1
|
Meng L, Sun Y, Zhao X, Rasmussen M, Al-Tarshan Y, Meng DM, Liu Z, Adams DC, McDonagh DL. Noradrenaline-induced changes in cerebral blood flow in health, traumatic brain injury and critical illness: a systematic review with meta-analysis. Anaesthesia 2024; 79:978-991. [PMID: 38831595 DOI: 10.1111/anae.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Noradrenaline is a standard treatment for hypotension in acute care. The precise effects of noradrenaline on cerebral blood flow in health and disease remain unclear. METHODS We systematically reviewed and synthesised data from studies examining changes in cerebral blood flow in healthy participants and patients with traumatic brain injury and critical illness. RESULTS Twenty-eight eligible studies were included. In healthy subjects and patients without critical illness or traumatic brain injury, noradrenaline did not significantly change cerebral blood flow velocity (-1.7%, 95%CI -4.7-1.3%) despite a 24.1% (95%CI 19.4-28.7%) increase in mean arterial pressure. In patients with traumatic brain injury, noradrenaline significantly increased cerebral blood flow velocity (21.5%, 95%CI 11.0-32.0%), along with a 33.8% (95%CI 14.7-52.9%) increase in mean arterial pressure. In patients who were critically ill, noradrenaline significantly increased cerebral blood flow velocity (20.0%, 95%CI 9.7-30.3%), along with a 32.4% (95%CI 25.0-39.9%) increase in mean arterial pressure. Our analyses suggest intact cerebral autoregulation in healthy subjects and patients without critical illness or traumatic brain injury., and impaired cerebral autoregulation in patients with traumatic brain injury and who were critically ill. The extent of mean arterial pressure changes and the pre-treatment blood pressure levels may affect the magnitude of cerebral blood flow changes. Studies assessing cerebral blood flow using non-transcranial Doppler methods were inadequate and heterogeneous in enabling meaningful meta-analysis. CONCLUSIONS Noradrenaline significantly increases cerebral blood flow in humans with impaired, not intact, cerebral autoregulation, with the extent of changes related to the severity of functional impairment, the extent of mean arterial pressure changes and pre-treatment blood pressure levels.
Collapse
Affiliation(s)
- Lingzhong Meng
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanhua Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xu Zhao
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mads Rasmussen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| | | | - Deyi M Meng
- Choate Rosemary Hall School, Wallingford, CT, USA
| | - Ziyue Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David C Adams
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David L McDonagh
- Departments of Anesthesiology and Pain Management, Neurological Surgery, Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Ding R, Deng M, Wei H, Zhang Y, Wei L, Jiang G, Zhu H, Huang X, Fu H, Zhao S, Yuan H. Machine learning-based prediction of clinical outcomes after traumatic brain injury: Hidden information of early physiological time series. CNS Neurosci Ther 2024; 30:e14848. [PMID: 38973193 PMCID: PMC11228354 DOI: 10.1111/cns.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024] Open
Abstract
AIMS To assess the predictive value of early-stage physiological time-series (PTS) data and non-interrogative electronic health record (EHR) signals, collected within 24 h of ICU admission, for traumatic brain injury (TBI) patient outcomes. METHODS Using data from TBI patients in the multi-center eICU database, we focused on in-hospital mortality, neurological status based on the Glasgow Coma Score (mGCS) motor subscore at discharge, and prolonged ICU stay (PLOS). Three machine learning (ML) models were developed, utilizing EHR features, PTS signals collected 24 h after ICU admission, and their combination. External validation was performed using the MIMIC III dataset, and interpretability was enhanced using the Shapley Additive Explanations (SHAP) algorithm. RESULTS The analysis included 1085 TBI patients. Compared to individual models and existing scoring systems, the combination of EHR and PTS features demonstrated comparable or even superior performance in predicting in-hospital mortality (AUROC = 0.878), neurological outcomes (AUROC = 0.877), and PLOS (AUROC = 0.835). The model's performance was validated in the MIMIC III dataset, and SHAP algorithms identified six key intervention points for EHR features related to prognostic outcomes. Moreover, the EHR results (All AUROC >0.8) were translated into online tools for clinical use. CONCLUSION Our study highlights the importance of early-stage PTS signals in predicting TBI patient outcomes. The integration of interpretable algorithms and simplified prediction tools can support treatment decision-making, contributing to the development of accurate prediction models and timely clinical intervention.
