1
|
Paengjun NK, Polshettiwar V, Ogawa M. Designed Nanoarchitectures of a BiOBr/BiOI Nanosheet Heterojunction Anchored on Dendritic Fibrous Nanosilica as Visible-Light Responsive Photocatalysts. Inorg Chem 2024; 63:11870-11883. [PMID: 38865140 DOI: 10.1021/acs.inorgchem.4c01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Heterojunctions, particularly those involving BiOBr/BiOI, have attracted significant attention in the field of photocatalysis due to their remarkable properties. In this study, a unique architecture of BiOBr/BiOI was designed to facilitate the rapid transfer of electrons and holes, effectively mitigating the recombination of electron-hole pairs. Accordingly, the BiOBr/BiOI nanosheet heterojunction was anchored on dendritic fibrous nanosilica (DFNS) by the immobilization of Bi2O3 nanodots in DFNS and the subsequent reaction with HBr and then HI vapors at room temperature. The 4 nm-Bi2O3 nanodots acted as a sacrificial template to form BiOX nanosheets by reaction with HX vapors (X = Br, I). The BiOBr/BiOI nanosheet heterojunction with the lateral size remained in the range of 90 to 110 nm and a thickness of 15 nm formed on DFNS, where the BiOBr:BiOI ratio in the product was controlled by the exposure time to HX vapors. The reaction sequence (HBr → HI vapors) was a key for the formation of BiOBr/BiOI nanosheet heterojunction with controlled composition. When the reaction of Bi2O3 nanodots with HI vapor was performed in the reverse sequence (HI→ HBr), the substitution of I- with Br- occurred to form BiOBr sheets on DFNS. The BiOBr/BiOI nanosheet heterojunction anchored on DFNS was used as a visible-light-driven photocatalyst for the decomposition of benzene in water under solar light, and its activity was superior to that of single BiOX nanosheets on DFNS.
Collapse
Affiliation(s)
- Navarut Kan Paengjun
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Vivek Polshettiwar
- Division of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400005, India
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| |
Collapse
|
2
|
Liu Z, Kong B, Xu X, Wang W. Exploring the effects of different crystal facet combinations and I-doping in the BiOCl/BiOI heterostructure on photocatalytic properties: a hybrid density functional investigation. NANOSCALE 2023; 15:17555-17569. [PMID: 37873609 DOI: 10.1039/d3nr04177h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This study uses hybrid functional calculations to investigate the effects of various crystal facet combinations in BiOCl and BiOI on the photocatalytic activity of the BiOCl/BiOI heterostructure. The results show that the separation efficiencies of photo-generated electron-hole pairs in BiOCl(010)/BiOI(001) and BiOCl(010)/BiOI(010) are constrained by type I band alignments in principle. In contrast, BiOCl(001)/BiOI(001) and BiOCl(001)/BiOI(010) heterostructures, which operate under the direct Z-scheme type, exhibit an enhanced photo-generated charge separation efficiency, superior redox capacity, and enhanced visible light absorption. Specifically, BiOCl(001)/BiOI(010) exhibits a more remarkable reduction ability that can reduce O2 to ˙O2-. Furthermore, our investigations demonstrate that targeted I element doping in BiOCl(001)/BiOI(010) can reduce the band gap of the BiOCl(001) sheet, enhance visible light absorption, and maintain the direct Z-scheme characteristics, thereby further improving the photocatalytic performance. Additionally, we discovered that I doping can transform the BiOCl(010)/BiOI(001) heterostructure from type I into a direct Z-scheme heterostructure, resulting in a substantial enhancement in the separation efficiency and reduction ability of photo-generated carriers as well as visible light absorption with increasing I doping concentration. Considering the excellent charge injection efficiency observed in experiments with the BiOCl(010)/BiOI(001) heterostructure, I-BiOCl(010)/BiOI(001) may represent a superior photocatalyst. Thus, this study highlights the crucial and substantial roles of engineering specific crystal facet combinations and I doping in enhancing the photocatalytic performance of the BiOCl/BiOI heterostructure. This theoretical study contributes to the comprehension of related experimental findings and offers valuable insights for the development of novel BiOCl/BiOI heterostructures with superior photocatalytic activity.
Collapse
Affiliation(s)
- Zuoyin Liu
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China.
| | - Bo Kong
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China.
| | - Xiang Xu
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China.
