1
|
Kharchenko O, Hryniuk A, Krupka O, Hudhomme P. Synthesis of Thionated Perylenediimides: State of the Art and First Investigations of an Alternative to Lawesson's Reagent. Molecules 2024; 29:2538. [PMID: 38893414 PMCID: PMC11173947 DOI: 10.3390/molecules29112538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Perylenediimides (PDIs) are composed of a central perylene ring, on which are grafted two imide groups at the peri positions. Thionated PDIs are characterized by the substitution of one or more oxygen atoms of these imide functions with sulfur atoms. This structural modification alters the electronic properties with a redshift of the optical absorption accompanied by modification of the charge transport characteristics compared to their non-thionated counterparts. These properties make them suitable candidates for applications in optoelectronic devices, such as organic light-emitting diodes and organic photovoltaics. Moreover, the presence of sulfur atom(s) can favor the promotion of reactive oxygen species production for photodynamic and photothermal therapies. These thionated PDIs can be synthesized through the post-functionalization of PDIs by using a sulfurizing reagent. Nevertheless, the main drawbacks remain the difficulties in adjusting the degree of thionation and obtaining tri- and tetrathionated PDIs. Up to now, this thionation reaction has been described almost exclusively using Lawesson's reagent. In the current study, we present our first investigations into an alternative reagent to enhance selectivity and achieve a greater degree of thionation. The association of phosphorus pentasulfide with hexamethyldisiloxane (Curphey's reagent) clearly demonstrated higher reactivity compared with Lawesson's reagent to attain multi-thionated PDIs.
Collapse
Affiliation(s)
| | - Anna Hryniuk
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France;
| | - Oksana Krupka
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France;
| | - Piétrick Hudhomme
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France;
| |
Collapse
|
2
|
Lee S, Ju J, Keum C, Bang J, Lee H, Vikneshvaran S, Yoo H, Park J, Lee SY. Enhanced Photocatalytic Oxygen Evolution Using Copper-Coordinated Perylene Diimide Nanorod Assemblies. CHEMSUSCHEM 2024; 17:e202301044. [PMID: 38030584 DOI: 10.1002/cssc.202301044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
A crystalline supramolecular photocatalyst is prepared through metal-induced self-assembly of perylene diimide with imidazole groups at the imide position (PDI-Hm). Exploiting the metal-coordination ability of imidazole, a crystalline assembly of copper-coordinated PDI-Hm (CuPDI-Hm) in a nanorod shape is prepared which displays an outstanding photocatalytic oxygen evolution rate of 25,900 μmol g-1 h-1 without additional co-catalysts. The imidazole-copper coordination, along with π-π stacking of PDI frameworks, guides the arrangement of PDI-Hm molecules to form highly crystalline assemblies. The coordination of copper also modulates the size of the CuPDI-Hm supramolecular assembly by regulating the nucleation and growth processes. Furthermore, the imidazole-copper coordination constructs the electric field within the PDI-Hm assembly, hindering the recombination of photo-induced charges to enhance the photoelectric/photocatalytic activity when compared to Cu-free PDI-Hm assemblies. Small CuPDI-Hm assembly exhibits higher photocatalytic activity due to their larger surface area and reduced light scattering. Together, the Cu-imidazole coordination presents a facile way for fabricating size-controlled crystalline PDI assemblies with built-in electric field enhancing photoelectric and photocatalytic activities substantially.
Collapse
Affiliation(s)
- Sukjun Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
| | - Jeewon Ju
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
| | - Changjoon Keum
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
- Current affiliation: Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jieun Bang
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Republic of Korea
| | - Hyesung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
| | - Sekar Vikneshvaran
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
- Department of Chemistry, Government Arts College, Paramakudi, 623701, Paramakudi, Tamil Nadu, India
| | - Hyeri Yoo
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Republic of Korea
| | - Sang-Yup Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
| |
Collapse
|
3
|
Dakua KK, Rajak K, Mishra S. The interplay of vibronic and spin-orbit coupling in the fluorescence quenching in trans-dithionated PDI. J Chem Phys 2023; 159:114303. [PMID: 37712797 DOI: 10.1063/5.0167127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Organic chromophores such as the thionated derivatives of perylene diimides (PDIs) show prolonged triplet-excited state lifetimes in contrast to their pristine parent PDI molecule, which shows near unity fluorescence quantum yield. The excited state dynamics in the trans-dithionated PDI (S2-PDI) are studied here. Unlike PDI, the photo absorbing ππ* state of S2-PDI is in close proximity to quasi-degenerate nπ* states. The latter exhibits an interesting vibronic problem leading to the breaking of orbital symmetry mediated through non-totally symmetric vibrations. The time-dependent quantum dynamics are studied with a diabatic model Hamiltonian involving three singlet and three triplet states coupled via 22 vibrational modes. A combined effect of multiple internal-conversion and inter-system crossing (ISC) pathways leads to population transfer from the 1ππ* state to the 3ππ* state via the nπ* states, with an overall ISC rate of 0.70 ps that compares well with the experimental value. The calculated absorption spectra for PDI and S2-PDI reproduce the essential vibronic features in the observed experimental spectra. The dominant vibronic progressions are found to have significant contributions from the vinyl stretching modes of the PDI core.
Collapse
Affiliation(s)
- Kishan Kumar Dakua
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Karunamoy Rajak
- Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
4
|
Park S, Suh B, Kim C. A chalcone-based fluorescent chemosensor for detecting Mg 2+ and Cd 2. LUMINESCENCE 2021; 37:332-339. [PMID: 34877783 DOI: 10.1002/bio.4175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/21/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023]
Abstract
SBOD (sodium (E)-2-(3-[5-bromothiophen-2-yl]-3-oxoprop-1-en-1-yl)-4,6-dichlorophenolate) was designed and synthesized as a chalcone-based fluorescent turn-on chemosensor for Mg2+ and Cd2+ . SBOD selectively detected Mg2+ and Cd2+ through the increase in effective fluorescence. Detection limits of SBOD for Mg2+ and Cd2+ were calculated to be 3.8 μM and 2.9 μM, respectively. The binding modes of SBOD for Mg2+ and Cd2+ were determined to be 1:1 by ESI-MS and Job plot. Association mechanisms for SBOD to Mg2+ and Cd2+ were illustrated by ESI-MS, UV-vis, fluorescence spectroscopy, and calculations.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, South Korea
| | - Boeon Suh
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, South Korea
| | - Cheal Kim
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, South Korea
| |
Collapse
|
5
|
Podiyanachari SK, Barłóg M, Comí M, Attar S, Al‐Meer S, Al‐Hashimi M, Bazzi HS. Living
ring‐opening
metathesis polymerization of norbornenes
bay
‐functionalized
perylene diimides. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Maciej Barłóg
- Department of Chemistry Texas A&M University at Qatar Doha Qatar
| | - Marc Comí
- Department of Chemistry Texas A&M University at Qatar Doha Qatar
| | - Salahuddin Attar
- Department of Chemistry Texas A&M University at Qatar Doha Qatar
| | | | | | - Hassan S. Bazzi
- Department of Chemistry Texas A&M University at Qatar Doha Qatar
- Department of Materials Science & Engineering Texas A&M University College Station Texas USA
| |
Collapse
|