Collapse
Affiliation(s)
- Ruifeng Ding
- Department of Anesthesiology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Mengqiu Deng
- Department of Anesthesiology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Huawei Wei
- Department of Anesthesiology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Yixuan Zhang
- Department of Anesthesiology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Liangtian Wei
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Guowei Jiang
- Department of Anesthesiology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Hongwei Zhu
- Department of Anesthesiology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Xingshuai Huang
- Department of Anesthesiology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Hailong Fu
- Department of Anesthesiology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Shuang Zhao
- Department of AnesthesiologyThe Third Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceChina
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
3
|
Okeke C, Zhang J, Bashford T, Seah M. Perioperative management of adults with traumatic brain injury. J Perioper Pract 2024; 34:122-128. [PMID: 37650502 PMCID: PMC10996293 DOI: 10.1177/17504589231187798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Despite advances in management strategy, traumatic brain injury remains strongly associated with neurological impairment and mortality. Management of traumatic brain injury requires careful and targeted management of the physiological consequences which extend beyond the scope of the primary impact to the cranium. Here, we present a review of the principles of its acute management in adults. We outline the procedure which patients are assessed and the critical physiological variables which must be monitored to prevent further neurological damage. We describe current interventional strategies from the context of the underlying physiological mechanisms and recent clinical data and identify persisting challenges in traumatic brain injury management and potential avenues of future progress.
Collapse
Affiliation(s)
- Chinazo Okeke
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Jenny Zhang
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Tom Bashford
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Matthew Seah
- Department of Surgery, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Wee IC, Arulsamy A, Corrigan F, Collins-Praino L. Long-Term Impact of Diffuse Traumatic Brain Injury on Neuroinflammation and Catecholaminergic Signaling: Potential Relevance for Parkinson's Disease Risk. Molecules 2024; 29:1470. [PMID: 38611750 PMCID: PMC11013319 DOI: 10.3390/molecules29071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Traumatic brain injury (TBI) is associated with an increased risk of developing Parkinson's disease (PD), though the exact mechanisms remain unclear. TBI triggers acute neuroinflammation and catecholamine dysfunction post-injury, both implicated in PD pathophysiology. The long-term impact on these pathways following TBI, however, remains uncertain. In this study, male Sprague-Dawley rats underwent sham surgery or Marmarou's impact acceleration model to induce varying TBI severities: single mild TBI (mTBI), repetitive mild TBI (rmTBI), or moderate-severe TBI (msTBI). At 12 months post-injury, astrocyte reactivity (GFAP) and microglial levels (IBA1) were assessed in the striatum (STR), substantia nigra (SN), and prefrontal cortex (PFC) using immunohistochemistry. Key enzymes and receptors involved in catecholaminergic transmission were measured via Western blot within the same regions. Minimal changes in these markers were observed, regardless of initial injury severity. Following mTBI, elevated protein levels of dopamine D1 receptors (DRD1) were noted in the PFC, while msTBI resulted in increased alpha-2A adrenoceptors (ADRA2A) in the STR and decreased dopamine beta-hydroxylase (DβH) in the SN. Neuroinflammatory changes were subtle, with a reduced number of GFAP+ cells in the SN following msTBI. However, considering the potential for neurodegenerative outcomes to manifest decades after injury, longer post-injury intervals may be necessary to observe PD-relevant alterations within these systems.
