1
|
de Oliveira BEG, Maia FLM, Massimino LC, Garcia CF, Plepis AMDG, Martins VDCA, Reis CHB, Silva VR, Bezerra AA, Pauris CC, Buchaim DV, Silva YBE, Buchaim RL, da Cunha MR. Use of Plant Extracts in Polymeric Scaffolds in the Regeneration of Mandibular Injuries. Pharmaceutics 2024; 16:491. [PMID: 38675152 PMCID: PMC11053713 DOI: 10.3390/pharmaceutics16040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Severe loss of bone mass may require grafting, and, among the alternatives available, there are natural biomaterials that can act as scaffolds for the cell growth necessary for tissue regeneration. Collagen and elastin polymers are a good alternative due to their biomimetic properties of bone tissue, and their characteristics can be improved with the addition of polysaccharides such as chitosan and bioactive compounds such as jatoba resin and pomegranate extract due to their antigenic actions. The aim of this experimental protocol was to evaluate bone neoformation in experimentally made defects in the mandible of rats using polymeric scaffolds with plant extracts added. Thirty rats were divided into group 1, with a mandibular defect filled with a clot from the lesion and no graft implant (G1-C, n = 10); group 2, filled with collagen/chitosan/jatoba resin scaffolds (G2-CCJ, n = 10); and group 3, with collagen/nanohydroxyapatite/elastin/pomegranate extract scaffolds (G3-CHER, n = 10). Six weeks after surgery, the animals were euthanized and samples from the surgical areas were submitted to macroscopic, radiological, histological, and morphometric analysis of the mandibular lesion repair process. The results showed no inflammatory infiltrates in the surgical area, indicating good acceptance of the scaffolds in the microenvironment of the host area. In the control group (G1), there was a predominance of reactive connective tissue, while in the grafted groups (G2 and G3), there was bone formation from the margins of the lesion, but it was still insufficient for total bone repair of the defect within the experimental period standardized in this study. The histomorphometric analysis showed that the mean percentage of bone volume formed in the surgical area of groups G1, G2, and G3 was 17.17 ± 2.68, 27.45 ± 1.65, and 34.07 ± 0.64 (mean ± standard deviation), respectively. It can be concluded that these scaffolds with plant extracts added can be a viable alternative for bone repair, as they are easily manipulated, have a low production cost, and stimulate the formation of new bone by osteoconduction.
Collapse
Affiliation(s)
| | | | - Lívia Contini Massimino
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (L.C.M.); (A.M.d.G.P.); (M.R.d.C.)
| | - Claudio Fernandes Garcia
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos 13566-590, Brazil; (C.F.G.); (V.d.C.A.M.)
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (L.C.M.); (A.M.d.G.P.); (M.R.d.C.)
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos 13566-590, Brazil; (C.F.G.); (V.d.C.A.M.)
| | | | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (C.H.B.R.); (D.V.B.)
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Vinícius Rodrigues Silva
- Department of Human Anatomy, University of San Francisco (USF), Bragança Paulista 12916-900, Brazil;
| | - Andre Alves Bezerra
- Orthopedics and Traumatology Sector, Faculty of Medicine of Jundiaí, Jundiaí 13202-550, Brazil; (B.E.G.d.O.)
| | - Carolina Chen Pauris
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí, Jundiaí 13202-550, Brazil; (C.C.P.); (Y.B.e.S.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (C.H.B.R.); (D.V.B.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), São Paulo 05508-270, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Yggor Biloria e Silva
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí, Jundiaí 13202-550, Brazil; (C.C.P.); (Y.B.e.S.)
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), São Paulo 05508-270, Brazil
| | - Marcelo Rodrigues da Cunha
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (L.C.M.); (A.M.d.G.P.); (M.R.d.C.)
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí, Jundiaí 13202-550, Brazil; (C.C.P.); (Y.B.e.S.)
| |
Collapse
|
2
|
García-Lamas L, Peña J, Roman J, Cabañas V, Bravo-Giménez B, Jiménez-Díaz V, Sánchez-Salcedo S, Jiménez-Holguín J, Abella M, Desco M, Lozano D, Cecilia-López D, Salinas A. In vivo behavior in rabbit radius bone defect of scaffolds based on nanocarbonate hydroxyapatite. J Biomed Mater Res B Appl Biomater 2024; 112:e35391. [PMID: 38348754 DOI: 10.1002/jbm.b.35391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/15/2024]
Abstract
Bone defects treatment may require the use of biomaterials that behave as a support and promote bone regeneration. Limitations associated with the use of autografts and allografts make it necessary to design new synthetic bone substitutes. Some of the most promising biomaterials currently under investigation are based on nanocarbonate hydroxyapatite (nCHA). In this study, we studied the bone-inducing capacity of nCHA-based scaffolds alone (SAG) and enriched with osteostatin (SAGO) or with bone marrow aspirate(SAGB) after implantation for 12 weeks in a 15-mm long critical defect performed in the radius of New Zealand rabbits. Bone formation obtained was compared with a group with the unfilled defect (CE), as control group, and other with the defect filed with iliac crest autograft (GS), as gold standard. X-ray follow-up was performed at 2, 4, 6 and 12 weeks and μCT and histological studies at 12 weeks. The radiological results showed a greater increment in bone formation in the GS group (75%-100%), followed by the SAG and SAGB groups (50%-75%). μCT results showed an increase of bone volume/tissue volume values in GS group followed by SAG and SAGB groups (0.53, 0.40, and 0.31 respectively) compared with CE group (0.26). Histological results showed limited resorption of the nCHA scaffolds and partial osseointegration in the SAG and SAGB groups. However, in the SAGO group, the presence of connective tissue encapsulating the scaffold was detected. In SAG, SAGB, and increase of bone formation were observed compared with CE group, but less than the GS group. Thus, the investigated materials represent a significant advance in the design of synthetic materials for bone grafting, but further studies are needed to bring their in vivo behavior closer to autograft, the gold standard.
