1
|
Walter N, Bärtl S, Alt V, Rupp M. Recent advancements and future directions in fracture related infections: A scoping review. Injury 2024; 55 Suppl 6:111902. [PMID: 39482033 DOI: 10.1016/j.injury.2024.111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/29/2024] [Accepted: 09/15/2024] [Indexed: 11/03/2024]
Abstract
Fracture-related infections (FRIs) are complex challenges in orthopedic and trauma surgery, driving ongoing advancements in diagnostics, therapeutics, and management strategies. This scoping review examines recent progress and future directions in FRI management. Diagnostic enhancements encompass standardized definitions, improved biomarkers, advanced microbiological techniques, and innovative imaging modalities. Promising future diagnostics may include point-of-care testing, advanced imaging with enhanced specificity, and machine learning algorithms. Advancements in implant technology emphasize materials science, surface modifications, and personalized 3D printing, enhancing durability and antimicrobial efficacy. Immunomodulatory therapies targeting T cell dysfunction offer potential in addressing FRI chronicity. Enzybiotics and phages present promising alternatives to combat antibiotic resistance, with enzybiotics demonstrating effectiveness against biofilm-associated infections. Patient optimization, multidisciplinary approaches and specialized reference centers play vital roles in comprehensive FRI management, particularly crucial in resource-constrained settings. Collaboration and investment in research and technology are imperative for harnessing the full potential of these advancements and improving global FRI management outcomes. Addressing these complexities necessitates a multifaceted approach integrating clinical expertise, technological innovation, and global cooperation to optimize patient care and mitigate the burden of FRI worldwide.
Collapse
Affiliation(s)
- Nike Walter
- Department for Trauma Surgery, University Hospital Regensburg, Franz- Josef-Strauß-Allee 11, Regensburg, 93053, Germany.
| | - Susanne Bärtl
- Department for Trauma Surgery, University Hospital Regensburg, Franz- Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, Franz- Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, Franz- Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| |
Collapse
|
2
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
3
|
Ceresa C, Travagin F, Marchetti A, Tessarolo F, Fracchia L, Giovenzana GB, Bosetti M. An In Vitro Study on the Application of Silver-Doped Platelet-Rich Plasma in the Prevention of Post-Implant-Associated Infections. Int J Mol Sci 2024; 25:4842. [PMID: 38732057 PMCID: PMC11084394 DOI: 10.3390/ijms25094842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Implant therapy is a common treatment option in dentistry and orthopedics, but its application is often associated with an increased risk of microbial contamination of the implant surfaces that cause bone tissue impairment. This study aims to develop two silver-enriched platelet-rich plasma (PRP) multifunctional scaffolds active at the same time in preventing implant-associated infections and stimulating bone regeneration. Commercial silver lactate (L) and newly synthesized silver deoxycholate:β-Cyclodextrin (B), were studied in vitro. Initially, the antimicrobial activity of the two silver soluble forms and the PRP enriched with the two silver forms has been studied on microbial planktonic cells. At the same time, the biocompatibility of silver-enriched PRPs has been assessed by an MTT test on human primary osteoblasts (hOBs). Afterwards, an investigation was conducted to evaluate the activity of selected concentrations and forms of silver-enriched PRPs in inhibiting microbial biofilm formation and stimulating hOB differentiation. PRP-L (0.3 µg/mm2) and PRP-B (0.2 µg/mm2) counteract Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans planktonic cell growth and biofilm formation, preserving hOB viability without interfering with their differentiation capability. Overall, the results obtained suggest that L- and B-enriched PRPs represent a promising preventive strategy against biofilm-related implant infections and demonstrate a new silver formulation that, together with increasing fibrin binding protecting silver in truncated cone-shaped cyclic oligosaccharides, achieved comparable inhibitory results on prokaryotic cells at a lower concentration.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Fabio Travagin
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Alice Marchetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Francesco Tessarolo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy;
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Giovanni Battista Giovenzana
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Michela Bosetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| |
Collapse
|
4
|
Alavi SE, Alavi SZ, Gholami M, Sharma A, Sharma LA, Ebrahimi Shahmabadi H. Biocomposite-based strategies for dental bone regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:554-568. [PMID: 37612166 DOI: 10.1016/j.oooo.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Because of the anatomical complexity of the oral and maxillofacial sites, repairing bone defects in these regions is very difficult. This review article aims to consider the application of biocomposites-based strategies for dental bone regeneration. STUDY DESIGN Research papers related to the topic, published over the last 20 years, were selected using the Web of Science, Pubmed, Scopus, and Google Scholar databases. RESULTS The strategies of monophasic, biphasic/multiphasic scaffolds, and biopolymer-based nanocomposite scaffolds containing nanomaterials compared with traditional methods used for bone regeneration, such as autografts, allografts, xenografts, and alloplasts are found to be superior because of their ability to overcome the issues (e.g., limited bone sources, pain, immune responses, high cost) related to the applications of the traditional methods. CONCLUSIONS In addition, additive manufacturing technologies were found to be highly advantageous for improving the efficacy of biocomposite scaffolds for treating dental bone defects.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Ajay Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Lavanya A Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia.