Collapse
Affiliation(s)
- Ing Chee Wee
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| | - Frances Corrigan
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lyndsey Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
5
|
Evaniew N, Davies B, Farahbakhsh F, Fehlings MG, Ganau M, Graves D, Guest JD, Korupolu R, Martin AR, McKenna SL, Tetreault LA, Vedantam A, Brodt ED, Skelly AC, Kwon BK. Interventions to Optimize Spinal Cord Perfusion in Patients With Acute Traumatic Spinal Cord Injury: An Updated Systematic Review. Global Spine J 2024; 14:58S-79S. [PMID: 38526931 PMCID: PMC10964891 DOI: 10.1177/21925682231218737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
STUDY DESIGN Systematic review update. OBJECTIVES Interventions that aim to optimize spinal cord perfusion are thought to play an important role in minimizing secondary ischemic damage and improving outcomes in patients with acute traumatic spinal cord injuries (SCIs). However, exactly how to optimize spinal cord perfusion and enhance neurologic recovery remains controversial. We performed an update of a recent systematic review (Evaniew et al, J. Neurotrauma 2020) to evaluate the effects of Mean Arterial Pressure (MAP) support or Spinal Cord Perfusion Pressure (SCPP) support on neurological recovery and rates of adverse events among patients with acute traumatic SCI. METHODS We searched PubMed/MEDLINE, EMBASE and ClinicalTrials.gov for new published reports. Two reviewers independently screened articles, extracted data, and evaluated risk of bias. We implemented the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach to rate confidence in the quality of the evidence. RESULTS From 569 potentially relevant new citations since 2019, we identified 9 new studies for inclusion, which were combined with 19 studies from a prior review to give a total of 28 studies. According to low or very low quality evidence, the effect of MAP support on neurological recovery is uncertain, and increased SCPP may be associated with improved neurological recovery. Both approaches may involve risks for specific adverse events, but the importance of these adverse events to patients remains unclear. Very low quality evidence failed to yield reliable guidance about particular monitoring techniques, perfusion ranges, pharmacological agents, or durations of treatment. CONCLUSIONS This update provides an evidence base to support the development of a new clinical practice guideline for the hemodynamic management of patients with acute traumatic SCI. While avoidance of hypotension and maintenance of spinal cord perfusion are important principles in the management of an acute SCI, the literature does not provide high quality evidence in support of a particular protocol. Further prospective, controlled research studies with objective validated outcome assessments are required to examine interventions to optimize spinal cord perfusion in this setting.
Collapse
Affiliation(s)
- Nathan Evaniew
- McCaig Institute for Bone and Joint Health, Department of Surgery, Orthopaedic Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Benjamin Davies
- Department of Neurosurgery, Cambridge University, Cambridge, UK
| | - Farzin Farahbakhsh
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael G Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mario Ganau
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniel Graves
- College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA USA
| | - James D Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Radha Korupolu
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, USA
| | - Allan R Martin
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | | | | | - Aditya Vedantam
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Brian K Kwon
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Stonko DP, Edwards J, Abdou H, Treffalls R, Walker P, Morrison JJ. Raising Systemic Blood Pressure to Delay Irreversible Intestinal Ischemia in a Swine Model of Proximal Superior Mesenteric ArteryOcclusion. J Surg Res 2024; 295:70-80. [PMID: 37992455 DOI: 10.1016/j.jss.2023.09.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 11/24/2023]
Abstract
INTRODUCTION Acute proximal superior mesenteric artery (SMA) occlusion is highly lethal, and adjuncts are needed to mitigate ischemic injury until definitive therapy. We hypothesized that raising mean arterial pressure (MAP) >90 mmHg with norepinephrine may delay irreversible bowel ischemia by increasing gastroduodenal artery (GDA) flow despite possible pressor-induced vasospasm. METHODS 12 anesthetized swine underwent laparotomy, GDA flow probe placement, and proximal SMA exposure and clamping. Animals were randomized between conventional therapy (CT) versus targeted MAP >90 mmHg (MAP push; MP) where norepinephrine was titrated after 45 min of SMA occlusion. Animals were followed until bowel death or 4 h. Kaplan-Meier bowel survival, mean normalized GDA flow, and histology were compared. RESULTS 12 swine (mean 57.8 ± 7.6 kgs) were included, six per group. Baseline weight, HR, MAP and GDA flows were not different. Within 5 min following SMA clamping, all 12 animals had an increase in MAP without other intervention from 81.7 to 105.5 mmHg (29.1%, P < 0.01) with a concomitant 74.9% increase in GDA flow as compared to baseline (P < 0.01). Beyond 45 min postclamp, MAP was greater in the MP group as intended, as were GDA flows. Median time to irreversibly ischemic bowel was 31% longer for MAP push animals (CT: 178 versus MP: 233 min, P = 0.006), Hazard Ratio of CT 8.85 (95% CI: 1.86-42.06); 3/6 MP animals versus 0/6 CT animals with bowel survived to predetermined end point. CONCLUSIONS In this swine model of acute complete proximal SMA occlusion, increasing MAP >90 mmHg with norepinephrine was associated with an increase in macrovascular blood flow through the GDA and bowel survival. Norepinephrine was not associated with worse bowel survival and a MAP push may increase the time window where ischemic bowel can be salvaged.