Collapse
Affiliation(s)
- Lorena García-Lamas
- Department of Orthopedic Surgery, University Hospital 12 de Octubre, Madrid, Spain
- Research institute imas 12, University Hospital 12 de Octubre, Madrid, Spain
| | - Juan Peña
- Research institute imas 12, University Hospital 12 de Octubre, Madrid, Spain
- Departamento de Química en Ciencias Farmaceúticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Roman
- Research institute imas 12, University Hospital 12 de Octubre, Madrid, Spain
- Departamento de Química en Ciencias Farmaceúticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Victoria Cabañas
- Research institute imas 12, University Hospital 12 de Octubre, Madrid, Spain
- Departamento de Química en Ciencias Farmaceúticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Bravo-Giménez
- Department of Orthopedic Surgery, University Hospital 12 de Octubre, Madrid, Spain
- Research institute imas 12, University Hospital 12 de Octubre, Madrid, Spain
| | - Verónica Jiménez-Díaz
- Department of Orthopedic Surgery, University Hospital 12 de Octubre, Madrid, Spain
- Research institute imas 12, University Hospital 12 de Octubre, Madrid, Spain
| | - Sandra Sánchez-Salcedo
- Research institute imas 12, University Hospital 12 de Octubre, Madrid, Spain
- Departamento de Química en Ciencias Farmaceúticas, Universidad Complutense de Madrid, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Madrid, Spain
| | - Javier Jiménez-Holguín
- Research institute imas 12, University Hospital 12 de Octubre, Madrid, Spain
- Departamento de Química en Ciencias Farmaceúticas, Universidad Complutense de Madrid, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Madrid, Spain
| | - Monica Abella
- Departamento de Bioingeniería, Universidad Carlos III, Madrid, Spain
| | - Manuel Desco
- Departamento de Bioingeniería, Universidad Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañon, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Daniel Lozano
- Research institute imas 12, University Hospital 12 de Octubre, Madrid, Spain
- Departamento de Química en Ciencias Farmaceúticas, Universidad Complutense de Madrid, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Madrid, Spain
| | - David Cecilia-López
- Department of Orthopedic Surgery, University Hospital 12 de Octubre, Madrid, Spain
- Research institute imas 12, University Hospital 12 de Octubre, Madrid, Spain
| | - Antonio Salinas
- Research institute imas 12, University Hospital 12 de Octubre, Madrid, Spain
- Departamento de Química en Ciencias Farmaceúticas, Universidad Complutense de Madrid, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
3
|
Da Cunha MR, Maia FLM, Iatecola A, Massimino LC, Plepis AMDG, Martins VDCA, Da Rocha DN, Mariano ED, Hirata MC, Ferreira JRM, Teixeira ML, Buchaim DV, Buchaim RL, De Oliveira BEG, Pelegrine AA. In Vivo Evaluation of Collagen and Chitosan Scaffold, Associated or Not with Stem Cells, in Bone Repair. J Funct Biomater 2023; 14:357. [PMID: 37504852 PMCID: PMC10381363 DOI: 10.3390/jfb14070357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Natural polymers are increasingly being used in tissue engineering due to their ability to mimic the extracellular matrix and to act as a scaffold for cell growth, as well as their possible combination with other osteogenic factors, such as mesenchymal stem cells (MSCs) derived from dental pulp, in an attempt to enhance bone regeneration during the healing of a bone defect. Therefore, the aim of this study was to analyze the repair of mandibular defects filled with a new collagen/chitosan scaffold, seeded or not with MSCs derived from dental pulp. Twenty-eight rats were submitted to surgery for creation of a defect in the right mandibular ramus and divided into the following groups: G1 (control group; mandibular defect with clot); G2 (defect filled with dental pulp mesenchymal stem cells-DPSCs); G3 (defect filled with collagen/chitosan scaffold); and G4 (collagen/chitosan scaffold seeded with DPSCs). The analysis of the scaffold microstructure showed a homogenous material with an adequate percentage of porosity. Macroscopic and radiological examination of the defect area after 6 weeks post-surgery revealed the absence of complete repair, as well as absence of signs of infection, which could indicate rejection of the implants. Histomorphometric analysis of the mandibular defect area showed that bone formation occurred in a centripetal fashion, starting from the borders and progressing towards the center of the defect in all groups. Lower bone formation was observed in G1 when compared to the other groups and G2 exhibited greater osteoregenerative capacity, followed by G4 and G3. In conclusion, the scaffold used showed osteoconductivity, no foreign body reaction, malleability and ease of manipulation, but did not obtain promising results for association with DPSCs.
