1
|
Mondal S, Patra L, Ilanchezhiyan P, Neppolian B, Pandey R, Ganesh V. In Situ Growth of CuBi 2O 4/Bi 2O 3 Z-Scheme Heterostructures for Bifunctional Photocatalytic Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12954-12966. [PMID: 38863239 DOI: 10.1021/acs.langmuir.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
In this study, we present an in situ solvothermal approach for synthesizing a highly efficient bifunctional CuBi2O4/Bi2O3 composite catalyst for applications in H2 production and the removal of organic pollutants. Various characterization techniques, including XRD, UV-vis DRS, SEM, TEM, and EIS, were used to characterize the prepared catalyst. Density functional theory calculations confirmed a Z-scheme mechanism, revealing the charge transfer mechanism from the Bi2O3 surface to the CuBi2O4 surface. The composite exhibited a photocurrent of 2.83 × 104 A/cm2 and a hydrogen production rate of 526 μmolg-1h-1 under natural sunlight. Moreover, the catalyst demonstrated efficient degradation of RhB up to 58% in 120 min under 50 W LED illumination. Additionally, multiple recycling tests confirmed its high stability and recyclability, making it a promising candidate for various applications in the field of photocatalysis.
Collapse
Affiliation(s)
- Sneha Mondal
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Lokanath Patra
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Pugazhendi Ilanchezhiyan
- Quantum Functional Semiconductor Research Centre (QSRC), Institute of Future Technology, Dongguk University, Seoul 04620, Republic of Korea
| | - Bernaurdshaw Neppolian
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Vattikondala Ganesh
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
2
|
Kubiak A. Comprehensive spectroscopy and photocatalytic activity analysis of TiO 2-Pt systems under LED irradiation. Sci Rep 2024; 14:13827. [PMID: 38879712 PMCID: PMC11180208 DOI: 10.1038/s41598-024-64748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
This study presents a thorough spectroscopic analysis of TiO2-Pt systems under LED irradiation, with a focus on elucidating the photodeposition process of Pt nanoparticles onto TiO2 surfaces. The methodology leverages an innovative LED photoreactor tailored to a specific spectral range, enabling precise characterization of the excitation spectrum of TiO2-Pt composites. Through the identification of Pt precursor species and their excitation under LED-UV light, a photodeposition mechanism is proposed involving concurrent excitation of both the TiO2 semiconductor and the H2PtCl6 precursor. The LED photoreactors are employed to scrutinize the excitation profile of TiO2-Pt materials, revealing that the incorporation of Pt nanoparticles does not expand TiO2's absorption spectrum. Furthermore, UV-A exposure in the absence of Pt did not induce the formation of surface defects, underscoring the lack of visible light activity in TiO2-Pt systems. Spectroscopic analyses, complemented by naproxen photooxidation experiments, indicate the absence of a significant plasmonic effect in Pt nanoparticles within the experimental framework. Mass spectroscopy results corroborate the presence of distinct naproxen degradation pathways, suggesting minimal influence from photocatalyst properties. This research provides a detailed spectroscopic insight into TiO2-Pt photocatalysis, enriching the knowledge of photocatalytic materials in LED lighting.
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, PL-61614, Poznan, Poland.
| |
Collapse
|
3
|
González-Pereyra D, Acosta I, Zermeño B, Aguilar J, Leyva E, Moctezuma E. Photocatalytic Degradation of Naproxen: Intermediates and Total Reaction Mechanism. Molecules 2024; 29:2583. [PMID: 38893458 PMCID: PMC11174131 DOI: 10.3390/molecules29112583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Photochemical and photocatalytic oxidation of naproxen (NPX) with UV-A light and commercial TiO2 under constant flow of oxygen have been investigated. Adsorption experiments indicated that 90% of the solute remained in the solution. Combined chemical analysis of samples on the photochemical degradation indicated that NPX in an aqueous solution (20 ppm) is efficiently transformed into other species but only 18% of the reactant is mineralized into CO2 and water after three hours of reaction. Performing the photocatalytic oxidation in the presence of TiO2, more than 80% of the organic compounds are mineralized by reactive oxidation species (ROS) within four hours of reaction. Analysis of reaction mixtures by a combination of analytical techniques indicated that naproxen is transformed into several aromatic naphthalene derivatives. These latter compounds are eventually transformed into polyhydroxylated aromatic compounds that are strongly adsorbed onto the TiO2 surface and are quickly oxidized into low-molecular-weight acids by an electron transfer mechanism. Based on this and previous studies on NPX photocatalytic oxidation, a unified and complete degradation mechanism is presented.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Leyva
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava # 6, San Luis Potosí 78210, Mexico; (D.G.-P.); (I.A.); (B.Z.); (J.A.)
| | - Edgar Moctezuma
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava # 6, San Luis Potosí 78210, Mexico; (D.G.-P.); (I.A.); (B.Z.); (J.A.)
