularization protocol with different detergent for the preparation of acellular optic nerve and tissues were examined. DNA, glycosaminoglycan (GAG), and collagen content of the groups were evaluated with biochemical analyses and examined with histological staining. Mechanical properties, chemical components as well as cytotoxic properties of tissues were compared. RESULTS According to the results, it was determined that TX-100 (Triton X-100) was insufficient in decellularization when used alone. In addition, it was noticed that 85% of GAG content was preserved by using TX-100 and TX-100-SD (sodium deoxycholate), while this ratio was calculated as 30% for SDS. In contrast, the effect of the decellularization protocols on ECM structure of the tissues was evaluated by scanning and transmission electron microscopy (SEM and TEM) and determined their mechanical properties. Cytotoxicity analyses were exhibited minimum 95% cell viability for all groups, suggesting that there are no cytotoxic properties of the methods on L929 mouse fibroblast cells. CONCLUSIONS The combination of TX-100-SD and TX-100-SDS (sodium dodecyl sulfate) were was determined as the most effective methods to the literature for optic nerve decellularization.
Collapse
Affiliation(s)
- Bengisu Topuz
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Halil Murat Aydin
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey.,Centre for Bioengineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Osmers J, Kaiser N, Sorg M, Fischer A. Adaptive finite element eye model for the compensation of biometric influences on acoustic tonometry. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105930. [PMID: 33486338 DOI: 10.1016/j.cmpb.2021.105930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Glaucoma is currently a major cause for irreversible blindness worldwide. A risk factor and the only therapeutic control parameter is the intraocular pressure (IOP). The IOP is determined with tonometers, whose measurements are inevitably influenced by the geometry of the eye. Even though the corneal mechanics have been investigated to improve accuracy of Goldmann and air pulse tonometry, influences of geometric properties of the eye on an acoustic self-tonometer approach are still unresolved. METHODS In order to understand and compensate for measurement deviations resulting from the geometric uniqueness of eyes, a finite element eye model is designed that considers all relevant eye components and is adjustable to all physiological shapes of the human eye. RESULTS The general IOP-dependent behavior of the eye model is validated by laboratory measurements on porcine eyes. The difference between simulation and measurement is below 8 µm for IOP levels from 5 to 40 mmHg. The adaptive eye model is then used to quantify systematic uncertainty contributions of a variation of eye length and central corneal thickness based on input statistics of a clinical trial series. The adaptive eye model provides the required relation between biometric eye parameters and the corneal deflection amplitude, which here is the measured quantity to trace back to the IOP. Implementing the relations provided by the eye model in a Gaussian uncertainty propagation calculation now allows the quantification of the uncertainty contributions of the biometric parameters on the overall measurement uncertainty of the acoustic self-tonometer. As a result, a systematic uncertainty contribution resulting from deviations in eye length dominate stochastic deviations of the sensor equipment by a factor of 3.5. CONCLUSION As perspective, the proposed adaptive eye model provides the basis to compensate for systematic deviations of (but not only) the acoustic self-tonometer.
Collapse
Affiliation(s)
- Jan Osmers
- University of Bremen, Bremen Institute for Metrology, Automation and Quality Science (BIMAQ), Linzer Str. 13, Bremen 28359, Germany.
