1
|
Rufo-Martín C, Infante-García D, Díaz-Álvarez J, Miguélez H, Youssef G. Printable and Tunable Bioresin with Strategically Decorated Molecular Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412338. [PMID: 39648663 DOI: 10.1002/adma.202412338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/07/2024] [Indexed: 12/10/2024]
Abstract
As personalized medicine rapidly evolves, there is a critical demand for advanced biocompatible materials surpassing current additive manufacturing capabilities. This study presents a novel printable bioresin engineered with tunable mechanical, thermal, and biocompatibility properties through strategic molecular modifications. The study introduces a new bioresin comprising methyl methacrylate (MMA), ethylene glycol dimethacrylate (EGDMA), and a photoinitiator, which is further enhanced by incorporating high molecular weight polymethyl methacrylate (PMMA) to improve biostability and mechanical performance. The integration of printable PMMA presents several synthesis and processing challenges, necessitating substantial modifications to the 3D printing process. Additionally, the bioresin is functionalized with antibacterial silver oxide and bone-growth-promoting hydroxyapatite at various weight ratios to extend its application further. The results demonstrate the agile printability of the novel bioresin and its potential for transformative impact in biomedical applications, offering a versatile material platform for additive manufacturing-enabled personalized medicine. This work highlights the adaptability of the novel printable bioresin for real-life applications and its capacity for multiscale structural tailoring, potentially achieving properties comparable to native tissues and extending beyond conventional additive manufacturing techniques.
Collapse
Affiliation(s)
- Celia Rufo-Martín
- Experimental Mechanics Laboratory, Mechanical Engineering Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- Advanced Manufacturing Hub, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain
| | - Diego Infante-García
- Institute of Mechanical and Biomechanical Engineering, I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera, Valencia, 46022, Spain
| | - José Díaz-Álvarez
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain
| | - Henar Miguélez
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain
| | - George Youssef
- Experimental Mechanics Laboratory, Mechanical Engineering Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- Advanced Manufacturing Hub, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| |
Collapse
|
2
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
3
|
Walter N, Bärtl S, Alt V, Rupp M. Recent advancements and future directions in fracture related infections: A scoping review. Injury 2024; 55 Suppl 6:111902. [PMID: 39482033 DOI: 10.1016/j.injury.2024.111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/29/2024] [Accepted: 09/15/2024] [Indexed: 11/03/2024]
Abstract
Fracture-related infections (FRIs) are complex challenges in orthopedic and trauma surgery, driving ongoing advancements in diagnostics, therapeutics, and management strategies. This scoping review examines recent progress and future directions in FRI management. Diagnostic enhancements encompass standardized definitions, improved biomarkers, advanced microbiological techniques, and innovative imaging modalities. Promising future diagnostics may include point-of-care testing, advanced imaging with enhanced specificity, and machine learning algorithms. Advancements in implant technology emphasize materials science, surface modifications, and personalized 3D printing, enhancing durability and antimicrobial efficacy. Immunomodulatory therapies targeting T cell dysfunction offer potential in addressing FRI chronicity. Enzybiotics and phages present promising alternatives to combat antibiotic resistance, with enzybiotics demonstrating effectiveness against biofilm-associated infections. Patient optimization, multidisciplinary approaches and specialized reference centers play vital roles in comprehensive FRI management, particularly crucial in resource-constrained settings. Collaboration and investment in research and technology are imperative for harnessing the full potential of these advancements and improving global FRI management outcomes. Addressing these complexities necessitates a multifaceted approach integrating clinical expertise, technological innovation, and global cooperation to optimize patient care and mitigate the burden of FRI worldwide.