Collapse
Affiliation(s)
- David P Stonko
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, Maryland; R. Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, Maryland
| | - Joseph Edwards
- R. Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, Maryland
| | - Hossam Abdou
- R. Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, Maryland
| | - Rebecca Treffalls
- University of the Incarnate Word School of Medicine (R.N.T.), San Antonio, Texas
| | - Patrick Walker
- R. Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, Maryland
| | - Jonathan J Morrison
- Division of Vascular and Endovascular Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
7
|
Tang J, Zhong Z, Nijiati M, Wu C. Establishment and external validation of a nomogram for predicting 28-day mortality in patients with skull fracture. Front Neurol 2024; 14:1338545. [PMID: 38283678 PMCID: PMC10811263 DOI: 10.3389/fneur.2023.1338545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Background Skull fracture can lead to significant morbidity and mortality, yet the development of effective predictive tools has remained a challenge. This study aimed to establish and validate a nomogram to evaluate the 28-day mortality risk among patients with skull fracture. Materials and methods Data extracted from the Medical Information Mart for Intensive Care (MIMIC) database were utilized as the training set, while data from the eICU Collaborative Research Database were employed as the external validation set. This nomogram was developed using univariate Cox regression, best subset regression (BSR), and the least absolute shrinkage and selection operator (LASSO) methods. Subsequently, backward stepwise multivariable Cox regression was employed to refine predictor selection. Variance inflation factor (VIF), akaike information criterion (AIC), area under the receiver operating characteristic curve (AUC), concordance index (C-index), calibration curve, and decision curve analysis (DCA) were used to assess the model's performance. Results A total of 1,527 adult patients with skull fracture were enrolled for this analysis. The predictive factors in the final nomogram included age, temperature, serum sodium, mechanical ventilation, vasoactive agent, mannitol, extradural hematoma, loss of consciousness and Glasgow Coma Scale score. The AUC of our nomogram was 0.857, and C-index value was 0.832. After external validation, the model maintained an AUC of 0.853 and a C-index of 0.829. Furthermore, it showed good calibration with a low Brier score of 0.091 in the training set and 0.093 in the external validation set. DCA in both sets revealed that our model was clinically useful. Conclusion A nomogram incorporating nine features was constructed, with a good ability in predicting 28-day mortality in patients with skull fracture.
Collapse
Affiliation(s)
- Jia Tang
- Graduate School of Xinjiang Medical University, Ürümqi, China
| | - Zhenguang Zhong
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Muyesai Nijiati
- Xinjiang Emergency Center, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Changdong Wu
- Xinjiang Emergency Center, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| |
Collapse
|
8
|
Hussain R, Nedergaard M. Managing noradrenaline after traumatic brain injury. Clin Transl Med 2024; 14:e1562. [PMID: 38279839 PMCID: PMC10819077 DOI: 10.1002/ctm2.1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Affiliation(s)
- Rashad Hussain
- Center for Translational NeuromedicineUniversity of RochesterRochesterNew YorkUSA
| | - Maiken Nedergaard
- Center for Translational NeuromedicineUniversity of RochesterRochesterNew YorkUSA
- Center for Translational NeuroscienceUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
9
|