Collapse
Affiliation(s)
- Marcelo Rodrigues Da Cunha
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
- Department of Implant Dentistry, Faculdade São Leopoldo Mandic, Campinas 13045-755, Brazil
| | | | - Amilton Iatecola
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil
| | - Lívia Contini Massimino
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
| | - Ana Maria de Guzzi Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
- Sao Carlos Institute of Chemistry, University of Sao Paulo (USP), São Carlos 13566-590, Brazil
| | | | | | | | | | | | | | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | | | | |
Collapse
|
4
|
Wei B, Ji M, Lin Y, Geng R, Wang Q, Lu J. Investigation of the medium-term effect of osteoprotegerin/bone morphogenetic protein 2 combining with collagen sponges on tendon-bone healing in a rabbit. J Orthop Surg (Hong Kong) 2023; 31:10225536231163467. [PMID: 36893748 DOI: 10.1177/10225536231163467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Osteoprotegerin (OPG) and bone morphogenetic protein-2 (BMP-2) could be administered sequentially to promote tendon-bone healing. There remain several unresolved issues in our previously published study: a) the release kinetics of OPG/BMP-2 from the OPG/BMP-2/collagen sponge (CS) combination in vitro remained unclear; b) the medium-term effect of the OPG/BMP-2/CS combination was not analyzed. Hence, we design this study to address the issues mentioned above. METHODS 30 rabbits undergoing anterior cruciate ligament reconstruction (ACLR) with an Achilles tendon autograft randomly received one of the 3 delivery at the femoral and tibial tunnels: OPG/BMP-2, OPG/BMP-2/CS combination, and nothing (blank control). At 8 and 24 weeks post-surgery, the biomechanical tests and histologic analysis were used to evaluate the tendon-bone healing. RESULTS In mechanical tests, the OPG/BMP-2/CS group showed a higher final failure load and stiffness than the other groups at 8 and 24 weeks. Additionally, the maximum stretching distance showed a decreasing trend. The mechanical failure pattern of samples shifted from a tunnel pull-away to a graft midsubstance rupture after OPG/BMP-2/CS-treated. From histological analysis, the OPG/BMP-2/CS treatment increased the amount of collagen fibers (collagen I and II) and promoted fibrocartilage attachment. CONCLUSION CS as a carrier promotes the medium-term effect of OPG and BMP-2 on tendon-bone healing at the tendon-bone interface in a rabbit ACLR model. OPG, BMP-2 and CS were already applied in several clinical practice, but a further study of clinic use of OPG/BMP-2/CS is still needed.
Collapse
Affiliation(s)
- Bing Wei
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| | - Mingliang Ji
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| | - Yucheng Lin
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| | - Rui Geng
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| | - Qing Wang
- Department of Orthopaedic Surgery, The First People's Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua, China
| | - Jun Lu
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| |
Collapse
|
5
|
Silva SK, Plepis AMG, Martins VDCA, Horn MM, Buchaim DV, Buchaim RL, Pelegrine AA, Silva VR, Kudo MHM, Fernandes JFR, Nazari FM, da Cunha MR. Suitability of Chitosan Scaffolds with Carbon Nanotubes for Bone Defects Treated with Photobiomodulation. Int J Mol Sci 2022; 23:ijms23126503. [PMID: 35742948 PMCID: PMC9223695 DOI: 10.3390/ijms23126503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Biomaterials have been investigated as an alternative for the treatment of bone defects, such as chitosan/carbon nanotubes scaffolds, which allow cell proliferation. However, bone regeneration can be accelerated by electrotherapeutic resources that act on bone metabolism, such as low-level laser therapy (LLLT). Thus, this study evaluated the regeneration of bone lesions grafted with chitosan/carbon nanotubes scaffolds and associated with LLLT. For this, a defect (3 mm) was created in the femur of thirty rats, which were divided into 6 groups: Control (G1/Control), LLLT (G2/Laser), Chitosan/Carbon Nanotubes (G3/C+CNTs), Chitosan/Carbon Nanotubes with LLLT (G4/C+CNTs+L), Mineralized Chitosan/Carbon Nanotubes (G5/C+CNTsM) and Mineralized Chitosan/Carbon Nanotubes with LLLT (G6/C+CNTsM+L). After 5 weeks, the biocompatibility of the chitosan/carbon nanotubes scaffolds was observed, with the absence of inflammatory infiltrates and fibrotic tissue. Bone neoformation was denser, thicker and voluminous in G6/C+CNTsM+L. Histomorphometric analyses showed that the relative percentage and standard deviations (mean ± SD) of new bone formation in groups G1 to G6 were 59.93 ± 3.04a (G1/Control), 70.83 ± 1.21b (G2/Laser), 70.09 ± 4.31b (G3/C+CNTs), 81.6 ± 5.74c (G4/C+CNTs+L), 81.4 ± 4.57c (G5/C+CNTsM) and 91.3 ± 4.81d (G6/C+CNTsM+L), respectively, with G6 showing a significant difference in relation to the other groups (a ≠ b ≠ c ≠ d; p < 0.05). Immunohistochemistry also revealed good expression of osteocalcin (OC), osteopontin (OP) and vascular endothelial growth factor (VEGF). It was concluded that chitosan-based carbon nanotube materials combined with LLLT effectively stimulated the bone healing process.