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
5
|
Trossmann VT, Lentz S, Scheibel T. Factors Influencing Properties of Spider Silk Coatings and Their Interactions within a Biological Environment. J Funct Biomater 2023; 14:434. [PMID: 37623678 PMCID: PMC10455157 DOI: 10.3390/jfb14080434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Biomaterials are an indispensable part of biomedical research. However, although many materials display suitable application-specific properties, they provide only poor biocompatibility when implanted into a human/animal body leading to inflammation and rejection reactions. Coatings made of spider silk proteins are promising alternatives for various applications since they are biocompatible, non-toxic and anti-inflammatory. Nevertheless, the biological response toward a spider silk coating cannot be generalized. The properties of spider silk coatings are influenced by many factors, including silk source, solvent, the substrate to be coated, pre- and post-treatments and the processing technique. All these factors consequently affect the biological response of the environment and the putative application of the appropriate silk coating. Here, we summarize recently identified factors to be considered before spider silk processing as well as physicochemical characterization methods. Furthermore, we highlight important results of biological evaluations to emphasize the importance of adjustability and adaption to a specific application. Finally, we provide an experimental matrix of parameters to be considered for a specific application and a guided biological response as exemplarily tested with two different fibroblast cell lines.
Collapse
Affiliation(s)
- Vanessa T. Trossmann
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
| | - Sarah Lentz
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
- Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Materials Center (BayMAT), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Faculty of Medicine, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
6
|
Costăchescu B, Niculescu AG, Grumezescu AM, Teleanu DM. Screw Osteointegration-Increasing Biomechanical Resistance to Pull-Out Effect. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5582. [PMID: 37629873 PMCID: PMC10456840 DOI: 10.3390/ma16165582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Spinal disorders cover a broad spectrum of pathologies and are among the most prevalent medical conditions. The management of these health issues was noted to be increasingly based on surgical interventions. Spinal fixation devices are often employed to improve surgery outcomes, increasing spinal stability, restoring structural integrity, and ensuring functionality. However, most of the currently used fixation tools are fabricated from materials with very different mechanical properties to native bone that are prone to pull-out effects or fail over time, requiring revision procedures. Solutions to these problems presently exploited in practice include the optimal selection of screw shape and size, modification of insertion trajectory, and utilization of bone cement to reinforce fixation constructs. Nevertheless, none of these methods are without risks and limitations. An alternative option to increasing biomechanical resistance to the pull-out effect is to tackle bone regenerative capacity and focus on screw osteointegration properties. Osteointegration was reportedly enhanced through various optimization strategies, including use of novel materials, surface modification techniques (e.g., application of coatings and topological optimization), and utilization of composites that allow synergistic effects between constituents. In this context, this paper takes a comprehensive path, starting with a brief presentation of spinal fixation devices, moving further to observations on how the pull-out strength can be enhanced with existing methods, and further focusing on techniques for implant osteointegration improvement.