| |
Collapse
|
4
|
Quddus F, Shah A, Nisar J, Zia MA, Munir S. Neem plant extract-assisted synthesis of CeO 2 nanoparticles for photocatalytic degradation of piroxicam and naproxen. RSC Adv 2023; 13:28121-28130. [PMID: 37746332 PMCID: PMC10517110 DOI: 10.1039/d3ra04185a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Piroxicam and naproxen are well-known non-steroidal anti-inflammatory drugs that are frequently detected in aquatic environments due to their widespread usage and improper disposal practices. This research investigates the photocatalytic degradation of these drugs by using CeO2 nanoparticles. The nanoparticles were synthesized by using Azadirachta indica plant extract and were characterized through various characterization techniques such as UV-visible spectroscopy, FTIR spectroscopy, SEM, EDX, and XRD. The photocatalytic degradation of piroxicam and naproxen using CeO2 nanoparticles led to the efficient removal of these pharmaceutical drugs in a short time duration with photodegradation efficiencies of 89% and 97% for naproxen and piroxicam, respectively. The photodegradation reaction was found to follow pseudo-order first-order kinetics. The recyclability of the catalyst was also studied for up to six cycles where the degradation efficiency was maintained at 100% till the 2nd cycle and was decreased by 11 and 13% for piroxicam and naproxen respectively after the 6th cycle. The current work focused on the achievement of sustainable development goals (SDGs) for water purification via environmentally benign nanoparticles to remedy water pollution as it is the most prevalent issue in developed and underdeveloped countries throughout the world.
Collapse
Affiliation(s)
- Farah Quddus
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Jan Nisar
- National Centre of Excellence in Physical Chemistry, University of Peshawar Peshawar 25120 Pakistan
| | | | - Shamsa Munir
- School of Applied Sciences and Humanities, National University of Technology Islamabad 44000 Pakistan
| |
Collapse
|
5
|
Alenazi DA. Development of color-tunable photoluminescent polycarbonate smart window immobilized with silica-coated lanthanide-activated strontium aluminum oxide nanoparticles. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Koczorowski T, Wicher B, Krakowiak R, Mylkie K, Marusiak A, Tykarska E, Ziegler-Borowska M. Photocatalytic Activity of Sulfanyl Porphyrazine/Titanium Dioxide Nanocomposites in Degradation of Organic Pollutants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7264. [PMID: 36295343 PMCID: PMC9611658 DOI: 10.3390/ma15207264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Magnesium(II) sulfanyl porphyrazine with peripheral morpholinethoxy substituents was embedded on the surface of titanium(IV) dioxide nanoparticles. The obtained nanocomposites were characterized with the use of particle size and distribution (NTA analysis), electron microscopy (SEM), thermal analysis (TGA), FTIR-ATR spectroscopy, and X-ray powder diffraction (XRD). The measured particle size of the obtained material was 327.4 ± 15.5 nm. Analysis with XRD showed no visible changes in the crystallinity of the material after deposition of porphyrazine on the TiO2 surface. However, SEM images revealed noticeable changes in the morphology of the obtained hybrid material: higher aggregation and less ordered structure of the aggregates. The TGA analysis revealed the lost 3.6% (0.4 mg) of the mass of obtained material in the range 250-550 °C. In the FTIR-ATR analysis, C-H stretching vibratins in the range of 3000-2800 cm-1, originating from porphyrazine moieties, were detected. The photocatalytic applicability of the nanomaterial was assessed in photodegradation studies of methylene blue and bisphenol A as reference environmental pollutants. In addition, the photocatalytic degradation of carbamazepine with porphyrazine/TiO2 hybrids as photocatalysts was studied, accompanied by an HPLC chromatography assessment of photodegradation. In total, 43% of the initial concentration was achieved in the case of bisphenol A, after 4 h of irradiation, whereas 57% was achieved in the case of carbamazepine. In each photodegradation reaction, the activity of the obtained photocatalytic nanomaterial was proved with almost linear degradation. The photodegradation reaction rate constants were calculated, and revealed 5.75 × 10-5 s-1 for bisphenol A and 5.66 × 10-5 s-1 for carbamazepine.