Collapse
Affiliation(s)
- Nike Walter
- Department for Trauma Surgery, University Hospital Regensburg, Franz- Josef-Strauß-Allee 11, Regensburg, 93053, Germany.
| | - Susanne Bärtl
- Department for Trauma Surgery, University Hospital Regensburg, Franz- Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, Franz- Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, Franz- Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| |
Collapse
|
4
|
Soe ZC, Wahyudi R, Mattheos N, Lertpimonchai A, Everts V, Tompkins KA, Osathanon T, Limjeerajarus CN, Limjeerajarus N. Application of nanoparticles as surface modifiers of dental implants for revascularization/regeneration of bone. BMC Oral Health 2024; 24:1175. [PMID: 39367468 PMCID: PMC11451240 DOI: 10.1186/s12903-024-04966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Osseointegrated dental implants are widely established as a first-choice treatment for the replacement of missing teeth. Clinical outcomes are however often compromised by short or longer-term biological complications and pathologies. Nanoparticle-coated materials represent a very active research area with the potential to enhance clinical outcomes and reduce complications of implant therapy. This scoping review aimed to summarize current research on various types of nanoparticles (NPs) used as surface modifiers of dental implants and their potential to promote biological and clinical outcomes. METHODS A systematic electronic search was conducted in SCOPUS, PubMed and Google Scholar aiming to identify in vivo, in situ, or in vitro studies published between 2014 and 2024. Inclusion and exclusion criteria were determined and were described in the methods section. RESULTS A total of 169 articles (44 original papers from Scopus and PubMed, and 125 articles from Google Scholar) were identified by the electronic search. Finally, 30 studies fit the inclusion criteria and were further used in this review. The findings from the selected papers suggest that nanoparticle-coated dental implants show promising results in enhancing bone regeneration and promoting angiogenesis around the implant site. These effects are due to the unique physicochemical properties of nanoparticle-coated implants and the controlled release of bioactive molecules from nanoparticle-modified surfaces. CONCLUSION Nanoscale modifications displayed unique properties which could significantly enhance the properties of dental implants and further accelerate revascularization, and osseointegration while facilitating early implant loading. Yet, since many of these findings were based on in-vitro/in-situ systems, further research is required before such technology reaches clinical application.
Collapse
Affiliation(s)
- Zar Chi Soe
- Faculty of Dentistry, Graduate Program in Oral Biology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rahman Wahyudi
- Faculty of Dentistry, Graduate Program in Oral Biology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nikos Mattheos
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Attawood Lertpimonchai
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
- Office of Research Affairs, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kevin A Tompkins
- Office of Research Affairs, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Genomics and Precision Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | | |
Collapse
|
5
|
Sung HH, Kwon HH, Stephan C, Reynolds SM, Dai Z, Van der Kraan PM, Caird MS, Blaney Davidson EN, Kozloff KM. Sclerostin antibody enhances implant osseointegration in bone with Col1a1 mutation. Bone 2024; 186:117167. [PMID: 38876270 PMCID: PMC11243590 DOI: 10.1016/j.bone.2024.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
We evaluated the potential of sclerostin antibody (SclAb) therapy to enhance osseointegration of dental and orthopaedic implants in a mouse model (Brtl/+) mimicking moderate to severe Osteogenesis Imperfecta (OI). To address the challenges in achieving stable implant integration in compromised bone conditions, our aim was to determine the effectiveness of sclerostin antibody (SclAb) at improving bone-to-implant contact and implant fixation strength. Utilizing a combination of micro-computed tomography, mechanical push-in testing, immunohistochemistry, and Western blot analysis, we observed that SclAb treatment significantly enhances bone volume fraction (BV/TV) and bone-implant contact (BIC) in Brtl/+ mice, suggesting a normalization of bone structure toward WT levels. Despite variations in implant survival rates between the maxilla and tibia, SclAb treatment consistently improved implant stability and resistance to mechanical forces, highlighting its potential to overcome the inherent challenges of OI in dental and orthopaedic implant integration. These results suggest that SclAb could be a valuable therapeutic approach for enhancing implant success in compromised bone conditions.
