1
|
Stein M, Elefteriou F, Busse B, Fiedler IA, Kwon RY, Farell E, Ahmad M, Ignatius A, Grover L, Geris L, Tuckermann J. Why Animal Experiments Are Still Indispensable in Bone Research: A Statement by the European Calcified Tissue Society. J Bone Miner Res 2023; 38:1045-1061. [PMID: 37314012 PMCID: PMC10962000 DOI: 10.1002/jbmr.4868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Major achievements in bone research have always relied on animal models and in vitro systems derived from patient and animal material. However, the use of animals in research has drawn intense ethical debate and the complete abolition of animal experimentation is demanded by fractions of the population. This phenomenon is enhanced by the reproducibility crisis in science and the advance of in vitro and in silico techniques. 3D culture, organ-on-a-chip, and computer models have improved enormously over the last few years. Nevertheless, the overall complexity of bone tissue cross-talk and the systemic and local regulation of bone physiology can often only be addressed in entire vertebrates. Powerful genetic methods such as conditional mutagenesis, lineage tracing, and modeling of the diseases enhanced the understanding of the entire skeletal system. In this review endorsed by the European Calcified Tissue Society (ECTS), a working group of investigators from Europe and the US provides an overview of the strengths and limitations of experimental animal models, including rodents, fish, and large animals, as well the potential and shortcomings of in vitro and in silico technologies in skeletal research. We propose that the proper combination of the right animal model for a specific hypothesis and state-of-the-art in vitro and/or in silico technology is essential to solving remaining important questions in bone research. This is crucial for executing most efficiently the 3R principles to reduce, refine, and replace animal experimentation, for enhancing our knowledge of skeletal biology, and for the treatment of bone diseases that affect a large part of society. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Merle Stein
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Germany
| | - Imke A.K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Young Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, USA and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Eric Farell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Mubashir Ahmad
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Liam Grover
- Healthcare Technologies Institute, Institute of Translational MedicineHeritage Building Edgbaston, Birmingham
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, Liège, Belgium
- Skeletal Biology & Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| |
Collapse
|
2
|
Salamanna F, Contartese D, Veronesi F, Martini L, Fini M. Osteoporosis Preclinical Research: A Systematic Review on Comparative Studies Using Ovariectomized Sheep. Int J Mol Sci 2022; 23:ijms23168904. [PMID: 36012173 PMCID: PMC9408715 DOI: 10.3390/ijms23168904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Sheep ovariectomy (OVX) alone or associated to steroid therapy, deficient diet, or hypothalamic–pituitary disconnection has proven to be of critical importance for osteoporosis research in orthopedics. However, the impact of specific variables, such as breed, age, diet, time after OVX, and other variables, should be monitored. Thus, the design of comparative studies is mandatory to minimize the impact of these variables or to recognize the presence of unwanted variables as well as to better characterize bone remodeling in this model. Herein, we conducted a systematic review of the last 10 years on PubMed, Scopus, and Web of Knowledge considering only studies on OVX sheep where a control group was present. Of the 123 records screened, 18 studies were included and analyzed. Results showed that (i) Merino sheep are the most exploited breed; (ii) 5–6 years of age is the most used time for inducing OVX; (iii) ventral midline laparotomy is the most common approach to induce OVX; (iv) OVX associated to steroid therapy is the most widely used osteoporosis model; and (v) success of OVX was mostly verified 12 months after surgery. In detail, starting from 12 months after OVX a significant decline in bone mineral density and in microarchitectural bone parameters as well as in biochemical markers were detected in all studies in comparison to control groups. Bone alteration was also site-specific on a pattern as follows: lumbar vertebra, femoral neck, and ribs. Before 12 months from OVX and starting from 3–5 months, microarchitectural bone changes and biochemical marker alterations were present when osteoporosis was induced by OVX associated to steroid therapy. In conclusion, OVX in sheep influence bone metabolism causing pronounced systemic bone loss and structural deterioration comparable to the situation found in osteoporosis patients. Data for treating osteoporosis patients are based not only on good planning and study design but also on a correct animal use that, as suggested by 3Rs principles and by ARRIVE guidelines, includes the use of control groups to be directly contrasted with the experimental group.