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, 550018, China.
| |
Collapse
|
3
|
Zhang JX, Zhao ZY. Comparative Analysis of the Interfacial Structure and Properties of BiOX/BiOY (X, Y = F, Cl, Br, and I) Heterostructures through DFT Calculations. Inorg Chem 2023; 62:8397-8406. [PMID: 37179491 DOI: 10.1021/acs.inorgchem.3c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study focuses on the systematic investigation of the microstructure, interfacial energy, and electronic structure of six BiOX/BiOY heterostructures constructed using four bismuth oxyhalide materials. Utilizing density functional theory (DFT) calculations, the study provides fundamental insights into the interfacial structure and properties of these heterostructures. The results indicate that the formation energies of BiOX/BiOY heterostructures decrease in the order of BiOF/BiOI, BiOF/BiOBr, BiOF/BiOCl, BiOCl/BiOBr, BiOBr/BiOI, and BiOCl/BiOI. BiOCl/BiBr heterostructures were found to have the lowest formation energy and were the most easily formed. Conversely, the formation of BiOF/BiOY heterostructures was observed to be unstable and difficult to achieve. Furthermore, the interfacial electronic structure analysis revealed that BiOCl/BiOBr, BiOCl/BiOI, and BiOBr/BiOI displayed opposite electric fields that facilitated electron-hole pair separation. Therefore, these research findings provide a comprehensive understanding of the mechanisms underlying the formation of BiOX/BiOY heterostructures and present theoretical guidance for the design of innovative and efficient photocatalytic heterostructures, with an emphasis on BiOCl/BiOBr heterostructures. This study highlights the advantages of distinctively layered BiOX materials and their heterostructures, which offer a wide range of band gap values, and demonstrates their potential for various research and practical applications.
Collapse
Affiliation(s)
- Jia-Xin Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Zong-Yan Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| |
Collapse
|
4
|
Development of green photocatalyst using empty fruit bunches from Elaeis guineensis for methylene blue degradation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Nourzad M, Dehghan A, Niazi Z, Giannakoudakis DA, Afsharnia M, Barczak M, Anastopoulos I, Triantafyllidis K, Shams M. Low power photo-assisted catalytic degradation of azo dyes using 1-D BiOI: Optimization of the key physicochemical features. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Ha GH, Mohan H, Oh HS, Kim G, Seralathan KK, Shin T. Photocatalytic degradation of tetracycline using hybrid Ag/Ag 2S@BiOI nanowires: Degradation mechanism and toxicity evaluation. CHEMOSPHERE 2022; 303:135091. [PMID: 35644242 DOI: 10.1016/j.chemosphere.2022.135091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/06/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The wide use of antibiotics has caused their continual release and persistence in the eco-system, subsequently giving birth to antibiotic resistant bacterial species in the aquatic environment, thereby necessitating immediate and efficient remediation of the contaminated environment. In the present study, we synthesized Ag/Ag2S@BiOI nanowires with an average diameter of ∼150 nm and length of 3-5 μm using a hydrothermal method and employed them as photocatalysts for photocatalytic degradation of tetracycline as a model antibiotic. The nanowire achieved nearly complete degradation of tetracycline (∼99%) within 60 min at the optimal condition of 100 mg/L TC concentration and pH 2. The degradation followed pseudo-first order kinetics, with a rate constant of 0.06228 min- 1. Our toxicity tests showed that the nanowire has negligible toxicity towards PBMC cells, suggesting it as a promising photocatalyst.
Collapse
Affiliation(s)
- Ga Hyeon Ha
- Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyeon Seung Oh
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Gitae Kim
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Taeho Shin
- Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
7
|
Tuerhong M, Chen P, Ma Y, Li Y, Li J, Yan C, Zhu B. Bi2MoO6/red phosphorus heterojunction for reducing Cr(VI) and mitigating Escherichia coli infection. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Efficient charge separation and improved photocatalytic activity in Type-II & Type-III heterojunction based multiple interfaces in BiOCl 0.5Br 0.5-Q: DFT and Experimental Insight. CHEMOSPHERE 2022; 297:134122. [PMID: 35257701 DOI: 10.1016/j.chemosphere.2022.134122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022]
Abstract
The nanostructured, inner-coupled Bismuth oxyhalides (BiOX0.5X'0.5; X, X' = Cl, Br, I; X≠X') heterostructures were prepared using Quercetin (Q) as a sensitizer. The present study revealed the tuning of the band properties of as-prepared catalysts. The catalysts were characterized using various characterization techniques for evaluating the superior photocatalytic efficiency and a better understanding of elemental interactions at interfaces formed in the heterojunction. The material (BiOCl0.5Br0.5-Q) reflected higher degradation of MO (about 99.85%) and BPA (98.34%) under visible light irradiation than BiOCl0.5I0.5-Q and BiOBr0.5I0.5-Q. A total of 90.45 percent of total organic carbon in BPA was removed after visible light irradiation on BiOCl0.5Br0.5-Q. The many-fold increase in activity is attributed to the formation of multiple interfaces between halides, conjugated π-electrons and multiple -OH groups of quercetin (Q). The boost in degradation efficiency can be attributed to the higher surface area, 2-D nanostructure, inhibited electron-hole recombination, and appropriate band-gap of the heterostructure. Photo-response of BiOCl0.5Br0.5-Q is higher compared to BiOCl0.5I0.5-Q and BiOBr0.5I0.5-Q, indicating better light absorption properties and charge separation efficiency in BiOCl0.5Br0.5-Q due to band edge position. First-principles Density Functional Theory (DFT) based calculations have also provided an insightful understanding of the interface formation, physical mechanism, and superior photocatalytic performance of BiOCl0.5Br0.5-Q heterostructure over other samples.