Collapse
Affiliation(s)
- Hsiao H Sung
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI, USA; Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, the Netherlands
| | - Hanna H Kwon
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Chris Stephan
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Skylar M Reynolds
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Zongrui Dai
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Peter M Van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, the Netherlands
| | - Michelle S Caird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Alsharbaty MHM, Naji GA, Ghani BA, Schagerl M, Khalil MA, Ali SS. Cytotoxicity and antibacterial susceptibility assessment of a newly developed pectin-chitosan polyelectrolyte composite for dental implants. Sci Rep 2024; 14:16968. [PMID: 39043806 PMCID: PMC11266696 DOI: 10.1038/s41598-024-68020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Biopolymers such as chitosan and pectin are currently attracting significant attention because of their unique properties, which are valuable in the food industry and pharmaceutical applications. These properties include non-toxicity, compatibility with biological systems, natural decomposition ability, and structural adaptability. The objective of this study was to assess the performance of two different ratios of pectin-chitosan polyelectrolyte composite (PCPC) after applying them as a coating to commercially pure titanium (CpTi) substrates using electrospraying. The PCPC was studied in ratios of 1:2 and 1:3, while the control group consisted of CpTi substrates without any coating. The pull-off adhesion strength, cytotoxicity, and antibacterial susceptibility tests were utilized to evaluate the PCPC coatings. In order to determine whether the composite coating was the result of physical blending or chemical bonding, the topographic surface parameters were studied using Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). PCPC (1:3) had the highest average cell viability of 93.42, 89.88, and 86.85% after 24, 48, and 72 h, respectively, as determined by the cytotoxicity assay, when compared to the other groups. According to the Kirby-Bauer disk diffusion method for testing antibacterial susceptibility, PCPC (1:3) showed the highest average diameter of the zone of inhibition, measuring 14.88, 14.43, and 11.03 mm after 24, 48, and 72 h of incubation, respectively. This difference was highly significant compared to Group 3 at all three time periods. PCPC (1:3) exhibited a significantly higher mean pull-off adhesion strength (521.6 psi) compared to PCPC (1:2), which revealed 419.5 psi. PCPC (1:3) coated substrates exhibited better surface roughness parameters compared to other groups based on the findings of the AFM. The FTIR measurement indicated that both PCPC groups exhibited a purely physical blending in the composite coating. Based on the extent of these successful in vitro experiments, PCPC (1:3) demonstrates its potential as an effective coating layer. Therefore, the findings of this study pave the way for using newly developed PCPC after electrospraying coating on CpTi for dental implants.
Collapse
Affiliation(s)
| | - Ghassan A Naji
- College of Dentistry, AL-Iraqia University, Baghdad, Iraq
| | - Ban A Ghani
- Department of Oral Diagnostic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Maha A Khalil
- Biology Department, College of Science, Taif University, 21944, Taif, Saudi Arabia
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
7
|
Maglio M, Fini M, Sartori M, Codispoti G, Borsari V, Dallari D, Ambretti S, Rocchi M, Tschon M. An Advanced Human Bone Tissue Culture Model for the Assessment of Implant Osteointegration In Vitro. Int J Mol Sci 2024; 25:5322. [PMID: 38791362 PMCID: PMC11120747 DOI: 10.3390/ijms25105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
In the field of biomaterials for prosthetic reconstructive surgery, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials before in vivo tests. Despite the complex osteointegration process being difficult to recreate in vitro, this study proposes an advanced in vitro tissue culture model of osteointegration using human bone. Cubic samples of trabecular bone were harvested, as waste material, from hip arthroplasty; inner cylindrical defects were created and assigned to the following groups: (1) empty defects (CTRneg); (2) defects implanted with a cytotoxic copper pin (CTRpos); (3) defects implanted with standard titanium pins (Ti). Tissues were dynamically cultured in mini rotating bioreactors and assessed weekly for viability and sterility. After 8 weeks, immunoenzymatic, microtomographic, histological, and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, while Ti appears to have a trophic effect on bone. MicroCT and a histological analysis supported the results, with signs of matrix and bone deposition at the Ti implant site. Data suggest the reliability of the tested model in recreating the osteointegration process in vitro with the aim of reducing and refining in vivo preclinical models.