Collapse
Affiliation(s)
- Samantha Ketelyn Silva
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Ana Maria Guzzi Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
- Sao Carlos Institute of Chemistry, University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
| | | | - Marilia Marta Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary and Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil;
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | | | - Vinícius Rodrigues Silva
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Mateus Hissashi Matsumoto Kudo
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - José Francisco Rebello Fernandes
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Fabricio Montenegro Nazari
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Marcelo Rodrigues da Cunha
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
- Correspondence: ; Tel.: +55-11-3395-2100
| |
Collapse
|
6
|
Rezaei M, Davani F, Alishahi M, Masjedi F. Updates in immunocompatibility of biomaterials: applications for regenerative medicine. Expert Rev Med Devices 2022; 19:353-367. [PMID: 35531761 DOI: 10.1080/17434440.2022.2075730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Biomaterials, either metallic, ceramic, or polymeric, can be used in medicine as a part of the implants, dialysis membranes, bone scaffolds, or components of artificial organs. Polymeric biomaterials cover a vast range of biomedical applications. The biocompatibility and immunocompatibility of polymeric materials are of fundamental importance for their possible therapeutic uses, as the immune system can intervene in the materials' performance. Therefore, based on application, different routes can be utilized for immunoregulation. AREAS COVERED As different biomaterials can be modulated by different strategies, this study aims to summarize and evaluate the available methods for the immunocompatibility enhancement of more common polymeric biomaterials based on their nature. Different strategies such as surface modification, physical characterization, and drug incorporation are investigated for the immunomodulation of nanoparticles, hydrogels, sponges, and nanofibers. EXPERT OPINION Recently, strategies for triggering appropriate immune responses by functional biomaterials have been highlighted. As most strategies correspond to the physical and surface properties of biomaterials, specific modulation can be conducted for each biomaterial system. Besides, different applications require different modulations of the immune system. In the future, the selection of novel materials and immune regulators can play a role in tuning the immune system for regenerative medicine.
Collapse
Affiliation(s)
- Mahdi Rezaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farideh Davani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Alishahi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Tian Y, Wu D, Wu D, Cui Y, Ren G, Wang Y, Wang J, Peng C. Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Front Bioeng Biotechnol 2022; 10:899760. [PMID: 35600891 PMCID: PMC9114740 DOI: 10.3389/fbioe.2022.899760] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The treatment of infected bone defects includes infection control and repair of the bone defect. The development of biomaterials with anti-infection and osteogenic ability provides a promising strategy for the repair of infected bone defects. Owing to its antibacterial properties, chitosan (an emerging natural polymer) has been widely studied in bone tissue engineering. Moreover, it has been shown that chitosan promotes the adhesion and proliferation of osteoblast-related cells, and can serve as an ideal carrier for bone-promoting substances. In this review, the specific molecular mechanisms underlying the antibacterial effects of chitosan and its ability to promote bone repair are discussed. Furthermore, the properties of several kinds of functionalized chitosan are analyzed and compared with those of pure chitosan. The latest research on the combination of chitosan with different types of functionalized materials and biomolecules for the treatment of infected bone defects is also summarized. Finally, the current shortcomings of chitosan-based biomaterials for the treatment of infected bone defects and future research directions are discussed. This review provides a theoretical basis and advanced design strategies for the use of chitosan-based biomaterials in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Yuhang Tian
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Danhua Wu
- The People’s Hospital of Chaoyang District, Changchun, China
| | - Dankai Wu
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yutao Cui
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Guangkai Ren
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yanbing Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Chuangang Peng,
| |
Collapse
|
8
|
Biomaterials and osteoradionecrosis of the jaw: Review of the literature according to the SWiM methodology. Eur Ann Otorhinolaryngol Head Neck Dis 2021; 139:208-215. [PMID: 34210630 DOI: 10.1016/j.anorl.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To systematically present and interpret the current literature on research and treatment perspectives for mandibular osteoradionecrosis (mORN) in the field of biomaterials. MATERIAL AND METHODS A systematic review of the literature using the "Synthesis without meta-analysis" (SWiM) methodology was performed on PubMed, Embase and Cochrane, focusing on the implantation of synthetic biomaterials for bone reconstruction in mORN in humans and/or animal models. The primary endpoints were the composition, efficacy on mORN and tolerance of the implanted synthetic biomaterials. RESULTS Forty-seven references were obtained and evaluated in full-text by two assessors. Ten (8 in humans and 2 in animal models) met the eligibility criteria and were included for analysis. Materials most often comprised support plates or metal mesh (5 of 10 cases) in combination with grafts or synthetic materials (phosphocalcic ceramics, glutaraldehyde). Other ceramic/polymer composites were also implanted. In half of the selected reports, active compounds (molecules, growth factors, lysates) and/or cells were associated with the reconstruction material. The number of articles referring to implantation of biomaterials for the treatment of mORN was small, and the properties of the implanted biomaterials were generally poorly described, thus limiting a thorough understanding of their role. CONCLUSION In preventing the morbidity associated with some reconstructive surgeries, basic research has benefitted from recent advances in tissue engineering and biomaterials to repair limited bone loss.
