1
|
Mittler R, Darash-Yahana M, Sohn YS, Bai F, Song L, Cabantchik IZ, Jennings PA, Onuchic JN, Nechushtai R. NEET Proteins: A New Link Between Iron Metabolism, Reactive Oxygen Species, and Cancer. Antioxid Redox Signal 2019; 30:1083-1095. [PMID: 29463105 PMCID: PMC10625470 DOI: 10.1089/ars.2018.7502] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Cancer cells accumulate high levels of iron and reactive oxygen species (ROS) to promote their high metabolic activity and proliferation rate. However, high levels of iron and ROS can also lead to enhanced oxidative stress and the activation of cell death pathways such as apoptosis and ferroptosis. This has led to the proposal that different drugs that target iron and/or ROS metabolism could be used as anticancer drugs. However, due to the complex role iron and ROS play in cells, the majority of these drugs yielded mixed results, highlighting a critical need to identify new players in the regulation of iron and ROS homeostasis in cancer cells. Recent Advances: NEET proteins belong to a newly discovered class of iron-sulfur proteins (2Fe-2S) required for the regulation of iron and ROS homeostasis in cells. Recent studies revealed that the NEET proteins NAF-1 (CISD2) and mitoNEET (CISD1) play a critical role in promoting the proliferation of cancer cells, supporting tumor growth and metastasis. Moreover, the function of NEET proteins in cancer cells was found to be dependent of the degree of lability of their 2Fe-2S clusters. CRITICAL ISSUES NEET proteins could represent a key regulatory link between the maintenance of high iron and ROS in cancer cells, the activation of cell death and survival pathways, and cellular proliferation. FUTURE DIRECTIONS Because the function of NEET proteins depends on the lability of their clusters, drugs that target the 2Fe2S clusters of NEET proteins could be used as promising anticancer drugs.
Collapse
Affiliation(s)
- Ron Mittler
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas
| | - Merav Darash-Yahana
- The Alexander Silberman Institute of Life Science, The Wolfson Institute for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yang Sung Sohn
- The Alexander Silberman Institute of Life Science, The Wolfson Institute for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fang Bai
- Departments of Physics and Astronomy, Chemistry and Biosciences, Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Luhua Song
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas
| | - Ioav Z. Cabantchik
- The Alexander Silberman Institute of Life Science, The Wolfson Institute for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California
| | - José N. Onuchic
- Departments of Physics and Astronomy, Chemistry and Biosciences, Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, The Wolfson Institute for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Sengupta S, Nechushtai R, Jennings PA, Onuchic JN, Padilla PA, Azad RK, Mittler R. Phylogenetic analysis of the CDGSH iron-sulfur binding domain reveals its ancient origin. Sci Rep 2018; 8:4840. [PMID: 29556009 PMCID: PMC5859297 DOI: 10.1038/s41598-018-23305-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/05/2018] [Indexed: 11/09/2022] Open
Abstract
The iron-sulfur (2Fe-2S) binding motif CDGSH appears in many important plant and animal proteins that regulate iron and reactive oxygen metabolism. In human it is found in CISD1-3 proteins involved in diabetes, obesity, cancer, aging, cardiovascular disease and neurodegeneration. Despite the important biological role of the CDGSH domain, its origin, evolution and diversification, are largely unknown. Here, we report that: (1) the CDGSH domain appeared early in evolution, perhaps linked to the heavy use of iron-sulfur driven metabolism by early organisms; (2) a CISD3-like protein with two CDGSH domains on the same polypeptide appears to represent the ancient archetype of CDGSH proteins; (3) the origin of the human CISD3 protein is linked to the mitochondrial endosymbiotic event; (4) the CISD1/2 type proteins that contain only one CDGSH domain, but function as homodimers, originated after the divergence of bacteria and archaea/eukaryotes from their common ancestor; and (5) the human CISD1 and CISD2 proteins diverged about 650–720 million years ago, and CISD3 and CISD1/2 share their descent from an ancestral CISD about 1–1.1 billion years ago. Our findings reveal that the CDGSH domain is ancient in its origin and shed light on the complex evolutionary path of modern CDGSH proteins.
Collapse
Affiliation(s)
- Soham Sengupta
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Patricia A Jennings
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Jose' N Onuchic
- Center for Theoretical Biological Physics and Department of Physics, 239 Brockman Hall, 6100 Main Street- MS-61, Rice University, Houston, TX, 77005, USA
| | - Pamela A Padilla
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA.,Department of Mathematics, University of North Texas, Denton, TX, 76203, USA
| | - Ron Mittler
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
3
|
The unique fold and lability of the [2Fe-2S] clusters of NEET proteins mediate their key functions in health and disease. J Biol Inorg Chem 2018; 23:599-612. [PMID: 29435647 PMCID: PMC6006223 DOI: 10.1007/s00775-018-1538-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 02/08/2023]
Abstract
NEET proteins comprise a new class of [2Fe-2S] cluster proteins. In human, three genes encode for NEET proteins: cisd1 encodes mitoNEET (mNT), cisd2 encodes the Nutrient-deprivation autophagy factor-1 (NAF-1) and cisd3 encodes MiNT (Miner2). These recently discovered proteins play key roles in many processes related to normal metabolism and disease. Indeed, NEET proteins are involved in iron, Fe-S, and reactive oxygen homeostasis in cells and play an important role in regulating apoptosis and autophagy. mNT and NAF-1 are homodimeric and reside on the outer mitochondrial membrane. NAF-1 also resides in the membranes of the ER associated mitochondrial membranes (MAM) and the ER. MiNT is a monomer with distinct asymmetry in the molecular surfaces surrounding the clusters. Unlike its paralogs mNT and NAF-1, it resides within the mitochondria. NAF-1 and mNT share similar backbone folds to the plant homodimeric NEET protein (At-NEET), while MiNT's backbone fold resembles a bacterial MiNT protein. Despite the variation of amino acid composition among these proteins, all NEET proteins retained their unique CDGSH domain harboring their unique 3Cys:1His [2Fe-2S] cluster coordination through evolution. The coordinating exposed His was shown to convey the lability to the NEET proteins' [2Fe-2S] clusters. In this minireview, we discuss the NEET fold and its structural elements. Special attention is given to the unique lability of the NEETs' [2Fe-2S] cluster and the implication of the latter to the NEET proteins' cellular and systemic function in health and disease.
Collapse
|