Hussain R, Tithof J, Wang W, Cheetham-West A, Song W, Peng W, Sigurdsson B, Kim D, Sun Q, Peng S, Plá V, Kelley DH, Hirase H, Castorena-Gonzalez JA, Weikop P, Goldman SA, Davis MJ, Nedergaard M. Potentiating glymphatic drainage minimizes post-traumatic cerebral oedema. Nature 2023; 623:992-1000. [PMID: 37968397 PMCID: PMC11216305 DOI: 10.1038/s41586-023-06737-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Cerebral oedema is associated with morbidity and mortality after traumatic brain injury (TBI)1. Noradrenaline levels are increased after TBI2-4, and the amplitude of the increase in noradrenaline predicts both the extent of injury5 and the likelihood of mortality6. Glymphatic impairment is both a feature of and a contributor to brain injury7,8, but its relationship with the injury-associated surge in noradrenaline is unclear. Here we report that acute post-traumatic oedema results from a suppression of glymphatic and lymphatic fluid flow that occurs in response to excessive systemic release of noradrenaline. This post-TBI adrenergic storm was associated with reduced contractility of cervical lymphatic vessels, consistent with diminished return of glymphatic and lymphatic fluid to the systemic circulation. Accordingly, pan-adrenergic receptor inhibition normalized central venous pressure and partly restored glymphatic and cervical lymphatic flow in a mouse model of TBI, and these actions led to substantially reduced brain oedema and improved functional outcomes. Furthermore, post-traumatic inhibition of adrenergic signalling boosted lymphatic export of cellular debris from the traumatic lesion, substantially reducing secondary inflammation and accumulation of phosphorylated tau. These observations suggest that targeting the noradrenergic control of central glymphatic flow may offer a therapeutic approach for treating acute TBI.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Wei Wang
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | | | - Wei Song
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Weiguo Peng
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Björn Sigurdsson
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Daehyun Kim
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Qian Sun
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Sisi Peng
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Virginia Plá
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Hajime Hirase
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | | | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
10
|
Wiles MD, Braganza M, Edwards H, Krause E, Jackson J, Tait F. Management of traumatic brain injury in the non-neurosurgical intensive care unit: a narrative review of current evidence. Anaesthesia 2023; 78:510-520. [PMID: 36633447 DOI: 10.1111/anae.15898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 01/13/2023]
Abstract
Each year, approximately 70 million people suffer traumatic brain injury, which has a significant physical, psychosocial and economic impact for patients and their families. It is recommended in the UK that all patients with traumatic brain injury and a Glasgow coma scale ≤ 8 should be transferred to a neurosurgical centre. However, many patients, especially those in whom neurosurgery is not required, are not treated in, nor transferred to, a neurosurgical centre. This review aims to provide clinicians who work in non-neurosurgical centres with a summary of contemporary studies relevant to the critical care management of patients with traumatic brain injury. A targeted literature review was undertaken that included guidelines, systematic reviews, meta-analyses, clinical trials and randomised controlled trials (published in English between 1 January 2017 and 1 July 2022). Studies involving key clinical management strategies published before this time, but which have not been updated or repeated, were also eligible for inclusion. Analysis of the topics identified during the review was then summarised. These included: fundamental critical care management approaches (including ventilation strategies, fluid management, seizure control and osmotherapy); use of processed electroencephalogram monitoring; non-invasive assessment of intracranial pressure; prognostication; and rehabilitation techniques. Through this process, we have formulated practical recommendations to guide clinical practice in non-specialist centres.