Collapse
|
9
|
Xing F, Chi Z, Yang R, Xu D, Cui J, Huang Y, Zhou C, Liu C. Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. Int J Biol Macromol 2021; 184:170-180. [PMID: 34052273 DOI: 10.1016/j.ijbiomac.2021.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 01/01/2023]
Abstract
Bone defect is usually difficult to recover quickly, and bone scaffold transplantation is considered to be an effective method. Biomaterials have a wide range of application prospects in bone tissue repair, and the two key problems are the selection of materials and cells. The object of this study was to discuss the structural characteristics of bone scaffold materials and their effects on bone repair in vivo. The chitin-hydroxyapatite (HAP)-collagen composite scaffolds (CHCS) was prepared with epichlorohydrin (ECH) as crosslinking agent. The structure was characterized and the compressive strength, porosity, water absorbency and stability were investigated. The biocompatibility and osteogenic differentiation of CHCS in vitro were detected, and the effect of defect repair in vivo was evaluated. The results suggested that HAP not only enhanced the compressive strength of CHCS, but also promoted the formation of calcium nodules due to its bone conductivity. Histological staining showed that collagen promoted collagen deposition and new bone formation. X-ray images also indicated that CHCS transplantation accelerated bone repair. Therefore, CHCs has immense potential in bone regeneration.
Collapse
Affiliation(s)
- Fei Xing
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China
| | - Rongxue Yang
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China
| | - Derong Xu
- The Affiliated Hospital of Qingdao University, 266000 Qingdao, China
| | - Jiufa Cui
- The Affiliated Hospital of Qingdao University, 266000 Qingdao, China
| | - Yufen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 30013 Hsinchu, Taiwan, Republic of China
| | - Chuanli Zhou
- The Affiliated Hospital of Qingdao University, 266000 Qingdao, China.
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
10
|
Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, Głąb M, Kudłacik-Kramarczyk S, Słota D, Tomala A, Tyliszczak B. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2096. [PMID: 33919199 PMCID: PMC8122483 DOI: 10.3390/ma14092096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Regenerative medicine is becoming a rapidly evolving technique in today's biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs. HAp is easily biodegradable, biocompatible, and correlated with macromolecules, which facilitates their incorporation into inorganic materials. This review article provides extensive knowledge on HAp and collagen-containing compositions modified with drugs, bioactive components, metals, and selected nanoparticles. Such compositions consisting of HAp and collagen modified with various additives are used in a variety of biomedical applications such as bone tissue engineering, vascular transplantation, cartilage, and other implantable biomedical devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.S.-K.); (A.D.); (W.F.); (M.G.); (S.K.-K.); (D.S.); (A.T.)
| |
Collapse
|
11
|
Cunha FB, Pomini KT, Plepis AMDG, Martins VDCA, Machado EG, de Moraes R, Munhoz MDAES, Machado MVR, Duarte MAH, Alcalde MP, Buchaim DV, Buchaim RL, Fernandes VAR, Pereira EDSBM, Pelegrine AA, da Cunha MR. In Vivo Biological Behavior of Polymer Scaffolds of Natural Origin in the Bone Repair Process. Molecules 2021; 26:molecules26061598. [PMID: 33805847 PMCID: PMC8002007 DOI: 10.3390/molecules26061598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Autologous bone grafts, used mainly in extensive bone loss, are considered the gold standard treatment in regenerative medicine, but still have limitations mainly in relation to the amount of bone available, donor area, morbidity and creation of additional surgical area. This fact encourages tissue engineering in relation to the need to develop new biomaterials, from sources other than the individual himself. Therefore, the present study aimed to investigate the effects of an elastin and collagen matrix on the bone repair process in critical size defects in rat calvaria. The animals (Wistar rats, n = 30) were submitted to a surgical procedure to create the bone defect and were divided into three groups: Control Group (CG, n = 10), defects filled with blood clot; E24/37 Group (E24/37, n = 10), defects filled with bovine elastin matrix hydrolyzed for 24 h at 37 °C and C24/25 Group (C24/25, n = 10), defects filled with porcine collagen matrix hydrolyzed for 24 h at 25 °C. Macroscopic and radiographic analyses demonstrated the absence of inflammatory signs and infection. Microtomographical 2D and 3D images showed centripetal bone growth and restricted margins of the bone defect. Histologically, the images confirmed the pattern of bone deposition at the margins of the remaining bone and without complete closure by bone tissue. In the morphometric analysis, the groups E24/37 and C24/25 (13.68 ± 1.44; 53.20 ± 4.47, respectively) showed statistically significant differences in relation to the CG (5.86 ± 2.87). It was concluded that the matrices used as scaffolds are biocompatible and increase the formation of new bone in a critical size defect, with greater formation in the polymer derived from the intestinal serous layer of porcine origin (C24/25).