Collapse
Affiliation(s)
- Melania Maglio
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Scientific Direction, 40136 Bologna, Italy;
| | - Maria Sartori
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Giorgia Codispoti
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Veronica Borsari
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Dante Dallari
- IRCCS Istituto Ortopedico Rizzoli, Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, 40136 Bologna, Italy; (D.D.); (M.R.)
| | - Simone Ambretti
- Microbiology Unit, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Martina Rocchi
- IRCCS Istituto Ortopedico Rizzoli, Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, 40136 Bologna, Italy; (D.D.); (M.R.)
| | - Matilde Tschon
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| |
Collapse
|
8
|
Zeng J, Gu C, Zeng F, Xie Y. 2D silicene nanosheets-loaded coating for combating implant-associated infection. Int J Biol Macromol 2023; 253:127585. [PMID: 37866572 DOI: 10.1016/j.ijbiomac.2023.127585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Implant-associated infection (IAI) is an unsolved problem in orthopaedics. Current therapies, including antibiotics and surgical debridement, can lead severe clinical and financial burdens on patients. Therefore, there is an urgent need to reinforce the inherent antibacterial properties of implants. Recently, two-dimensional (2D) silicene nanosheets (SNs) have gained increasing attention in biomedical fields owing to their considerable biocompatibility, biodegradability and strong photothermal-conversion performance. Herein, a dual-functional photosensitive coating on a Ti substrate (denoted as TPSNs) was rationally fabricated for bacterial inhibition and osteogenesis promotion. For the first time, SNs were loaded onto the surface of implants. Hyperthermia generated by the SNs and polydopamine (PDA) coating under 808 nm laser irradiation achieved the in vitro anti-bacterial efficiency of 90.7 ± 2.4 % for S. aureus and 88.0 ± 5.8 % for E. coli, respectively. In addition, TPSNs exhibited promising biocompatibility for the promotion of BMSC (bone marrow mesenchymal stem cells) proliferation and spreading. The presence of silicon (Si) in TPSNs contributed to the improved osteogenic differentiation of BMSCs, elevating the expressions of RUNX2 and OCN. In animal experiments, the combination of TPSNs with photothermal therapy (PTT) achieved an anti-bacterial efficiency of 89.2 % ± 1.6 % against S. aureus. Furthermore, TPSNs significantly improved bone-implant osseointegration in vivo. Overall, the development of a dual-functional TPSNs coating provides a new strategy for combating IAI.
Collapse
Affiliation(s)
- Junkai Zeng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Feihui Zeng
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Youzhuan Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Murphy B, Morris MA, Baez J. Development of Hydroxyapatite Coatings for Orthopaedic Implants from Colloidal Solutions: Part 1-Effect of Solution Concentration and Deposition Kinetics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2577. [PMID: 37764606 PMCID: PMC10535049 DOI: 10.3390/nano13182577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
This study introduces and explores the use of supersaturated solutions of calcium and phosphate ions to generate well-defined hydroxyapatite coatings for orthopaedic implants. The deposition of hydroxyapatite is conducted via several solutions of metastable precursors that precipitate insoluble hydroxyapatite minerals at a substrate-solution interface. Solutions of this nature are intrinsically unstable, but this paper outlines process windows in terms of time, temperature, concentration and pH in which coating deposition is controlled via the stop/go reaction. To understand the kinetics of the deposition process, comparisons based on ionic strength, particle size, electron imaging, elemental analyses and mass of the formed coating for various deposition solutions are carried out. This comprehensive dataset enables the measurement of deposition kinetics and identification of an optimum solution and its reaction mechanism. This study has established stable and reproducible process windows, which are precisely controlled, leading to the successful formation of desired hydroxyapatite films. The data demonstrate that this process is a promising and highly repeatable method for forming hydroxyapatites with desirable thickness, morphology and chemical composition at low temperatures and low capital cost compared to the existing techniques.