Collapse
Affiliation(s)
- Bogdan Costăchescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | | |
Collapse
|
7
|
Stogov MV, Dyuryagina OV, Silant'eva TA, Shipitsyna IV, Kireeva EA, Stepanov MA. Evaluation of Biocompatibility of New Osteoplastic Xenomaterials Containing Zoledronic Acid and Strontium Ranelate. TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2023; 30:57-73. [DOI: 10.17816/2311-2905-2035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Background. The problem of improving the functional characteristics of implanted devices and materials used in traumatology and orthopedics is a topical issue.
Aim of the study to study biocompatibility of bovine bone matrix xenomaterials modified by zoledronic acid and strontium ranelate when implanted into the bone defect cavity.
Methods. The study was performed on 24 male rabbits of the Soviet Chinchilla breed. Test blocks of bone matrix were implanted into the cavity of bone defects of the femur. Group 1 animals (n = 8, control group) were implanted with bone xenogenic material (Bio-Ost osteoplastic matrix). Group 2 animals (n = 8) were implanted with bone xenogenic material impregnated with zoledronic acid. Group 3 animals (n = 8) were implanted with bone xenogeneic material impregnated with strontium ranelate. Supercritical fluid extraction technology was used to purify the material and impregnate it with zoledronic acid and strontium ranelate. Radiological, pathomorphological, histological and laboratory (hematology and blood biochemistry) diagnostic methods were used to assess biocompatibility. Follow-up period was 182 days after implantation.
Results. It was found out that on the 182nd day after implantation the median area of the newly-formed bone tissue in the defect modeling area in Group 1 was 79%, in Group 2 0%, in Group 3 67%. In Group 2 the maximum area by this period was filled with connective tissue 77%. Median relative area of implanted material fragments in Group 1 was 4%, in Group 2 23%, in Group 3 15%. No infection or material rejection was observed in animals of all groups. There were no signs of intoxication or prolonged systemic inflammatory reaction. Laboratory parameters did not change significantly over time. One animal in each group experienced one-time increase in C-reactive protein level against the background of leukocytosis. Two animals in Group 1 had a slight migration of implanted material under the skin, one animal developed arthritis of the knee joint.
Conclusion. Osteoplastic materials based on bovine bone xenomatrix and filled with zoledronic acid and strontium ranelate have acceptable values of biocompatibility including their safety profile.
Collapse
|
8
|
Trossmann VT, Scheibel T. Design of Recombinant Spider Silk Proteins for Cell Type Specific Binding. Adv Healthc Mater 2023; 12:e2202660. [PMID: 36565209 PMCID: PMC11468868 DOI: 10.1002/adhm.202202660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Cytophilic (cell-adhesive) materials are very important for tissue engineering and regenerative medicine. However, for engineering hierarchically organized tissue structures comprising different cell types, cell-specific attachment and guidance are decisive. In this context, materials made of recombinant spider silk proteins are promising scaffolds, since they exhibit high biocompatibility, biodegradability, and the underlying proteins can be genetically functionalized. Here, previously established spider silk variants based on the engineered Araneus diadematus fibroin 4 (eADF4(C16)) are genetically modified with cell adhesive peptide sequences from extracellular matrix proteins, including IKVAV, YIGSR, QHREDGS, and KGD. Interestingly, eADF4(C16)-KGD as one of 18 tested variants is cell-selective for C2C12 mouse myoblasts, one out of 11 tested cell lines. Co-culturing with B50 rat neuronal cells confirms the cell-specificity of eADF4(C16)-KGD material surfaces for C2C12 mouse myoblast adhesion.
