1
|
Zheleznova NN, Sun C, Patel N, Hall N, Williams KM, Zhang J, Wei J, Xiang L, Patel R, Soni S, Sheth D, Lai E, Qiu X, Hernandez Soto N, Liu R. Comparison of Different Animal Models in Hindlimb Functional Recovery after Acute Limb Ischemia-Reperfusion Injury. Biomedicines 2024; 12:2079. [PMID: 39335593 PMCID: PMC11428748 DOI: 10.3390/biomedicines12092079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Acute limb ischemia (ALI) is a sudden lack of blood flow to a limb, primarily caused by arterial embolism and thrombosis. Various experimental animal models, including non-invasive and invasive methods, have been developed and successfully used to induce limb ischemia-reperfusion injuries (L-IRI). However, there is no consensus on the methodologies used in animal models for L-IRI, particularly regarding the assessment of functional recovery. The present study aims to compare different approaches that induce L-IRI and determine the optimal animal model to study functional limb recovery. In this study, we applied a pneumatic cuff as a non-invasive method and ligated the aorta, iliac, or femoral artery as invasive methods to induce L-IRI. We have measured grip strength, motor function, creatine kinase level, inflammatory markers such as nuclear factor NF-κB, interleukin-6 (IL-6), hypoxia markers such as hypoxia-induced factor-1α (HIF-1α), and evaluated the muscle injury with hematoxylin and eosin (H&E) staining in Sprague Dawley rats after inducing L-IRI. The pneumatic pressure cuff method significantly decreased the muscle strength of the rats, causing the loss of ability to hold the grid and inducing significant limb function impairment, while artery ligations did not. We conclude from this study that the tourniquet cuff method could be ideal for studying functional recovery after L-IRI in the rat model.
Collapse
Affiliation(s)
- Nadezhda N Zheleznova
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Claire Sun
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Nakul Patel
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Nathan Hall
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Kristof M Williams
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Jie Zhang
- Division of Nephrology at Boston Medical Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin Wei
- Division of Nephrology at Boston Medical Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Lusha Xiang
- United States Army Institute of Surgical Research, 3698 Chambers Pass BLDG 3611, Ft. Sam Houston, TX 78234, USA
| | - Ridham Patel
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Sahil Soni
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Divya Sheth
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Enyin Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xingyu Qiu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nohely Hernandez Soto
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Aby K, Antony R, Li Y. ProBDNF Upregulation in Murine Hind Limb Ischemia Reperfusion Injury: A Driver of Inflammation. BIOLOGY 2023; 12:903. [PMID: 37508336 PMCID: PMC10375988 DOI: 10.3390/biology12070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Brain-derived neurotropic factor (BDNF) has been shown to be expressed in many nonneuronal tissues including skeletal muscle. Skeletal muscle BDNF has been studied regarding its function in metabolism and exercise; however, less is known about its role in skeletal muscle injury. The precursor to BDNF, proBDNF, has an unknown role in skeletal muscle. The levels of proBDNF, mature BDNF, and their receptors were compared in the skeletal muscle and brain tissues of C57BL/6J mice. Tourniquet-induced hind limb ischemia-reperfusion injury was used to assess the function of skeletal muscle-derived proBDNF in skeletal muscle injury. Skeletal muscle-specific knockout of BDNF and pharmacological inhibition of p75NTR, the proBDNF receptor, were used to determine the role of proBDNF-p75NTR signaling. We show for the first time that proBDNF is the predominantly expressed form of BDNF in skeletal muscle and that proBDNF is significantly upregulated in skeletal muscle following hind limb ischemia-reperfusion injury. Skeletal muscle-specific knockout of BDNF blunted the inflammatory response in the injured tissue and appears to be mediated by the proBDNF-p75NTR pathway, as shown by the pharmacological inhibition of p75NTR. These findings suggest that skeletal muscle proBDNF plays a critical role in driving the inflammatory response following skeletal muscle injury.
Collapse
Affiliation(s)
| | | | - Yifan Li
- Department of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (K.A.); (R.A.)
| |
Collapse
|
3
|
He J, Khan UZ, Qing L, Wu P, Tang J. Improving the ischemia-reperfusion injury in vascularized composite allotransplantation: Clinical experience and experimental implications. Front Immunol 2022; 13:998952. [PMID: 36189311 PMCID: PMC9523406 DOI: 10.3389/fimmu.2022.998952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Long-time ischemia worsening transplant outcomes in vascularized composite allotransplantation (VCA) is often neglected. Ischemia-reperfusion injury (IRI) is an inevitable event that follows reperfusion after a period of cold static storage. The pathophysiological mechanism activates local inflammation, which is a barrier to allograft long-term immune tolerance. The previous publications have not clearly described the relationship between the tissue damage and ischemia time, nor the rejection grade. In this review, we found that the rejection episodes and rejection grade are usually related to the ischemia time, both in clinical and experimental aspects. Moreover, we summarized the potential therapeutic measures to mitigate the ischemia-reperfusion injury. Compare to static preservation, machine perfusion is a promising method that can keep VCA tissue viability and extend preservation time, which is especially beneficial for the expansion of the donor pool and better MHC-matching.
Collapse
Affiliation(s)
- Jiqiang He
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Umar Zeb Khan
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Liming Qing
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Panfeng Wu
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Juyu Tang
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|