Collapse
|
9
|
Liao H, Liu C, Zhong J, Li J. Fabrication of BiOCl with adjustable oxygen vacancies and greatly elevated photocatalytic activity by using bamboo fiber surface embellishment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Modification of hollow BiOCl/TiO2 nanotubes with phosphoric acid to enhance their photocatalytic performance. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0997-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Zhang F, Xiao X, Xiao Y. In situ synthesis of novel type Ⅱ BiOCl/CAU-17 2D/2D heterostructures with enhanced photocatalytic activity. Dalton Trans 2022; 51:10992-11004. [DOI: 10.1039/d2dt01489k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel type Ⅱ BiOCl/CAU-17 2D/2D heterostructures photocatalyst was synthesized by in-situ growth of ultrathin BiOCl on the surface of CAU-17 nanorods through a solvothermal process. The 2D/2D heterostructures endow...
Collapse
|
12
|
3-Mercaptopropionic acid assisted in-situ construction of thin Bi2S3/BiOCl composites with significantly improved photocatalytic activity. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Construction of CoTiO3/BiOI p-n heterojunction with nanosheets-on microrods structure for enhanced photocatalytic degradation of organic pollutions. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Yang C, He Y, Zhong J, Li J. Photocatalytic performance of rich OVs-BiOCl modified by polyphenylene sulfide. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Liao H, Zhong J, Li J, Huang S, Duan R. Photocatalytic properties of flower-like BiOBr/BiOCl heterojunctions in-situ constructed by a reactable ionic liquid. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Synthesis of mesoporous BiOI flower and facile in-situ preparation of BiOI/BiOCl mixture for enhanced photocatalytic degradation of toxic dye, Rhodamine-B. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
17
|
Insight on photocatalytic oxidation of high concentration NO over BiOCl/Bi2WO6 under visible light. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Bavani T, Madhavan J, Prasad S, AlSalhi MS, ALJaffreh M, Vijayanand S. Fabrication of novel AgVO 3/BiOI nanocomposite photocatalyst with photoelectrochemical activity towards the degradation of Rhodamine B under visible light irradiation. ENVIRONMENTAL RESEARCH 2021; 200:111365. [PMID: 34033832 DOI: 10.1016/j.envres.2021.111365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
In the present work, a visible light driven AgVO3/BiOI nanocomposite photocatalyst with different wt % (1, 2, 3) of AgVO3 was fabricated by using facile hydrothermal method. Further, the nanocomposite was characterized by FT-IR, XRD, SEM, TEM, EDS, UV-vis DRS, photoluminescence and photoelectrochemical studies. The structural characterization showed nanorods on nanosheet surface. Among different AgVO3 loaded samples, the photocatalytic efficiency of 1 wt % AgVO3/BiOI nanocomposite was found to be comparatively higher than the pure BiOI and AgVO3. The photodegradation rate constant values of pure BiOI, AgVO3 and 1, 2, 3 wt % AgVO3/BiOI nanocomposites are 0.006, 0.0033, 0.0255, 0.01575, 0.0116 min-1 respectively. This enhanced photocatalytic activity was due to the increasing visible light absorption ability and efficient separation of the charge carriers. Thereby, the 1 wt % AgVO3/BiOI nanocomposite photocatalyst exhibited increased photodegradation activity, photostability and recyclability characteristics. The radical trapping experiment confirmed the role of OH and h+ in the photocatalytic degradation of RhB. Based on this, the probable mechanism of degradation of RhB under visible light irradiation has also been proposed. Hence, we believe it could be a promising material that can be employed for the photodegradation of organic pollutants present in wastewater.