Collapse
Affiliation(s)
- Vanessa Tanja Trossmann
- Chair of BiomaterialsEngineering FacultyUniversity of BayreuthProf.‐Rüdiger‐Bormann‐Straße 195447BayreuthGermany
| | - Thomas Scheibel
- Chair of BiomaterialsEngineering FacultyUniversity of BayreuthProf.‐Rüdiger‐Bormann‐Straße 195447BayreuthGermany
- Bayreuth Center for Colloids and Interfaces (BZKG)Bavarian Polymer Institute (BPI)Bayreuth Center for Molecular Biosciences (BZMB)Bayreuth Center for Material Science (BayMAT)University of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
9
|
Walter N, Stich T, Docheva D, Alt V, Rupp M. Evolution of implants and advancements for osseointegration: A narrative review. Injury 2022; 53 Suppl 3:S69-S73. [PMID: 35948509 DOI: 10.1016/j.injury.2022.05.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/02/2023]
Abstract
Since ancient times, reduction and internal fixation has been applied to restore skeletal integrity. Despite advances in the understanding of fracture healing, the risk of complication such as implant loosening or implant-related infection still depicts a challenging complication. Nowadays, a great deal of research is devoted to unreveal the impact of implant surface modifications on osteogenic processes to enhance bone consolidation and osseointegration. This narrative review is aimed to (1) show the evolution and already achieved milestones of implant optimization, and (2) to outline the key factors that contribute to an enhanced osseointegration. Different physical and chemical roughening techniques are currently applied in various studies. Surface patterning on the nanoscale has been found to be an essential factor for the biological response, achievable by e.g. anodisation or laser texturing. Besides surface roughening, also different coating methods are vastly investigated. Next to metal or inorganic compounds as coating material, a variety of biomolecules is currently studied for their osteosupportive capacities. Osseointegration can be improved by surface modification on the micro and nanoscale. Bioactive agents can further improve the osseointegration potential. Used agents at the moment are e.g. inorganic compounds, growth factors (BMPs and non-BMPs) and antiresorptive drugs. The advancement in research on new implant generations therefore aims at actively supporting osseointegration processing.
Collapse
Affiliation(s)
- Nike Walter
- Department of Trauma Surgery, University Medical Centre, Regensburg, Germany
| | - Theresia Stich
- Department of Trauma Surgery, University Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Wuerzburg, Wuerzburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Medical Centre, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Medical Centre, Regensburg, Germany.
| |
Collapse
|
10
|
Vezenkova A, Locs J. Sudoku of porous, injectable calcium phosphate cements - Path to osteoinductivity. Bioact Mater 2022; 17:109-124. [PMID: 35386461 PMCID: PMC8964990 DOI: 10.1016/j.bioactmat.2022.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
With the increase of global population, people's life expectancy is growing as well. Humans tend to live more active lifestyles and, therefore, trauma generated large defects become more common. Instances of tumour resection or pathological conditions and complex orthopaedic issues occur more frequently increasing necessity for bone substitutes. Composition of calcium phosphate cements (CPCs) is comparable to the chemical structure of bone minerals. Their ability to self-set and resorb in vivo secures a variety of potential applications in bone regeneration. Despite the years-long research and several products already reaching the market, finding the right properties for calcium phosphate cement to be osteoinductive and both injectable and suitable for clinical use is still a sudoku. This article is focused on injectable, porous CPCs, reviewing the latest developments on the path toward finding osteoinductive material, which is suitable for injection.
Collapse
Affiliation(s)
- Agneta Vezenkova
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of Genera Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of Genera Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
11
|
Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022; 288:121699. [PMID: 35995620 DOI: 10.1016/j.biomaterials.2022.121699] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Lumbar fusion often remains the last treatment option for various acute and chronic spinal conditions, including infectious and degenerative diseases. Placement of a cage in the intervertebral space has become a routine clinical treatment for spinal fusion surgery to provide sufficient biomechanical stability, which is required to achieve bony ingrowth of the implant. Routinely used cages for clinical application are made of titanium (Ti) or polyetheretherketone (PEEK). Ti has been used since the 1980s; however, its shortcomings, such as impaired radiographical opacity and higher elastic modulus compared to bone, have led to the development of PEEK cages, which are associated with reduced stress shielding as well as no radiographical artefacts. Since PEEK is bioinert, its osteointegration capacity is limited, which in turn enhances fibrotic tissue formation and peri-implant infections. To address shortcomings of both of these biomaterials, interdisciplinary teams have developed biodegradable cages. Rooted in promising preclinical large animal studies, a hollow cylindrical cage (Hydrosorb™) made of 70:30 poly-l-lactide-co-d, l-lactide acid (PLDLLA) was clinically studied. However, reduced bony integration and unfavourable long-term clinical outcomes prohibited its routine clinical application. More recently, scaffold-guided bone regeneration (SGBR) with application