Collapse
Affiliation(s)
- Fernando Bento Cunha
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, SP, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil;
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos 13566-590, SP, Brazil;
| | | | - Eduardo Gomes Machado
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Renato de Moraes
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Marcelo de Azevedo e Souza Munhoz
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Michela Vanessa Ribeiro Machado
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, SP, Brazil;
| | - Murilo Priori Alcalde
- Department of Health Science, Unisagrado University Center, Bauru 17011-160, SP, Brazil;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil;
- Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, SP, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, SP, Brazil;
- Correspondence: ; Tel.: +55-1432358220
| | - Victor Augusto Ramos Fernandes
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
- Laboratory of Anatomy, University Center Our Lady of Patronage (CEUNSP), University of South Cruise, Itu 13300-200, SP, Brazil
| | | | - André Antonio Pelegrine
- Research Institute, Postgraduate Program, São Leopoldo Mandic, School of Dentistry, Campinas 13045-755, SP, Brazil;
| | - Marcelo Rodrigues da Cunha
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo 13202-550, SP, Brazil; (F.B.C.); (E.G.M.); (R.d.M.); (M.d.A.eS.M.); (M.V.R.M.); (V.A.R.F.); (M.R.d.C.)
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
- Laboratory of Anatomy, University Center Our Lady of Patronage (CEUNSP), University of South Cruise, Itu 13300-200, SP, Brazil
- Research Institute, Postgraduate Program, São Leopoldo Mandic, School of Dentistry, Campinas 13045-755, SP, Brazil;
| |
Collapse
|
12
|
Antipova CG, Lukanina KI, Krasheninnikov SV, Malakhov SN, Kamyshinsky RA, Grigoriev TE, Chvalun SN. Study of highly porous poly‐
l
‐lactide‐based composites with chitosan and collagen. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christina G. Antipova
- Department of Nanobiomaterials and Structures National Research Centre “Kurchatov Institute” Moscow Russia
| | - Ksenia I. Lukanina
- Department of Nanobiomaterials and Structures National Research Centre “Kurchatov Institute” Moscow Russia
| | - Sergey V. Krasheninnikov
- Department of Nanobiomaterials and Structures National Research Centre “Kurchatov Institute” Moscow Russia
| | - Sergey N. Malakhov
- Department for Resource Centre National Research Centre “Kurchatov Institute” Moscow Russia
| | - Roman A. Kamyshinsky
- Resource Centre for Probe and Electron Microscopy National Research Centre “Kurchatov Institute” Moscow Russia
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” Russian Academy of Sciences Moscow Russia
| | - Timofei E. Grigoriev
- Department of Nanobiomaterials and Structures National Research Centre “Kurchatov Institute” Moscow Russia
| | - Sergey N. Chvalun
- Department of Nanobiomaterials and Structures National Research Centre “Kurchatov Institute” Moscow Russia
| |
Collapse
|
13
|
Hu J, Zhang R, Chen H, Wu Y, Chen L, Zhang Q, Ren H, Yan Y. The study on calcium polyphosphate/poly-amino acid composite for supportive bone substitute materials in vitro. NEW J CHEM 2021. [DOI: 10.1039/d0nj06128j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A poly-amino acid/calcium polyphosphate composite with high mechanical strength, excellent stability and biological activity was prepared and studied for bone-repaired.