Collapse
Affiliation(s)
- Tomasz Koczorowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Barbara Wicher
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Rafal Krakowiak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Kinga Mylkie
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Aleksandra Marusiak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Ewa Tykarska
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
7
|
Mohd Hir ZA, Abdullah AH. Hybrid polymer-based photocatalytic materials for the removal of selected endocrine disrupting chemicals (EDCs) from aqueous media: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Adeola AO, Abiodun BA, Adenuga DO, Nomngongo PN. Adsorptive and photocatalytic remediation of hazardous organic chemical pollutants in aqueous medium: A review. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104019. [PMID: 35533435 DOI: 10.1016/j.jconhyd.2022.104019] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The provision of clean water is still a major challenge in developing parts of the world, as emphasized by the United Nation Sustainable Development Goals (SDG 6), and has remained a subject of extensive research globally. Advancements in science and industry have resulted in a massive surge in the amount of industrial chemicals produced within the last few decades. Persistent and emerging organic pollutants are detected in aquatic environments, and conventional wastewater treatment plants have ineffectively handled these trace, bioaccumulative and toxic compounds. Therefore, we have conducted an extensive bibliometric analysis of different materials utilized to combat organic pollutants via adsorption and photocatalysis. The classes of pollutants, material synthesis, mechanisms of interaction, merits, and challenges were comprehensively discussed. The paper highlights the advantages of various materials used in the removal of hazardous pollutants from wastewater with activated carbon having the highest adsorption capacity. Dyes, pharmaceuticals, endocrine-disrupting chemicals, pesticides and other recalcitrant organic pollutants have been successfully removed at high degradation efficiencies through the photocatalytic process. The photocatalytic degradation and adsorption processes were compared by considering factors such as cost, efficiency, ease of application and reusability. This review will be good resource material for water treatment professionals/scientists, who may be interested in adsorptive and photocatalytic remediation of organic chemicals pollutants.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Ondo State, 001, Nigeria; Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Bayode A Abiodun
- Department of Chemical Science, Faculty of Natural Sciences, Redeemer's University, PMB 230, Osun State, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Osun State, Nigeria
| | - Dorcas O Adenuga
- Water Utilization Division, Department of Chemical Engineering, University of Pretoria, Pretoria, Private Bag X20, Hatfield, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
9
|
Abstract
The indiscriminate use of naproxen as an anti-inflammatory has been the leading cause of pollution in sewage effluents. Conversely, titanium dioxide is one of the most promising photocatalyst for the degradation of pollutants. Ti-La mixed oxides containing 0, 1, 3, 5, and 10 wt.% of lanthanum were synthetized by sol-gel and tested as photocatalysts in the degradation of naproxen (NPX). The materials were further characterized by X-ray diffraction (XRD), nitrogen physisorption (BET), scanning electron microscopy (SEM), UV-Vis and Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The XRD patterns resembled that of anatase titania. The Eg values, determined from the UV-Vis spectra, vary from 2.07 to 3.2 eV corresponded to pure titania. The photocatalytic activity of these materials showed a degradation of naproxen from 93.6 to 99.8 wt.% after 4 h under UV irradiation.
Collapse
|
10
|
Sruthi L, Janani B, Sudheer Khan S. Ibuprofen removal from aqueous solution via light-harvesting photocatalysis by nano-heterojunctions: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Sedghi M, Rahimi R, Rabbani M. Synthesis of aluminum alloy (AA) based composites TiO2/Al5083 and porphyrin/TiO2/Al5083: Novel photocatalysts for water remediation in visible region. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Ouda M, Kadadou D, Swaidan B, Al-Othman A, Al-Asheh S, Banat F, Hasan SW. Emerging contaminants in the water bodies of the Middle East and North Africa (MENA): A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142177. [PMID: 33254914 DOI: 10.1016/j.scitotenv.2020.142177] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 05/22/2023]
Abstract
Many emerging contaminants (ECs) are not currently removed by conventional water treatment methods and consequently, often reach the aquatic environment. In the absence of proper management strategies, ECs can accumulate in water bodies, which poses potential environmental and health risks. This paper critically reviews, for the first time, the reported occurrence and treatment of ECs in the Middle Eastern and North Africa (MENA) region. The paper also provides recommendations to properly manage EC risks. In the MENA region, pharmaceuticals and personal care products (PPCPs) have been detected in surface water, seawater, groundwater, and wastewater treatment plants. A focus on surface water in the published literature suggests that studies are skewed towards worldwide trends, whereas studies on ECs in seawater are of great importance in the study region. The types of PPCPs detected in the MENA region vary, but anti-inflammatories and antibiotics dominate. In comparison, microplastics have mainly been studied in surface waters and seawater with much less focus on drinking water. The majority of microplastics in the region are secondary types resulting from the degradation of larger plastic debris; polyethylene (PE) and polypropylene (PP) fibers are the most frequently detected polymers, which are indicative of local anthropogenic sources. Research progress on ECs varies between countries, having received more attention in Iran and Tunisia. Most MENA countries have now begun monitoring water bodies for ECs; however, studies are still lacking in some countries including Sudan, Djibouti, Syria, Ethiopia, and Bahrain. Based on this review, critical knowledge gaps and research needs are identified. Countries in the MENA region require further research on a broader range of EC types. Overall, water pollution due to the use and release of ECs can be tackled by improving public awareness, public campaigns, government intervention, and advanced monitoring and treatment methods.
Collapse
Affiliation(s)
- Mariam Ouda
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Dana Kadadou
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Balsam Swaidan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Sameer Al-Asheh
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|