of highly porous biodegradable constructs is emerging. Advancements in additive manufacturing technology now allow the cage designs that match requirements, such as stiffness of surrounding tissues, while providing long-term biomechanical stability. A favourable clinical outcome has been observed in the treatment of various bone defects, particularly for 3D-printed composite scaffolds made of medical-grade polycaprolactone (mPCL) in combination with a ceramic filler material. Therefore, advanced cage design made of mPCL and ceramic may also carry initial high spinal forces up to the time of bony fusion and subsequently resorb without clinical side effects. Furthermore, surface modification of implants is an effective approach to simultaneously reduce microbial infection and improve tissue integration. We present a design concept for a scaffold surface which result in osteoconductive and antimicrobial properties that have the potential to achieve higher rates of fusion and less clinical complications. In this review, we explore the preclinical and clinical studies which used bioresorbable cages. Furthermore, we critically discuss the need for a cutting-edge research program that includes comprehensive preclinical in vitro and in vivo studies to enable successful translation from bench to bedside. We develop such a conceptual framework by examining the state-of-the-art literature and posing the questions that will guide this field in the coming years.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
12
|
Lentz S, Trossmann VT, Borkner CB, Beyersdorfer V, Rottmar M, Scheibel T. Structure-Property Relationship Based on the Amino Acid Composition of Recombinant Spider Silk Proteins for Potential Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31751-31766. [PMID: 35786828 DOI: 10.1021/acsami.2c09590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improving biomaterials by engineering application-specific and adjustable properties is of increasing interest. Most of the commonly available materials fulfill the mechanical and physical requirements of relevant biomedical applications, but they lack biological functionality, including biocompatibility and prevention of microbial infestation. Thus, research has focused on customizable, application-specific, and modifiable surface coatings to cope with the limitations of existing biomaterials. In the case of adjustable degradation and configurable interaction with body fluids and cells, these coatings enlarge the applicability of the underlying biomaterials. Silks are interesting coating materials, e.g., for implants, since they exhibit excellent biocompatibility and mechanical properties. Herein, we present putative implant coatings made of five engineered recombinant spider silk proteins derived from the European garden spider Araneus diadematus fibroins (ADF), differing in amino acid sequence and charge. We analyzed the influence of the underlying amino acid composition on wetting behavior, blood compatibility, biodegradability, serum protein adsorption, and cell adhesion. The outcome of the comparison indicates that spider silk coatings can be engineered for explicit biomedical applications.
Collapse
Affiliation(s)
- Sarah Lentz
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Vanessa T Trossmann
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Christian B Borkner
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Vivien Beyersdorfer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Markus Rottmar
- Laboratory for Materials-Biology Interactions, Empa Swiss Federal Laboratories for Materials Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
- Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
13
|
Li Y, Hu Y, Chen H, Meng X, Chen D, Gu H, Chen Q, Mu Z, Li Z. A novel conceptual design of a biomimetic oral implant and its biomechanical effect on the repairment of a large mandibular defect. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
Lemoine P, Acheson J, McKillop S, van den Beucken JJJP, Ward J, Boyd A, Meenan B. Nanoindentation and nano-scratching of hydroxyapatite coatings for resorbable magnesium alloy bone implant applications. J Mech Behav Biomed Mater 2022; 133:105306. [DOI: 10.1016/j.jmbbm.2022.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
|
15
|
Using Cu as a Spacer to Fabricate and Control the Porosity of Titanium Zirconium Based Bulk Metallic Glass Foams for Orthopedic Implant Applications. MATERIALS 2022; 15:ma15051887. [PMID: 35269119 PMCID: PMC8911586 DOI: 10.3390/ma15051887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023]
Abstract
In this study, a porous titanium zirconium (TiZr)-based bulk metallic foam was successfully fabricated using the Cu spacer by employing the hot press method. TiZr-based bulk metallic foams with porosities ranging from 0% to 50% were fabricated and analyzed. The results indicate that thermal conductivity increased with the addition of Cu spacer; the increased thermal conductivity reduced the holding time in the hot press method. Moreover, the compressive strength decreased from 1261 to 76 MPa when the porosity of the TiZr-based bulk metallic foam increased to 50%, and the compressive strength was predictable. In addition, the foam demonstrated favorable biocompatibility in cell viability, cell migration capacity, and calcium deposition tests. Moreover, the pore size of the porous TiZr-based bulk metallic foam was around 120 µm. In conclusion, TiZr-based bulk metallic foam has favorable biocompatibility, mechanical property controllability, and porous structure for bone ingrowth and subsequent enhanced osteointegration. This porous TiZr-based bulk metallic foam has great potential as an orthopedic implant to enhance bone healing and decrease healing time.