Collapse
Affiliation(s)
- Bríd Murphy
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Mick A. Morris
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Jhonattan Baez
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| |
Collapse
|
10
|
Ul Haq E, Ahmed F, U Rehman F, Channa IA, Makhdoom MA, Shahzad J, Shafiq T, Zain-ul-Abdein M, Shar MA, Alhazaa A. Synthesis and Characterization of a Titanium-Based Functionally Graded Material-Structured Biocomposite using Powder Metallurgy. ACS OMEGA 2023; 8:28976-28983. [PMID: 37599914 PMCID: PMC10433502 DOI: 10.1021/acsomega.3c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023]
Abstract
This investigation aims at synthesizing and characterizing a biocomposite of hydroxyapatite (HA) and titanium (Ti) as a functionally graded material (FGM) via an economical powder metallurgy route. Ti particles were produced through drilling and chipping, followed by compaction and sintering. Ti foams, so obtained, were then infused with varying volume fractions of HA. The pure Ti foam control sample and the FGM composite samples were then subjected to various characterizations to validate their biocompatibility, structural strength, and integrity. The interface development between the load-bearing Ti implant and living tissue was resolved through an FGM structure, where the base of the implant consisted of load-bearing Ti and the outer periphery changed to HA gradually. HA/Ti specimens of different volume fractions were tested for density measurements, microstructure, hardness, and bioactivity. The bioactive behavior was investigated using the potentiodynamic polarization technique to measure the corrosion rate of the pure Ti foam (0/100 HA/Ti) and the FGM composite (10/90 HA/Ti) samples in a simulated body fluid (SBF). The results showed that the hardness of FGM composites, despite being less than that of 0/100 HA/Ti, was still within safe limits. The corrosion rate, however, was found to be decreased by a significant value of almost 40% for the 10/90 HA/Ti FGM composite sample compared to the pure Ti foam control sample. It was concluded that the optimum composition 10/90 HA/Ti sample offers improved corrosion resistance while maintaining a sufficient allowable hardness level.
Collapse
Affiliation(s)
- Ehsan Ul Haq
- Department
of Metallurgical and Materials Engineering (MME), Faculty of Chemical,
Metallurgical and Polymer Engineering, University
of Engineering and Technology (UET), Lahore 54890, Pakistan
| | - Furqan Ahmed
- Department
of Metallurgical and Materials Engineering (MME), Faculty of Chemical,
Metallurgical and Polymer Engineering, University
of Engineering and Technology (UET), Lahore 54890, Pakistan
| | - Faseeh U Rehman
- Department
of Metallurgical and Materials Engineering (MME), Faculty of Chemical,
Metallurgical and Polymer Engineering, University
of Engineering and Technology (UET), Lahore 54890, Pakistan
| | - Iftikhar Ahmed Channa
- Department
of Metallurgical Engineering, NED University
of Engineering and Technology, Off University Road, Karachi 75270, Pakistan
| | - Muhammad Atif Makhdoom
- Institute
of Metallurgy and Materials Engineering, University of the Punjab, Lahore 54590, Pakistan
| | - Junaid Shahzad
- Department
of Metallurgical and Materials Engineering (MME), Faculty of Chemical,
Metallurgical and Polymer Engineering, University
of Engineering and Technology (UET), Lahore 54890, Pakistan
| | - Tooba Shafiq
- Department
of Metallurgical and Materials Engineering (MME), Faculty of Chemical,
Metallurgical and Polymer Engineering, University
of Engineering and Technology (UET), Lahore 54890, Pakistan
| | - Muhammad Zain-ul-Abdein
- Department
of Metallurgical and Materials Engineering (MME), Faculty of Chemical,
Metallurgical and Polymer Engineering, University
of Engineering and Technology (UET), Lahore 54890, Pakistan
| | - Muhammad Ali Shar
- Department
of Mechanical & Energy Systems Engineering, Faculty of Engineering
and Informatics, University of Bradford, Bradford BD7 1DP, U.K.