Collapse
Affiliation(s)
- Francesca Salamanna
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Deyanira Contartese
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesca Veronesi
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence:
| | - Lucia Martini
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
3
|
Oláh T, Cai X, Michaelis JC, Madry H. Comparative anatomy and morphology of the knee in translational models for articular cartilage disorders. Part I: Large animals. Ann Anat 2021; 235:151680. [PMID: 33548412 DOI: 10.1016/j.aanat.2021.151680] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The human knee is a complex joint, and affected by a variety of articular cartilage disorders. Large animal models are critical to model the complex disease mechanisms affecting a functional joint. Species-dependent differences highly affect the results of a pre-clinical study and need to be considered, necessitating specific knowledge not only of macroscopic and microscopic anatomical and pathological aspects, but also characteristics of their individual gait and joint movements. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant anatomical structural and functional characteristics of the knee (stifle) joints of the major translational large animal species, comprising dogs, (mini)pigs, sheep, goats, and horses in comparison with humans. Specific characteristics of each species, including kinematical gait parameters are provided. Considering these multifactorial dimensions will allow to select the appropriate model for answering the research questions in a clinically relevant fashion.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | | | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
4
|
Haffner-Luntzer M, Hankenson KD, Ignatius A, Pfeifer R, Khader BA, Hildebrand F, van Griensven M, Pape HC, Lehmicke M. Review of Animal Models of Comorbidities in Fracture-Healing Research. J Orthop Res 2019; 37:2491-2498. [PMID: 31444806 DOI: 10.1002/jor.24454] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 02/04/2023]
Abstract
There is clinical evidence that patient-specific comorbidities like osteoporosis, concomitant tissue injury, and ischemia may strongly interfere with bone regeneration. However, underlying mechanisms are still unclear. To study these mechanisms in detail, appropriate animal models are needed. For decades, bone healing has been studied in large animals, including dogs, rabbits, pigs, or sheep. However, large animal models display a limited ability to study molecular pathways and cellular functions. Therefore in recent years, mice and rats have become increasingly popular as a model organism for fracture healing research due to the availability of molecular analysis tools and transgenic models. Both large and small animals can be used to study comorbidities and risk factors, modelling the human clinical situation. However, attention has to be paid when choosing an appropriate model due to species differences between large animals, rodents, and humans. This review focuses on large and small animal models for the common comorbidities ischemic injury/reduced vascularization, osteoporosis, and polytrauma, and critically discusses the translational and molecular aspects of these models. Here, we review material which was presented at the workshop "Animal Models of Comorbidities in Fracture Healing Research" at the 2019 ORS Annual Meeting in Austin Texas. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2491-2498, 2019.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Roman Pfeifer
- Department of Trauma, University Hospital Zurich, Zurich, Switzerland
| | - Basel A Khader
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Frank Hildebrand
- Department of Orthopaedic Trauma, University Hospital RWTH Aachen, Aachen, Germany
| | - Martijn van Griensven
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Michael Lehmicke
- Alliance for Regenerative Medicine, Washington, District of Columbia
| |
Collapse
|
5
|
Wojtkow M, Kiełbowicz Z, Bieżyński J, Pezowicz C. Quantitative and qualitative assessment of the impact of osteoporosis on endplate layers. Biocybern Biomed Eng 2019. [DOI: 10.1016/j.bbe.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Permuy M, López-Peña M, Muñoz F, González-Cantalapiedra A. Rabbit as model for osteoporosis research. J Bone Miner Metab 2019; 37:573-583. [PMID: 31087186 DOI: 10.1007/s00774-019-01007-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/20/2019] [Indexed: 10/26/2022]
Abstract
Osteoporosis is a major public health problem affecting more than 200 million people worldwide. The use of different animal models, for the study of its pathophysiology and treatments, is important being actually the ovariectomized rat the most widely used; although this model has several problems due its small size, lack of true closure of epiphyseal plate and bone differences with humans. This review is aimed at summarizing the most common methods published for osteoporosis induction in rabbits as model for human disease with their advantages and disadvantages. The paper shows the advantages of the use of this specie compared with the rat. All the techniques seemed to achieve the osteoporotic condition, but the one which obtained the most consistent bone mineral reduction in less time was the combination of surgery and corticoid treatment. The conclusion of the review was that rabbits are promising as a model of osteoporosis research because of their size, haversian remodelling and closure of epiphyseal plate, which solve some of the problems of the rat model. There are different techniques in the literature used to achieve the osteoporotic condition with diverse results, but there is a lack of consensus as to the best one.
Collapse
Affiliation(s)
- María Permuy
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, Universidade De Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| | - Mónica López-Peña
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, Universidade De Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain
| | - Fernando Muñoz
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, Universidade De Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain
| | - Antonio González-Cantalapiedra
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, Universidade De Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain
| |
Collapse
|
7
|
Dias IR, Camassa JA, Bordelo JA, Babo PS, Viegas CA, Dourado N, Reis RL, Gomes ME. Preclinical and Translational Studies in Small Ruminants (Sheep and Goat) as Models for Osteoporosis Research. Curr Osteoporos Rep 2018; 16:182-197. [PMID: 29460175 DOI: 10.1007/s11914-018-0431-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes research on the use of sheep and goats as large animal models of human osteoporosis for preclinical and translational studies. RECENT FINDINGS The most frequent osteoporotic sheep model used is the ovariectomized sheep with 12 months post-operatively or more and the combined treatment of ovariectomized sheep associated to calcium/vitamin D-deficient diet and glucocorticoid applications for 6 months, but other methods are also described, like pinealectomy or hypothalamic-pituitary disconnection in ovariectomized sheep. The goat model for osteoporosis research has been used in a very limited number of studies in osteoporosis research relative to sheep. These osteoporotic small ruminant models are applied for biomaterial research, bone augmentation, efficacy of implant fixation, fragility fracture-healing process improvement, or bone-defect repair studies in the osteopenic or osteoporotic bone. Sheep are a recognized large animal model for preclinical and translational studies in osteoporosis research and the goat to a lesser extent. Recently, the pathophysiological mechanism underlying induction of osteoporosis in glucocorticoid-treated ovariectomized aged sheep was clarified, being similar to what occurs in postmenopausal women with glucocorticoid-induced osteoporosis. It was also concluded that the receptor activator of NF-κB ligand was stimulated in the late progressive phase of the osteoporosis induced by steroids in sheep. The knowledge of the pathophysiological mechanisms at the cellular and molecular levels of the induction of osteoporosis in small ruminants, if identical to humans, will allow in the future, the use of these animal models with greater confidence in the preclinical and translational studies for osteoporosis research.
Collapse
Affiliation(s)
- Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| | - José A Camassa
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - João A Bordelo
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Pedro S Babo
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Nuno Dourado
- CMEMS-UMinho, Department of Mechanical Engineering, University of Minho, Campus de Azurém, 4804-533, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Manuela E Gomes
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| |
Collapse
|
8
|
Simon MJK, Beil FT, Pogoda P, Vettorazzi E, Clarke I, Amling M, Oheim R. Is centrally induced alveolar bone loss in a large animal model preventable by peripheral hormone substitution? Clin Oral Investig 2017; 22:495-503. [DOI: 10.1007/s00784-017-2138-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/22/2017] [Indexed: 11/24/2022]
|