Collapse
|
16
|
Zhang X, Liu H, Li L, Huang C, Meng X, Liu J, Bai X, Ren L, Wang X, Yang K, Qin L. Promoting osteointegration effect of Cu alloyed titanium (TiCu) in ovariectomized rats. Regen Biomater 2022; 9:rbac011. [PMID: 35480856 PMCID: PMC9039496 DOI: 10.1093/rb/rbac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoporosis is a common skeletal disease making patients be prone to the osteoporotic fracture. However, the clinical implants made of titanium and its alloys with a poor osseointegration need a long time for healing and easily to loosening. Thus, a new class of Cu-alloyed titanium (TiCu) alloys with excellent mechanical properties and bio-functionalization has been developed. In this study, the osteoporosis modeled rats were used to study the osteointegration effect and underlying mechanism of TiCu. The results showed that after implantation for 4 weeks, TiCu alloy could promote the reconstruction of vascular network around the implant by up-regulating vascular endothelial growth factor expression. After 8 weeks, it could further promote the proliferation and differentiation of osteoblasts, mineralization and deposition of collagens, and then significantly increasing bone mineral density around the implant. In conclusion, TiCu alloy would enhance the fixation stability, accelerate the osteointegration, and thus reduce the risk of aseptic loosening during the long-term implantation in the osteoporosis environment. This study was the first to report the role and mechanism of a Cu-alloyed metal in promoting osteointegration in osteoporosis environment, which provides a new attractive support for the improvement of future clinical applications of Cu-alloyed antibacterial titanium alloys. ![]()
Collapse
Affiliation(s)
- Xiyue Zhang
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - Hui Liu
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - Ling Li
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Cuishan Huang
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Xiangbo Meng
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Junzuo Liu
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Xueling Bai
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Ling Ren
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - Xinluan Wang
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
- Musculoskeletal Research Laboratory of Department of Orthopaedis & Traumatology, the Chinese University of Hong Kong, HK SAR, PR China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - Ling Qin
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
- Musculoskeletal Research Laboratory of Department of Orthopaedis & Traumatology, the Chinese University of Hong Kong, HK SAR, PR China
| |
Collapse
|
17
|
Cedeño-Viveros LD, Rodriguez CA, Segura-Ibarra V, Vázquez E, García-López E. Characterization of Porous Scaffolds Fabricated by Joining Stacking Based Laser Micro-Spot Welding (JS-LMSW) for Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 15:99. [PMID: 35009246 PMCID: PMC8745960 DOI: 10.3390/ma15010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
A novel manufacturing approach was used to fabricate metallic scaffolds. A calibration of the laser cutting process was performed using the kerf width compensation in the calculations of the tool trajectory. Welding defects were studied through X-ray microtomography. Penetration depth and width resulted in relative errors of 9.4%, 1.0%, respectively. Microhardness was also measured, and the microstructure was studied in the base material. The microhardness values obtained were 400 HV, 237 HV, and 215 HV for the base material, HAZ, and fusion zone, respectively. No significant difference was found between the microhardness measurement along with different height positions of the scaffold. The scaffolds' dimensions and porosity were measured, their internal architecture was observed with micro-computed tomography. The results indicated that geometries with dimensions under 500 µm with different shapes resulted in relative errors of ~2.7%. The fabricated scaffolds presented an average compressive modulus ~13.15 GPa, which is close to cortical bone properties. The proposed methodology showed a promising future in bone tissue engineering applications.
Collapse
Affiliation(s)
- Luis D. Cedeño-Viveros
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (L.D.C.-V.); (C.A.R.); (V.S.-I.)
| | - Ciro A. Rodriguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (L.D.C.-V.); (C.A.R.); (V.S.-I.)