Collapse
Affiliation(s)
- M D Wiles
- Department of Critical Care, Major Trauma and Head Injuries, Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK.,University of Sheffield Medical School, Sheffield, UK
| | - M Braganza
- Department of Intensive Care, Chesterfield Royal Hospital NHS Foundation Trust, Chesterfield, UK
| | - H Edwards
- Department of Neurosciences, Major Trauma and Head Injuries, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - E Krause
- Neurology and Stroke, Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust, Doncaster, UK
| | - J Jackson
- Major Trauma and Head Injuries, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - F Tait
- Department of Anaesthesia, Northampton General Hospital NHS Trust, Northampton, UK
| |
Collapse
|
11
|
Hogarty JP, Jones ME, Jassal K, Hogarty DT, Mitra B, Udy AA, Fitzgerald MC. Review article: Early steroid administration for traumatic haemorrhagic shock: A systematic review. Emerg Med Australas 2023; 35:6-13. [PMID: 36347522 PMCID: PMC10100146 DOI: 10.1111/1742-6723.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
Haemorrhagic shock after trauma is a leading cause of death worldwide, particularly in young individuals. Despite advances in trauma systems and resuscitation strategies, mortality from haemorrhagic shock has not declined over the previous two decades. A proportion of shocked trauma patients may experience a deficiency of cortisol relative to the severity of their injury. The benefit of exogenous steroid administration in patients suffering haemorrhagic shock as a result of injury is unclear. A systematic review of four databases (Ovid Medline, Ovid Embase, Cochrane, Scopus) was undertaken. Inclusion and exclusion criteria were pre-determined and two reviewers independently screened the articles with disagreements arbitrated by a third reviewer. The primary outcome variable was 28-day mortality. Quality of studies were assessed using the Cochrane-risk-of-bias (RoB 2) tool. Of the 2919 studies yielded by the search strategy, 1274 duplicates were removed and 1645 screened on title and abstract. After the full text of 33 studies were assessed, two articles were included. Both studies were over 30 years old with small numbers of participants and with primary outcomes not including mortality. Of the data available, no statistically significant difference in mortality was detected. Hospital length of stay, reversal of shock or adverse events were not reported. Both studies were at risk of bias. There are no high quality or recent studies in the English literature investigating the use of steroids for haemorrhagic shocked trauma patients. PROSPERO: CRD42021239656.
Collapse
Affiliation(s)
- Joseph P Hogarty
- Trauma Service, The Alfred Hospital, Melbourne, Victoria, Australia.,National Trauma Research Institute, Melbourne, Victoria, Australia
| | - Morgan E Jones
- Trauma Service, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Karishma Jassal
- Trauma Service, The Alfred Hospital, Melbourne, Victoria, Australia.,National Trauma Research Institute, Melbourne, Victoria, Australia
| | - Daniel T Hogarty
- Trauma Service, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Biswadev Mitra
- Trauma Service, The Alfred Hospital, Melbourne, Victoria, Australia.,National Trauma Research Institute, Melbourne, Victoria, Australia.,Emergency and Trauma Centre, The Alfred Hospital, Melbourne, Victoria, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Andrew A Udy
- Department of Hyperbaric and Intensive Care Medicine, The Alfred Hospital, Melbourne, Victoria, Australia.,Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
| | - Mark C Fitzgerald
- Trauma Service, The Alfred Hospital, Melbourne, Victoria, Australia.,National Trauma Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Toro C, Ohnuma T, Komisarow J, Vavilala MS, Laskowitz DT, James ML, Mathew JP, Hernandez AF, Goldstein BA, Sampson JH, Krishnamoorthy V. Early Vasopressor Utilization Strategies and Outcomes in Critically Ill Patients With Severe Traumatic Brain Injury. Anesth Analg 2022; 135:1245-1252. [PMID: 35203085 PMCID: PMC9381646 DOI: 10.1213/ane.0000000000005949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Early hypotension after severe traumatic brain injury (sTBI) is associated with increased mortality and poor long-term outcomes. Current guidelines suggest the use of intravenous vasopressors, commonly norepinephrine and phenylephrine, to support blood pressure after TBI. However, guidelines do not specify vasopressor type, resulting in variation in clinical practice. We describe early vasopressor utilization patterns in critically ill patients with TBI and examine the association between utilization of norepinephrine, compared to phenylephrine, with hospital mortality after sTBI. METHODS We conducted a retrospective cohort study of US hospitals participating in the Premier Healthcare Database between 2009 and 2018. We examined adult patients (>17 years of age) with a primary diagnosis of sTBI who were treated in an intensive care unit (ICU) after injury. The primary exposure was vasopressor choice (phenylephrine versus norepinephrine) within the first 2 days of hospital admission. The primary outcome was in-hospital mortality. Secondary outcomes examined included hospital length of stay (LOS) and ICU LOS. We conducted a post hoc subgroup analysis in all patients with intracranial pressure (ICP) monitor placement. Regression analysis was used to assess differences in outcomes between patients exposed to phenylephrine versus norepinephrine, with propensity matching to address selection bias due to the nonrandom allocation of treatment groups. RESULTS From 2009 to 2018, 24,718 (37.1%) of 66,610 sTBI patients received vasopressors within the first 2 days of hospitalization. Among these patients, 60.6% (n = 14,991) received only phenylephrine, 10.8% (n = 2668) received only norepinephrine, 3.5% (n = 877) received other vasopressors, and 25.0% (n = 6182) received multiple vasopressors. In that time period, the use of all vasopressors after sTBI increased. A moderate degree of variation in vasopressor choice was explained at the individual hospital level (23.1%). In propensity-matched analysis, the use of norepinephrine compared to phenylephrine was associated with an increased risk of in-hospital mortality (OR, 1.65; CI, 1.46-1.86; P < .0001). CONCLUSIONS Early vasopressor utilization among critically ill patients with sTBI is common, increasing over the last decade, and varies across hospitals caring for TBI patients. Compared to phenylephrine, norepinephrine was associated with increased risk of in-hospital mortality in propensity-matched analysis. Given the wide variation in vasopressor utilization and possible differences in efficacy, our analysis suggests the need for randomized controlled trials to better inform vasopressor choice for patients with sTBI.