| | - Nils Kaiser
- University of Bremen, Bremen Institute for Metrology, Automation and Quality Science (BIMAQ), Linzer Str. 13, Bremen 28359, Germany
| | - Michael Sorg
- University of Bremen, Bremen Institute for Metrology, Automation and Quality Science (BIMAQ), Linzer Str. 13, Bremen 28359, Germany
| | - Andreas Fischer
- University of Bremen, Bremen Institute for Metrology, Automation and Quality Science (BIMAQ), Linzer Str. 13, Bremen 28359, Germany
| |
Collapse
|
9
|
Hamzeh A, Ayoub R, Issa S, Alhalabi N, Sawaf B, Mohsen F, Issa H, Mohsen MA, Khattab MN, Thomas G, Aljammal MB, Shibani M, Alzabibi MA, Ismail H, Hamzeh F, Almoree O, Al-Moujahed A, Saba S. War-related ocular injuries in Damascus during the Syrian Crisis. Injury 2021; 52:299-304. [PMID: 33408056 DOI: 10.1016/j.injury.2020.11.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/13/2020] [Accepted: 11/28/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND . Ocular injuries constitute a major cause of visual morbidity, and they have a significant socioeconomic impact worldwide. We aimed to document the types and causes of Syrian War related ocular injuries in Damascus, Syria. METHODS . Medical records were retrospectively reviewed to evaluate all patients in Al-Mouwasat University Hospital and Damascus Hospital, whose ocular injuries were caused by war-related activities during the period extending between January of 2016 and December 2017. RESULTS . 150 eye injuries in 127 patients were reviewed, in which 46 (31%) were bilateral and 87 (58%) were open globe injuries. The leading cause of the observed ocular injuries was improvised explosive devices (IED) [37 eyes (41%)]. The majority of patients presented with an initial best corrected visual acuity (BCVA) of "light perception" (LP) to "hand movement" (HM) [51 eyes (34%)]. Information on the final BCVA was available for 69 injured eyes only, and it was "no light perception" (NLP) in 20 eyes (29%). CONCLUSION . Explosive weaponry is the main culprit in most war-related ocular injuries in Syria. The high incidence of open globe injuries caused many of the cases to be severe in nature. Education on the precautionary measures that protect the eyes such as the use of combat eye protection during wartimes ought to be enforced, so that future ocular injuries can be prevented.
Collapse
Affiliation(s)
- Ammar Hamzeh
- Department of Ophthalmology, Faculty of Medicine, Damascus University, Damascus, Syria
| | - Rita Ayoub
- Department of Surgery, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
| | - Sameh Issa
- Department of Ophthalmology, Faculty of Medicine, Damascus University, Damascus, Syria
| | - Nawras Alhalabi
- Department of Ophthalmology, Faculty of Medicine, Damascus University, Damascus, Syria; Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Bisher Sawaf
- Faculty of Medicine, Syrian Private University, Damascus, Syria; Department of Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Mohsen
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Hazem Issa
- Department of Ophthalmology, Faculty of Medicine, Damascus University, Damascus, Syria
| | | | | | - Gabriel Thomas
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Mhd Basher Aljammal
- Department of Ophthalmology, Faculty of Medicine, Damascus University, Damascus, Syria
| | - Mosa Shibani
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | | | - Hlma Ismail
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Farah Hamzeh
- Department of Ophthalmology, Faculty of Medicine, Damascus University, Damascus, Syria
| | - Osama Almoree
- Department of Ophthalmology, Damascus Hospital, Damascus, Syria
| | - Ahmad Al-Moujahed
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States
| | - Salim Saba
- Department of Surgery, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon.
| |
Collapse
|
10
|
Karimi A, Grytz R, Rahmati SM, Girkin CA, Downs JC. Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 198:105794. [PMID: 33099262 PMCID: PMC7722137 DOI: 10.1016/j.cmpb.2020.105794] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/05/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Biomechanical stresses and strains can be simulated in the optic nerve head (ONH) using the finite element (FE) method, and various element types have been used. This study aims to investigate the effects of element type on the resulting ONH stresses and strains. METHODS A single eye-specific model was constructed using 3D delineations of anatomic surfaces in a high-resolution, fluorescent, 3D reconstruction of a human posterior eye, then meshed using our simple meshing algorithm at various densities using 4- and 10-noded tetrahedral elements, as well as 8- and 20-noded hexahedral elements. A mesh-free approach was used to assign heterogeneous, anisotropic, hyperelastic material properties to the lamina cribrosa, sclera and pia. The models were subjected to elevated IOP of 45 mmHg after pre-stressing from 0 to 10 mmHg, and solved in the open-source FE package Calculix; results were then interpreted in relation to computational time and simulation accuracy, using the quadratic hexahedral model as the reference standard. RESULTS The 10-noded tetrahedral and 20R-noded hexahedral elements exhibited similar scleral canal and laminar deformations, as well as laminar and scleral stress and strain distributions; the quadratic tetrahedral models ran significantly faster than the quadratic hexahedral models. The linear tetrahedral and hexahedral elements were stiffer compared to the quadratic element types, yielding much lower stresses and strains in the lamina cribrosa. CONCLUSIONS Prior studies have shown that 20-noded hexahedral elements yield the most accurate results in complex models. Results show that 10-noded tetrahedral elements yield very similar results to 20-noded hexahedral elements and so they can be used interchangeably, with significantly lower computational time. Linear element types did not yield acceptable results.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rafael Grytz
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Christopher A Girkin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
11
|
Huang L, Shen M, Liu T, Zhang Y, Wang Y. Inverse solution of corneal material parameters based on non-contact tonometry: A comparative study of different constitutive models. J Biomech 2020; 112:110055. [PMID: 33039923 DOI: 10.1016/j.jbiomech.2020.110055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/15/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022]
Abstract
Assessing the biomechanical properties of the cornea in vivo is important for predicting the outcome of refractive surgery, and for controlling the risk of postoperative complications. In this study, we examined the impact of corneal mechanical properties (nonlinearity and anisotropy) on the inverse solution of corneal material parameters based on the non-contact tonometry ("air puff") test. Finite element models with different constitutive models (linear-elastic, isotropic hyperelastic, and fiber-dependent) were established to simulate the non-contact tonometry test. The results showed that the corneal nonlinear mechanical property and fiber distribution had significant effects on the corneal deflection profile. These findings may help in constructing an appropriate inverse solution strategy when using the inverse finite element method and in identifying individual differences in the corneal matrix shear modulus and fiber stiffness.