Collapse
Affiliation(s)
- Jinbo Hu
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Rongguang Zhang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Hong Chen
- College of Physics
- Sichuan University
- Chengdu 610065
- China
| | - Yanan Wu
- College of Physics
- Sichuan University
- Chengdu 610065
- China
| | - Lichao Chen
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Qiyi Zhang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Haohao Ren
- College of Physics
- Sichuan University
- Chengdu 610065
- China
| | - Yonggang Yan
- College of Physics
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
14
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Dinarvand R, Tavakolizadeh M, Ahmadi S, Rabiee M, Bagherzadeh M, Pourjavadi A, Farhadnejad H, Tahriri M, Webster TJ, Tayebi L. Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review. Int J Nanomedicine 2020; 15:4363-4392. [PMID: 32606683 PMCID: PMC7314622 DOI: 10.2147/ijn.s252237] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
With continual rapid developments in the biomedical field and understanding of the important mechanisms and pharmacokinetics of biological molecules, controlled drug delivery systems (CDDSs) have been at the forefront over conventional drug delivery systems. Over the past several years, scientists have placed boundless energy and time into exploiting a wide variety of excipients, particularly diverse polymers, both natural and synthetic. More recently, the development of nano polymer blends has achieved noteworthy attention due to their amazing properties, such as biocompatibility, biodegradability and more importantly, their pivotal role in controlled and sustained drug release in vitro and in vivo. These compounds come with a number of effective benefits for improving problems of targeted or controlled drug and gene delivery systems; thus, they have been extensively used in medical and pharmaceutical applications. Additionally, they are quite attractive for wound dressings, textiles, tissue engineering, and biomedical prostheses. In this sense, some important and workable natural polymers (namely, chitosan (CS), starch and cellulose) and some applicable synthetic ones (such as poly-lactic-co-glycolic acid (PLGA), poly(lactic acid) (PLA) and poly-glycolic acid (PGA)) have played an indispensable role over the last two decades for their therapeutic effects owing to their appealing and renewable biological properties. According to our data, this is the first review article highlighting CDDSs composed of diverse natural and synthetic nano biopolymers, blended for biological purposes, mostly over the past five years; other reviews have just briefly mentioned the use of such blended polymers. We, additionally, try to make comparisons between various nano blending systems in terms of improved sustained and controlled drug release behavior.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Tavakolizadeh
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran11365-9516, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran11365-9516, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI53233, USA
| |
Collapse
|
15
|
Munhoz MDAES, Pomini KT, Plepis AMDG, Martins VDCA, Machado EG, de Moraes R, Cunha FB, Santos Junior AR, Camargo Cardoso GB, Duarte MAH, Alcalde MP, Buchaim DV, Buchaim RL, da Cunha MR. Elastin-derived scaffolding associated or not with bone morphogenetic protein (BMP) or hydroxyapatite (HA) in the repair process of metaphyseal bone defects. PLoS One 2020; 15:e0231112. [PMID: 32310975 PMCID: PMC7170266 DOI: 10.1371/journal.pone.0231112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 02/08/2023] Open
Abstract
Tissue engineering represents a promising alternative for reconstructive surgical procedures especially for the repair of bone defects that do not regenerate spontaneously. The present study aimed to evaluate the effects of the elastin matrix (E24/50 and E96/37) incorporated with hydroxyapatite (HA) or morphogenetic protein (BMP) on the bone repair process in the distal metaphysis of rat femur. The groups were: control group (CG), hydrolyzed elastin matrix at 50°C/24h (E24/50), E24/50 + HA (E24/50/HA), E24/50 + BMP (E24/50/BMP), hydrolyzed elastin matrix at 37°C/96h (E96/37), E96/37 + HA (E96/37/HA), E96/37 + BMP (E96/37/BMP). Macroscopic and radiographic analyses showed longitudinal integrity of the femur in all groups without fractures or bone deformities. Microtomographically, all groups demonstrated partial closure by mineralized tissue except for the E96/37/HA group with hyperdense thin bridge formation interconnecting the edges of the ruptured cortical. Histologically, there was no complete cortical recovery in any group, but partial closure with trabecular bone. In defects filled with biomaterials, no chronic inflammatory response or foreign body type was observed. The mean volume of new bone formed was statistically significant higher in the E96/37/HA and E24/50 groups (71.28 ± 4.26 and 66.40 ± 3.69, respectively) than all the others. In the confocal analysis, it was observed that all groups presented new bone markings formed during the experimental period, being less evident in the CG group. Von Kossa staining revealed intense calcium deposits distributed in all groups. Qualitative analysis of collagen fibers under polarized light showed a predominance of red-orange birefringence in the newly regenerated bone with no difference between groups. It was concluded that the E24/50 and E96/37/HA groups promoted, with greater speed, the bone repair process in the distal metaphysis of rat femur.