Collapse
Affiliation(s)
- Camilo Toro
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Duke University School of Medicine. Durham, NC
| | - Tetsu Ohnuma
- Department of Anesthesiology, Duke University. Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Departments of Biostatistics and Bioinformatics, Duke University. Durham, NC
| | - Jordan Komisarow
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Department of Neurosurgery, Duke University. Durham, NC
| | - Monica S. Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington. Seattle, WA
| | - Daniel T. Laskowitz
- Department of Anesthesiology, Duke University. Durham, NC
- Department of Neurology, Duke University. Durham, NC
- Department of Neurosurgery, Duke University. Durham, NC
| | - Michael L. James
- Department of Anesthesiology, Duke University. Durham, NC
- Department of Neurology, Duke University. Durham, NC
| | | | | | - Ben A. Goldstein
- Departments of Biostatistics and Bioinformatics, Duke University. Durham, NC
| | | | - Vijay Krishnamoorthy
- Department of Anesthesiology, Duke University. Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Department of Population Health Sciences, Duke University. Durham, NC
| |
Collapse
|
13
|
Perkins GD, Horner D, Naisbitt MJ. Which treatments are safe and effective to reduce intracranial pressure following severe traumatic brain injury? BMJ 2022; 378:e061960. [PMID: 35922076 DOI: 10.1136/bmj-2020-061960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Gavin D Perkins
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Warwick, UK
| | | | | |
Collapse
|
14
|
Wiles MD. Management of traumatic brain injury: a narrative review of current evidence. Anaesthesia 2022; 77 Suppl 1:102-112. [DOI: 10.1111/anae.15608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/25/2022]
Affiliation(s)
- M. D. Wiles
- Department of Critical Care Sheffield Teaching Hospitals NHS Foundation Trust Sheffield UK
- University of Sheffield Medical School Sheffield UK
| |
Collapse
|
15
|
Toro C, Temkin N, Barber J, Manley G, Jain S, Ohnuma T, Komisarow J, Foreman B, Korley FK, Vavilala MS, Laskowitz DT, Mathew JP, Hernandez A, Sampson J, James ML, Goldstein BA, Markowitz AJ, Krishnamoorthy V. Association of Vasopressor Choice with Clinical and Functional Outcomes Following Moderate to Severe Traumatic Brain Injury: A TRACK-TBI Study. Neurocrit Care 2021; 36:180-191. [PMID: 34341913 DOI: 10.1007/s12028-021-01280-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Early hypotension following moderate to severe traumatic brain injury (TBI) is associated with increased mortality and poor long-term outcomes. Current guidelines suggest the use of intravenous vasopressors to support blood pressure following TBI; however, guidelines do not specify vasopressor type, resulting in variation in clinical practice. Minimal data are available to guide clinicians on optimal early vasopressor choice to support blood pressure following TBI. Therefore, we conducted a multicenter study to examine initial vasopressor choice for the support of blood pressure following TBI and its association with clinical and functional outcomes after injury. METHODS We conducted a retrospective cohort study of patients enrolled in the transforming research and clinical knowledge in traumatic brain injury (TRACK-TBI) study, an 18-center prospective cohort study of patients with TBI evaluated in participating level I trauma centers. We examined adults with moderate to severe TBI (defined as Glasgow Coma Scale score < 13) who were admitted to the intensive care unit and received an intravenous vasopressor within 48 h of admission. The primary exposure was initial vasopressor choice (phenylephrine versus norepinephrine), and the primary outcome was 6-month Glasgow Outcomes Scale Extended (GOSE), with the following secondary outcomes: length of hospital stay, length of intensive care unit stay, in-hospital mortality, new requirement for dialysis, and 6-month Disability Rating Scale. Regression analysis was used to assess differences in outcomes between patients exposed to norepinephrine versus phenylephrine, with propensity weighting to address selection bias due to the nonrandom allocation of the treatment groups and patient dropout. RESULTS The final study sample included 156 patients, of whom 79 (51%) received norepinephrine, 69 (44%) received phenylephrine, and 8 (5%) received an alternate drug as their initial vasopressor. 