| | - Abdulaziz Alhazaa
- Department
of Physics and Astronomy, College of Science,
King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Tiozzo-Lyon P, Andrade M, Leiva-Sabadini C, Morales J, Olivares A, Ravasio A, Aguayo S. Microfabrication approaches for oral research and clinical dentistry. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2023.1120394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Currently, there is a variety of laboratory tools and strategies that have been developed to investigate in-vivo processes using in-vitro models. Amongst these, microfabrication represents a disruptive technology that is currently enabling next-generation biomedical research through the development of complex laboratory approaches (e.g., microfluidics), engineering of micrometer scale sensors and actuators (micropillars for traction force microscopy), and the creation of environments mimicking cell, tissue, and organ-specific contexts. Although microfabrication has been around for some time, its application in dental and oral research is still incipient. Nevertheless, in recent years multiple lines of research have emerged that use microfabrication-based approaches for the study of oral diseases and conditions with micro- and nano-scale sensitivities. Furthermore, many investigations are aiming to develop clinically relevant microfabrication-based applications for diagnostics, screening, and oral biomaterial manufacturing. Therefore, the objective of this review is to summarize the current application of microfabrication techniques in oral sciences, both in research and clinics, and to discuss possible future applications of these technologies for in-vitro studies and practical patient care. Initially, this review provides an overview of the most employed microfabrication methods utilized in biomedicine and dentistry. Subsequently, the use of micro- and nano-fabrication approaches in relevant fields of dental research such as endodontic and periodontal regeneration, biomaterials research, dental implantology, oral pathology, and biofilms was discussed. Finally, the current and future uses of microfabrication technology for clinical dentistry and how these approaches may soon be widely available in clinics for the diagnosis, prevention, and treatment of relevant pathologies are presented.
Collapse
|
12
|
Bone Sialoprotein Immobilized in Collagen Type I Enhances Angiogenesis In Vitro and In Ovo. Polymers (Basel) 2023; 15:polym15041007. [PMID: 36850289 PMCID: PMC9968013 DOI: 10.3390/polym15041007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Bone fracture healing is a multistep process, including early immunological reactions, osteogenesis, and as a key factor, angiogenesis. Molecules inducing osteogenesis as well as angiogenesis are rare, but hold promise to be employed in bone tissue engineering. It has been demonstrated that the bone sialoprotein (BSP) can induce bone formation when immobilized in collagen type I, but its effect on angiogenesis still has to be characterized in detail. Therefore, the aim of this study was to analyse the effects of BSP immobilized in a collagen type I gel on angiogenesis. First, in vitro analyses with endothelial cells (HUVECs) were performed detecting enhancing effects of BSP on proliferation and gene expression of endothelial markers. A spheroid model was employed confirming these results. Finally, the inducing impact of BSP-collagen on vascular density was proved in a yolk sac membrane assay. Our results demonstrate that BSP is capable of inducing angiogenesis and confirm that collagen type I is the optimal carrier for this protein. Taking into account former results, and literature showing that BSP also induces osteogenesis, one can hypothesize that BSP couples angiogenesis and osteogenesis, making it a promising molecule to be used in bone tissue regeneration.
Collapse
|
13
|
Behavior of Calcium Phosphate-Chitosan-Collagen Composite Coating on AISI 304 for Orthopedic Applications. Polymers (Basel) 2022; 14:polym14235108. [PMID: 36501503 PMCID: PMC9735702 DOI: 10.3390/polym14235108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Calcium phosphate/chitosan/collagen composite coating on AISI 304 stainless steel was investigated. Coatings were realized by galvanic coupling that occurs without an external power supply because it begins with the coupling between two metals with different standard electrochemical potentials. The process consists of the co-deposition of the three components with the calcium phosphate crystals incorporated into the polymeric composite of chitosan and collagen. Physical-chemical characterizations of the samples were executed to evaluate morphology and chemical composition. Morphological analyses have shown that the surface of the stainless steel is covered by the deposit, which has a very rough surface. XRD, Raman, and FTIR characterizations highlighted the presence of both calcium phosphate compounds and polymers. The coatings undergo a profound variation after aging in simulated body fluid, both in terms of composition and structure. The tests, carried out in simulated body fluid to scrutinize the corrosion resistance, have shown the protective behavior of the coating. In particular, the corrosion potential moved toward higher values with respect to uncoated steel, while the corrosion current density decreased. This good behavior was further confirmed by the very low quantification of the metal ions (practically absent) released in simulated body fluid during aging. Cytotoxicity tests using a pre-osteoblasts MC3T3-E1 cell line were also performed that attest the biocompatibility of the coating.
Collapse
|