Collapse
Affiliation(s)
- Marcelo de Azevedo e Sousa Munhoz
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo, Brazil
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru, São Paulo, Brazil
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
- São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | | | - Eduardo Gomes Machado
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo, Brazil
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Renato de Moraes
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo, Brazil
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Fernando Bento Cunha
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo, Brazil
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | | | - Guinea Brasil Camargo Cardoso
- Materials Engineering Department, Faculty of Mechanical Engineering, State University of Campinas, Campinas, São Paulo, Brazil
- University Center Nossa Senhora do Patrocínio (CEUNSP), Cruzeiro do Sul University (UNICSUL), Itu, São Paulo, Brazil
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru, São Paulo, Brazil
| | - Murilo Priori Alcalde
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru, São Paulo, Brazil
- Health Sciences Center, Sacred Heart University Center (UNISAGRADO), Bauru, São Paulo, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, São Paulo, Brazil
- Medical School, University Center of Adamantina (UniFAI), Adamantina, São Paulo, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Rodrigues da Cunha
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo, Brazil
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
- University Center Nossa Senhora do Patrocínio (CEUNSP), Cruzeiro do Sul University (UNICSUL), Itu, São Paulo, Brazil
| |
Collapse
|
16
|
Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair. Int J Biol Macromol 2020; 148:153-162. [DOI: 10.1016/j.ijbiomac.2020.01.109] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/15/2023]
|
17
|
Dos Santos DA, de Guzzi Plepis AM, da Conceição Amaro Martins V, Cardoso GBC, Santos AR, Iatecola A, Andrade TN, Monteiro FM, Calegari ARA, Chacon EL, Cunha MR. Effects of the combination of low-level laser therapy and anionic polymer membranes on bone repair. Lasers Med Sci 2019; 35:813-821. [PMID: 31463820 DOI: 10.1007/s10103-019-02864-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/16/2019] [Indexed: 11/29/2022]
Abstract
In view of the limitations of bone reconstruction surgeries using autologous grafts as a gold standard, tissue engineering is emerging as an alternative, which permits the fabrication and improvement of scaffolds to stimulate osteogenesis and angiogenesis, processes that are essential for bone repair. Polymers are used to mimic the extracellular bone matrix and support cell growth. In addition, bone neoformation can be induced by external factors such as laser irradiation, which stimulates bone metabolism. The objective of this study was to evaluate the regeneration of bone defects using collagen and elastin membranes derived from intestinal serosa and bovine auricular cartilage combined with low-level laser application. Thirty-six Wistar rats were operated to create a 3-mm defect in the distal metaphysis of the left femur and divided into six groups: G1 (control, no treatment); G2 (laser); G3 (elastin graft), G4 (elastin+laser); G5 (collagen graft); G6 (collagen+laser). The animals were sacrificed 6 weeks after surgery and the femurs were removed for analysis of bone repair. Macroscopic and radiological results showed the absence of an infectious process in the surgical area. This was confirmed by histological analysis, which revealed no inflammatory infiltrate. Histomorphometry showed that the formation of new bone started from the margins of the bone defect and its volume was greater in elastin+laser and collagen+laser. We conclude that newly formed bone in the graft area was higher in the groups that received the biomaterials and laser. The collagen and elastin matrices showed biocompatibility.
Collapse
Affiliation(s)
- Daniel Alves Dos Santos
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering, University of São Paulo, USP, Trabalhador São Carlense av., 400, São Carlos, São Paulo, Brazil
| | | | - Guinea Brasil Camargo Cardoso
- Materials Engineering Department, Faculty of Mechanical Engineering, State University of Campinas, Campinas, São Paulo, Brazil
| | - Arnaldo Rodrigues Santos
- Center of Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Amilton Iatecola
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Tiago Neves Andrade
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Fabrício Moreira Monteiro
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Amanda Regina Alves Calegari
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Erivelto Luis Chacon
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Marcelo Rodrigues Cunha
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil. .,Interunit Postgraduate Program in Bioengineering, University of São Paulo, USP, Trabalhador São Carlense av., 400, São Carlos, São Paulo, Brazil.
| |
Collapse
|
18
|
Andronescu E, Predoi D, Neacsu IA, Paduraru AV, Musuc AM, Trusca R, Oprea O, Tanasa E, Vasile OR, Nicoara AI, Surdu AV, Iordache F, Birca AC, Iconaru SL, Vasile BS. Photoluminescent Hydroxylapatite: Eu 3+ Doping Effect on Biological Behaviour. NANOMATERIALS 2019; 9:nano9091187. [PMID: 31443424 PMCID: PMC6780766 DOI: 10.3390/nano9091187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/10/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022]
Abstract
Luminescent europium-doped hydroxylapatite (EuXHAp) nanomaterials were successfully obtained by co-precipitation method at low temperature. The morphological, structural and optical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), UV-Vis and photoluminescence (PL) spectroscopy. The cytotoxicity and biocompatibility of EuXHAp were also evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)) assay, oxidative stress assessment and fluorescent microscopy. The results reveal that the Eu3+ has successfully doped the hexagonal lattice of hydroxylapatite. By enhancing the optical features, these EuXHAp materials demonstrated superior efficiency to become fluorescent labelling materials for bioimaging applications.
Collapse
Affiliation(s)
- Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Daniela Predoi
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, 077125 Magurele, Romania
| | - Ionela Andreea Neacsu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andrei Viorel Paduraru
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adina Magdalena Musuc
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Ilie Murgulescu Institute of Physical Chemistry, 060021 Bucharest, Romania
| | - Roxana Trusca
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ovidiu Oprea
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Eugenia Tanasa
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Otilia Ruxandra Vasile
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adrian Ionut Nicoara
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adrian Vasile Surdu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Florin Iordache
- Faculty of Veterinary Medicine, Department of Biochemistry, University of Agronomic Science and Veterinary Medicine, 011464 Bucharest, Romania
| | - Alexandra Catalina Birca
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Simona Liliana Iconaru
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, 077125 Magurele, Romania
| | - Bogdan Stefan Vasile
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania.
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania.
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania.
| |
Collapse
|