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca 66629, Mexico
| | - Victor Segura-Ibarra
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (L.D.C.-V.); (C.A.R.); (V.S.-I.)
| | - Elisa Vázquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (L.D.C.-V.); (C.A.R.); (V.S.-I.)
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca 66629, Mexico
| | - Erika García-López
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (L.D.C.-V.); (C.A.R.); (V.S.-I.)
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca 66629, Mexico
| |
Collapse
|
18
|
Wong Wei Kang N, Tan WPJ, Phua YMC, Min ATG, Naidu K, Umapathysivam K, Smitham PJ. Intramedullary nail: the past, present and the future - a review exploring where the future may lead us. Orthop Rev (Pavia) 2021; 13:25546. [PMID: 34745479 PMCID: PMC8567815 DOI: 10.52965/001c.25546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Intramedullary nails (IMNs) are the current gold standard treatment for long bone diaphyseal and selected metaphyseal fractures. The design of IMNs has undergone many revisions since its invention in the 16th century, with a dramatic increase in novel designs in recent years aiming to further improve intramedullary fixation techniques. AIMS To map the evolution of IMNs in orthopedic surgery, discuss the limitations and complications of current IMNs and identify novel IMNs that may influence future design innovations. METHODS We undertook a scoping review on the status of orthopedic IMNs by reviewing Google Scholar with the following keywords. Publications and patents selected for retrieval were initially assessed on the title and abstract by five independent reviewers. 52 papers were retrieved for complete text examination, and secondary references were checked from these papers. The results were discussed within the research group and consensus was obtained describing novel IMNs. RESULTS Novel IMN designs include growth factor and/or antimicrobial coatings targeting fracture healing and perioperative infection risk, respectively; minimally invasive expandable IMNs to avoid the need for interlocking screws; and novel materials such as carbon fiber for their theoretically superior biomechanical properties and avoidance of artifact on CT and MRI imaging. CONCLUSION The novel IMNs proposed in recent years collectively aim to improve intramedullary fixation techniques by reducing operative time and radiation exposure, improving fracture healing or monitoring bone cancer progression. However, more research and development are necessary to solve these complex problems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Jonathan Smitham
- Adelaide Medical School; Department of Orthopedics and Trauma, Royal Adelaide Hospital & Discipline of Orthopedics & Trauma, The University of Adelaide
| |
Collapse
|
19
|
Dexamethasone-Loaded Bioactive Coatings on Medical Grade Stainless Steel Promote Osteointegration. Pharmaceutics 2021; 13:pharmaceutics13040568. [PMID: 33923814 PMCID: PMC8073817 DOI: 10.3390/pharmaceutics13040568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, a multilayer bioactive coating based on carboxymethyl cellulose (CMC) and dexamethasone (DEX) was prepared on medical-grade stainless steel (AISI 316LVM). Its aim was the controlled drug delivery of the incorporated anti‑inflammatory drug, which at the same time promotes osteogenic differentiation of mesenchymal stem cells. Due to DEX’s limited solubility in physiological fluids, which limits the loading capacity of coatings, it was further combined with β-cyclodextrin to increase its concentration in the bioactive coating. Controlled release of DEX from the multilayer coating was achieved in four steps: a “burst”, i.e., very fast, release step (in an immersion interval of 0–10 min), a fast release step (10–30 min), a slow-release step (60–360 min), and a plateau step (360–4320 min), following a zero-order release or Higuchi model release mechanism. Successful layer-by-layer coating formation was confirmed using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). It was shown that the application of the coating significantly increases the hydrophilic character of AISI 316LVM, and also significantly increases the surface roughness, which is known to promote cell growth. In addition, electrochemical measurements demonstrated that the coating application does not increase the susceptibility of medical-grade stainless steel to corrosion. In vitro cell testing using all cell types with which such coatings come into contact in the body (osteoblasts, chondrocytes, and mesenchymal stem cells (MSCs)) showed very good biocompatibility towards all of the mentioned cells. It further confirmed that the coatings promoted MSCs osteogenic differentiation, which is the desired mode of action for orthopedic implants.
Collapse
|