Collapse
Affiliation(s)
- Laixin Huang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Min Shen
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China.
| | - Taiwei Liu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Yan Zhang
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Nankai University, Tianjin 300022, China
| | - Yan Wang
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Nankai University, Tianjin 300022, China
| |
Collapse
|
12
|
Characterization of hyperelastic mechanical properties for youth corneal anterior central stroma based on collagen fibril crimping constitutive model. J Mech Behav Biomed Mater 2020; 103:103575. [DOI: 10.1016/j.jmbbm.2019.103575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/03/2019] [Accepted: 11/29/2019] [Indexed: 11/19/2022]
|
13
|
A numerical analysis on the right and left ventricles with circular and elliptical patches. COR ET VASA 2019. [DOI: 10.33678/cor.2019.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Tong J, Kedar S, Ghate D, Gu L. Indirect Traumatic Optic Neuropathy Induced by Primary Blast: A Fluid–Structure Interaction Study. J Biomech Eng 2019; 141:2733245. [DOI: 10.1115/1.4043668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Indexed: 11/08/2022]
Abstract
Current knowledge of traumatic ocular injury is still limited as most studies have focused on the ocular injuries that happened at the anterior part of the eye, whereas the damage to the optic nerve known as traumatic optic neuropathy (TON) is poorly understood. The goal of this study is to understand the mechanism of the TON following the primary blast through a fluid–structure interaction model. An axisymmetric three-dimensional (3D) eye model with detailed orbital components was developed to capture the dynamics of the eye under the blast wave. Our numerical results demonstrated a transient pressure elevation in both vitreous and cerebrospinal fluid (CSF). A high strain rate over 100 s−1 was observed throughout the optic nerve during the blast with the most vulnerable part located at the intracanalicular region. The optic nerve deforming at such a high strain rate may account for the axonal damage and vision loss in patients subjected to the primary blast. The results from this work would enhance the understanding of indirect TON and provide guidance in the design of protective eyewear against such injury.
Collapse
Affiliation(s)
- Junfei Tong
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 e-mail:
| | - Sachin Kedar
- Stanley Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68105-1119; Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198-8440
| | - Deepta Ghate
- Stanley Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68105-1119
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656
| |
Collapse
|
15
|
Bernardo-Colón A, Vest V, Cooper ML, Naguib SA, Calkins DJ, Rex TS. Progression and Pathology of Traumatic Optic Neuropathy From Repeated Primary Blast Exposure. Front Neurosci 2019; 13:719. [PMID: 31354422 PMCID: PMC6637732 DOI: 10.3389/fnins.2019.00719] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023] Open
Abstract
Indirect traumatic optic neuropathy (ITON) is a condition that is often associated with traumatic brain injury and can result in significant vision loss due to degeneration of retinal ganglion cell (RGC) axons at the time of injury or within the ensuing weeks. We used a mouse model of eye-directed air-blast exposure to characterize the histopathology of blast-induced ITON. This injury caused a transient elevation of intraocular pressure with subsequent RGC death and axon degeneration that was similar throughout the length of the optic nerve (ON). Deficits in active anterograde axon transport to the superior colliculus accompanied axon degeneration and first appeared in peripheral representations of the retina. Glial area in the ON increased early after injury and involved a later period of additional expansion. The increase in area involved a transient change in astrocyte organization independent of axon degeneration. While levels of many cytokines and chemokines did not change, IL-1α and IL-1β increased in both the ON and retina. In contrast, glaucoma shows distal to proximal axon degeneration with astrocyte remodeling and increases in many cytokines and chemokines. Further, direct traumatic optic neuropathies have a clear site of injury with rapid, progressive axon degeneration and cell death. These data show that blast-induced ITON is a distinct neuropathology from other optic neuropathies.