Collapse
Affiliation(s)
- Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Saradh Prasad
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Mamduh ALJaffreh
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Vijayanand
- Department of Biotechnology, Thiruvalluvar University, Vellore, 632115, India
| |
Collapse
|
19
|
Yao L, Yang H, Chen Z, Qiu M, Hu B, Wang X. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. CHEMOSPHERE 2021; 273:128576. [DOI: doi.org/10.1016/j.chemosphere.2020.128576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
20
|
Qin C, Tang X, Chen J, Liao H, Zhong J, Li J. In-situ fabrication of Bi/BiVO4 heterojunctions with N-doping for efficient elimination of contaminants. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Abd Rani U, Ng LY, Ng CY, Mahmoudi E, Hairom NHH. Photocatalytic degradation of crystal violet dye using sulphur-doped carbon quantum dots. MATERIALS TODAY: PROCEEDINGS 2021; 46:1934-1939. [DOI: 10.1016/j.matpr.2021.02.225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Li R, Chen H, Xiong J, Xu X, Cheng J, Liu X, Liu G. A Mini Review on Bismuth-Based Z-Scheme Photocatalysts. MATERIALS 2020; 13:ma13225057. [PMID: 33182570 PMCID: PMC7697340 DOI: 10.3390/ma13225057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Recently, the bismuth-based (Bi-based) Z-scheme photocatalysts have been paid great attention due to their good solar energy utilization capacity, the high separation rate of their photogenerated hole-electron pairs, and strong redox ability. They are considerably more promising materials than single semiconductors for alleviating the energy crisis and environmental deterioration by efficiently utilizing sunlight to motivate various photocatalytic reactions for energy production and pollutant removal. In this review, the traits and recent research progress of Bi-based semiconductors and recent achievements in the synthesis methods of Bi-based direct Z-scheme heterojunction photocatalysts are explored. The recent photocatalytic applications development of Bi-based Z-scheme heterojunction photocatalysts in environmental pollutants removal and detection, water splitting, CO2 reduction, and air (NOx) purification are also described concisely. The challenges and future perspective in the studies of Bi-based Z-scheme heterojunction photocatalysts are discussed and summarized in the conclusion of this mini review.
Collapse
Affiliation(s)
- Ruizhen Li
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, No. 1 Dongsan Road, Er'xian Bridge, Chengdu 610059, China
| | - Hanyang Chen
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Jianrong Xiong
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Xiaoying Xu
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Jiajia Cheng
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Xingyong Liu
- School of Chemical Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Guo Liu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, No. 1 Dongsan Road, Er'xian Bridge, Chengdu 610059, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, No. 1 Dongsan Road, Er'xian Bridge, Chengdu 610059, China
| |
Collapse
|
23
|
Ionic liquid assisted in-situ construction of S-scheme BiOI/Bi2WO6 heterojunctions with improved sunlight-driven photocatalytic performance. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108192] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Yao L, Yang H, Chen Z, Qiu M, Hu B, Wang X. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. CHEMOSPHERE 2020; 273:128576. [PMID: 34756376 DOI: 10.1016/j.chemosphere.2020.128576] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 05/07/2023]
Abstract
Various kind of organics are toxic and detrimental, resulting in eutrophication, black, odorous water and so on. Photocatalysis has been deemed to be a promising technology which can decompose different kinds of organic pollutants under visible light irradiation, finally achieving non-poisonous, harmless CO2, water and other inorganic materials. Bismuth oxychloride (BiOCl) is considered as a promising photocatalyst for the efficient degradation of organic pollutants due to its high chemical stability, unique layered structure, resistance to corrosion and favorable photocatalytic property. However, BiOCl can only absorb UV irradiation because of its wide band gap of 3.2 eV-3.5 eV that limits its photocatalytic performance. Herein, a lot of methods have been reviewed to improve its photocatalytic activity. We introduced the unique and special layered structure of BiOCl, the typical and common synthesis methods that can control the morphology, and the most important part is varies of modification routes of BiOCl and the application of BiOCl-based materials for photocatalytic degradation of organic pollutants. Besides, we summarized the crucial issues and perspectives about the application of BiOCl in pollution management.
Collapse
Affiliation(s)
- Ling Yao
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Hui Yang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Zhongshan Chen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China.
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China.
| |
Collapse
|
25
|
Zhang P, Liu H, Liang H, Bai J, Li C. Enhanced Charge Separation of α-Bi2O3-BiOI Hollow Nanotube for Photodegradation Antibiotic Under Visible Light. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0170-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Cheng L, Xiao X, Wang Y, Lu M. Fabrication of microsphere-like Bi3O4Cl/BiOI Z-scheme heterostructure composites and its enhanced photocatalytic performance for degradation of MO and RhB. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04231-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Yang L, Zhao Z, Cai Z. Enhancing visible-light-enhanced photoelectrochemical activity of BiOI microspheres for 4-chlorophenol detection by promoting with Bi surface plasmon resonance (SPR) and multi-walled carbon nanotubes. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3027-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
28
|
Liu H, Huang J, Chen J, Zhong J, Li J, Ma D. Influence of different solvents on the preparation and photocatalytic property of BiOCl toward decontamination of phenol and perfluorooctanoic acid. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Qin C, Lei S, Tang X, Zhong J, Li J, He J. Preparation of novel Ag/AgVO3/BiVO4 heterojunctions with significantly enhanced visible light-driven photocatalytic performance originated from Z-scheme separation of photogenerated charge pairs. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107904] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|