121 (77%) of patients were men, with a mean age of 43.1 years. Of patients receiving norepinephrine as their initial vasopressor, 32% had a favorable outcome (GOSE 5-8), whereas 40% of patients receiving phenylephrine as their initial vasopressor had a favorable outcome. Compared with phenylephrine, exposure to norepinephrine was not significantly associated with improved 6-month GOSE (weighted odds ratio 1.40, 95% confidence interval 0.66-2.96, p = 0.37) or any secondary outcome. CONCLUSIONS The majority of patients with moderate to severe TBI received either phenylephrine or norepinephrine as first-line agents for blood pressure support following brain injury. Initial choice of norepinephrine, compared with phenylephrine, was not associated with improved clinical or functional outcomes.
Collapse
Affiliation(s)
- Camilo Toro
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Nancy Temkin
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Jason Barber
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Geoffrey Manley
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | | | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Frederick K Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Monica S Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Daniel T Laskowitz
- Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
- Department of Neurology, Duke University, Durham, NC, USA
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | | | - John Sampson
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Michael L James
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Neurology, Duke University, Durham, NC, USA
| | - Benjamin A Goldstein
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Amy J Markowitz
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Durham, NC, USA.
- Department of Anesthesiology, Duke University, Durham, NC, USA.
- Department of Population Health Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
16
|
Abstract
Vasopressor use in severely injured trauma patients is discouraged due to concerns that vasoconstriction will worsen organ perfusion and result in increased mortality and organ failure in hypotensive trauma patients. Hypotensive resuscitation is advocated based on limited data that lower systolic blood pressure and mean arterial pressure will result in improved mortality. It is classically taught that hypotension and hypovolemia in trauma are associated with peripheral vasoconstriction. However, the pathophysiology of traumatic shock is complex and involves multiple neurohormonal interactions that are ultimately manifested by an initial sympathoexcitatory phase that attempts to compensate for acute blood loss and is characterized by vasoconstriction, tachycardia, and preserved mean arterial blood pressure. The subsequent hypotension observed in hemorrhagic shock reflects a sympathoinhibitory vasodilation phase. The objectives of hemodynamic resuscitation in hypotensive trauma patients are restoring adequate intravascular volume with a balanced ratio of blood products, correcting pathologic coagulopathy, and maintaining organ perfusion. Persistent hypotension and hypoperfusion are associated with worse coagulopathy and organ function. The practice of hypotensive resuscitation would appear counterintuitive to the goals of traumatic shock resuscitation and is not supported by consistent clinical data. In addition, excessive volume resuscitation is associated with adverse clinical outcomes. Therefore, in the resuscitation of traumatic shock, it is necessary to target an appropriate balance with intravascular volume and vascular tone. It would appear logical that vasopressors may be useful in traumatic shock resuscitation to counteract vasodilation in hemorrhage as well as other clinical conditions such as traumatic brain injury, spinal cord injury, multiple organ dysfunction syndrome, and vasodilation of general anesthetics. The purpose of this article is to discuss the controversy of vasopressors in hypotensive trauma patients and advocate for a nuanced approach to vasopressor administration in the resuscitation of traumatic shock.
Collapse
|