Collapse
Affiliation(s)
| | - Victoria Vest
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Melissa L. Cooper
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Sarah A. Naguib
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - David J. Calkins
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Tonia S. Rex
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
16
|
Karimi A, Razaghi R, Sera T, Kudo S. A combination of the finite element analysis and experimental indentation via the cornea. J Mech Behav Biomed Mater 2019; 90:146-154. [DOI: 10.1016/j.jmbbm.2018.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 01/10/2023]
|
17
|
Development and validation of an optimized finite element model of the human orbit. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2018; 120:16-20. [PMID: 30287407 DOI: 10.1016/j.jormas.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/05/2018] [Accepted: 09/23/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The authors' main purpose was to develop a detailed finite element model (FEM) of the human orbit and to validate it by analyzing its behavior under the stress of blunt traumas. MATERIALS AND METHODS A pre-existing 3D FEM of a human head was modified and used in this study. Modifications took into account preliminary research carried out on PubMed database. Data from a CT scan of the head were computed with Mimics® software to re-create the skull geometry. The mesh production, the model's properties and the simulations of blunt orbital traumas were conducted on Hyperworks® software. RESULTS The resulting 3D FEM was composed of 640 000 elements and was used to perform blunt trauma simulations on an intact orbit. A total of 27 tests were simulated. Fifteen tests were realized with a metallic cylinder impactor; 12 tests simulated a hit by a closed fist. In all the tests conducted (27/27), the orbital floor was fractured. Fracture patterns were similar to those found in real clinical situations according to the buckling and hydraulic theories of orbital floor fractures. DISCUSSION The similitude between the fracture patterns produced on the model and those observed in vivo allows for a validation of the model. This model constitutes, at the authors knowledge, the most sophisticated one ever developed.
Collapse
|
18
|
Collision of the glass shards with the eye: A computational fluid-structure interaction model. J Chem Neuroanat 2018; 90:80-86. [DOI: 10.1016/j.jchemneu.2017.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/17/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022]
|
19
|
Karimi A, Razaghi R, Biglari H, Sabbaghi H, Sera T, Kudo S. A comparative study to determine the optimal intravitreal injection angle to the eye: A computational fluid-structure interaction model. Technol Health Care 2018; 26:483-498. [DOI: 10.3233/thc-160777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Alireza Karimi
- Department of Mechanical Engineering, Kyushu University, Fukuoka, Japan
| | - Reza Razaghi
- Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
- Basir Eye Health Research Center, Tehran, Iran
| | - Hasan Biglari
- Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | | | - Toshihiro Sera
- Department of Mechanical Engineering, Kyushu University, Fukuoka, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
|
21
|
Numerical study of the effect of head and eye movement on progression of retinal detachment. Biomech Model Mechanobiol 2018; 17:975-983. [PMID: 29478194 DOI: 10.1007/s10237-018-1006-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
|
22
|
Razaghi R, Biglari H, Karimi A. Dynamic finite element simulation of dental prostheses during chewing using muscle equivalent force and trajectory approaches. J Med Eng Technol 2017; 41:314-324. [PMID: 28351224 DOI: 10.1080/03091902.2017.1299231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The long-term application of dental prostheses inside the bone has a narrow relation to its biomechanical performance. Chewing is the most complicated function of a dental implant as it implements different forces to the implant at various directions. Therefore, a suitable holistic modelling of the jaw bone, implant, food, muscles, and their forces would be deemed significant to figure out the durability as well as functionality of a dental implant while chewing. So far, two approaches have been proposed to employ the muscle forces into the Finite Element (FE) models, i.e. Muscle Equivalent Force (MEF) and trajectory. This study aimed at propounding a new three-dimensional dynamic FE model based on two muscle forces modelling approaches in order to investigate the stresses and deformations in the dental prosthesis as well as maxillary bone during the time of chewing a cornflakes bio. The results revealed that both contact and the maximum von Mises stress in the implant and bones for trajectory approach considerably exceed those of the MEF. The maximum stresses, moreover, are located around the neck of implant which should be both clinically and structurally strong enough to functionally maintain the bone-implant interface. In addition, a higher displacement due to compressive load is observed for the implant head in trajectory approach. The results suggest the benefits provided by trajectory approach since MEF approach would significantly underestimate the stresses and deformations in both the dental prosthesis and bones.
Collapse
Affiliation(s)
- Reza Razaghi
- a Mechanical Engineering Department , University of Tabriz , Tabriz , Iran
| | - Hasan Biglari
- a Mechanical Engineering Department , University of Tabriz , Tabriz , Iran
| | - Alireza Karimi
- b Research Department , Basir Eye Health Research Center , Tehran , Iran
| |
Collapse
|
23
|
Karimi A, Razaghi R, Navidbakhsh M, Sera T, Kudo S. Computing the influences of different Intraocular Pressures on the human eye components using computational fluid-structure interaction model. Technol Health Care 2017; 25:285-297. [DOI: 10.3233/thc-161280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Alireza Karimi
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Reza Razaghi
- Basir Eye Health Research Center, Tehran 14186, Iran
| | - Mahdi Navidbakhsh
- Department of Biomechanics, Science and Research Branch, Islamic Azad University, Tehran 755/4515, Iran
| | - Toshihiro Sera
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
24
|
Kaneko H, Asami T, Sugita T, Tsunekawa T, Matsuura T, Takayama K, Yamamoto K, Kachi S, Ito Y, Ueno S, Nonobe N, Kataoka K, Suzumura A, Iwase T, Terasaki H. Better Visual Outcome by Intraocular Lens Ejection in Geriatric Patients with Ruptured Ocular Injuries. PLoS One 2017; 12:e0170094. [PMID: 28107485 PMCID: PMC5249204 DOI: 10.1371/journal.pone.0170094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022] Open
Abstract
Ocular trauma is one of the leading causes of visual impairment worldwide. Because of the popularity of cataract surgeries, aged individuals with ocular trauma commonly have a surgical wound in their eyes. The purpose of this study was to evaluate the visual outcome of cases that were coincident with intraocular lens (IOL) ejection in the eyes with ruptured open-globe ocular injuries. Consecutive patients with open-globe ocular injuries were first reviewed. Patients’ characteristics, corrected distance visual acuities (CDVAs) over 3 years after the trauma, causes of injuries, traumatic wound patterns, and coexistence of retinal detachment were examined. The relationships between poor CDVA and the other factors, including the complications of crystalline lens and IOL ejection, were examined. A total of 105 eyes/patients [43 eyes with rupture, 33 with penetrating, 28 with intraocular foreign body (IOFB), and 1 with perforating injuries] were included. Rupture injuries were common in aged patients and were mostly caused by falls, whereas penetrating and IOFB injuries were common in young male patients. CDVAs of the eyes with rupture injuries were significantly worse than those of the eyes with penetrating or IOFB injuries. CDVA from more than 50% of the ruptured eyes resulted in no light perception or light perception to 20/500. CDVA of the ruptured eyes complicated by crystalline lens ejection was significantly worse than that of those complicated by IOL ejection. The wounds of the ruptured eyes complicated by IOL ejection were mainly located at the superior corneoscleral limbus, whereas those of the eyes complicated by crystalline lens ejection were located at the posterior sclera. There were significant correlations between poor CDVA and retinal detachment and crystalline lens ejection. These results proposed a new trend in the ocular injuries that commonly occur in aged patients; history of cataract surgery might affect the final visual outcome after open-globe ocular injuries.
Collapse
Affiliation(s)
- Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Tetsu Asami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadasu Sugita
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taichi Tsunekawa
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyuki Matsuura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Takayama
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kentaro Yamamoto
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shu Kachi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuki Ito
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norie Nonobe
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Kataoka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Iwase
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
25
|
Injury risk prediction from computational simulations of ocular blast loading. Biomech Model Mechanobiol 2016; 16:463-477. [DOI: 10.1007/s10237-016-0830-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/07/2016] [Indexed: 01/31/2023]
|
26
|
Quantifying the injury of the human eye components due to tennis ball impact using a computational fluid–structure interaction model. SPORTS ENGINEERING 2015. [DOI: 10.1007/s12283-015-0192-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|