1
|
Gerard O, Ramesh S, Ramesh K, Numan A, Norhaffis Mustafa M, Khalid M, Ramesh S, Tiong SK. Evaluation of the effect of precursor ratios on the electrochemical performances of binder-free NiMn-phosphate electrodes for supercapattery. J Colloid Interface Sci 2024; 667:585-596. [PMID: 38657542 DOI: 10.1016/j.jcis.2024.04.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Binary metal phosphate electrodes have been widely studied for energy storage applications due to the synergistic effects of two different transition elements that able to provide better conductivity and stability. Herein, the battery-type binder-free nickel-manganese phosphate (NiMn-phosphate) electrodes were fabricated with different Ni:Mn precursor ratios via microwave-assisted hydrothermal technique for 5 min at 90 °C. Overall, NiMn3P electrode (Ni:Mn = 1:3) showed an outstanding electrochemical performance, displaying the highest specific (areal) capacity at 3 A/g of 1262.4 C/g (0.44 C/cm2), and the smallest charge transfer resistance of 108.8 Ω. The enhanced performance of NiMn3P electrode can be ascribed to the fully grown amorphous nature and small-sized flake and flower structures of NiMn3P electrode material on the nickel foam (NF) surface. This configuration offered a higher number of active sites and a larger exposed area, facilitating efficient electrochemical reactions with the electrolyte. Consequently, the NiMn3P//AC electrode combination was chosen to further investigate its performance in supercapattery. The NiMn3P//AC supercapattery exhibited remarkable energy density of 105.4 Wh/kg and excellent cyclic stability with 84.7% retention after 3000 cycles. These findings underscored the superior electrochemical performance of the battery-type binder-free NiMn3P electrode, and highlight its potential for enhancing the overall performance of supercapattery.
Collapse
Affiliation(s)
- Ong Gerard
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia
| | - S Ramesh
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemistry, Saveetha School of Engineering, Institute of Medical and Technical Science, Saveetha University, Chennai 602105, Tamil Nadu, India.
| | - K Ramesh
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Arshid Numan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Muhammad Norhaffis Mustafa
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Uttaranchal University, Dehradun 248007, Uttarakhand, India; Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Ramesh
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia; Centre of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - S K Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
2
|
Citroni R, Mangini F, Frezza F. Efficient Integration of Ultra-low Power Techniques and Energy Harvesting in Self-Sufficient Devices: A Comprehensive Overview of Current Progress and Future Directions. SENSORS (BASEL, SWITZERLAND) 2024; 24:4471. [PMID: 39065869 PMCID: PMC11281040 DOI: 10.3390/s24144471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Compact, energy-efficient, and autonomous wireless sensor nodes offer incredible versatility for various applications across different environments. Although these devices transmit and receive real-time data, efficient energy storage (ES) is crucial for their operation, especially in remote or hard-to-reach locations. Rechargeable batteries are commonly used, although they often have limited storage capacity. To address this, ultra-low-power design techniques (ULPDT) can be implemented to reduce energy consumption and prolong battery life. The Energy Harvesting Technique (EHT) enables perpetual operation in an eco-friendly manner, but may not fully replace batteries due to its intermittent nature and limited power generation. To ensure uninterrupted power supply, devices such as ES and power management unit (PMU) are needed. This review focuses on the importance of minimizing power consumption and maximizing energy efficiency to improve the autonomy and longevity of these sensor nodes. It examines current advancements, challenges, and future direction in ULPDT, ES, PMU, wireless communication protocols, and EHT to develop and implement robust and eco-friendly technology solutions for practical and long-lasting use in real-world scenarios.
Collapse
Affiliation(s)
| | | | - Fabrizio Frezza
- Department of Information Engineering, Electronics and Telecommunications, “Sapienza” University of Rome, 00184 Rome, Italy; (R.C.); (F.M.)
| |
Collapse
|
3
|
Rudra S, Seo HW, Sarker S, Kim DM. Supercapatteries as Hybrid Electrochemical Energy Storage Devices: Current Status and Future Prospects. Molecules 2024; 29:243. [PMID: 38202828 PMCID: PMC10780446 DOI: 10.3390/molecules29010243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Among electrochemical energy storage (EES) technologies, rechargeable batteries (RBs) and supercapacitors (SCs) are the two most desired candidates for powering a range of electrical and electronic devices. The RB operates on Faradaic processes, whereas the underlying mechanisms of SCs vary, as non-Faradaic in electrical double-layer capacitors (EDLCs), Faradaic at the surface of the electrodes in pseudo-capacitors (PCs), and a combination of both non-Faradaic and Faradaic in hybrid supercapacitors (HSCs). EDLCs offer high power density but low energy density. HSCs take advantage of the Faradaic process without compromising their capacitive nature. Unlike batteries, supercapacitors provide high power density and numerous charge-discharge cycles; however, their energy density lags that of batteries. Supercapatteries, a generic term that refers to hybrid EES devices that combine the merits of EDLCs and RBs, have emerged, bridging the gap between SCs and RBs. There are numerous articles and reviews on EES, and many of those articles have emphasized various aspects of HSCs and supercapatteries. However, there are no recent reviews that dealt with supercapatteries in general. Here, we review recently published critically selected articles on supercapatteries. The review discusses different EES devices and how supercapatteries are different from others. Also discussed are properties, design strategies, and future perspectives on supercapatteries.
Collapse
Affiliation(s)
| | | | - Subrata Sarker
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Republic of Korea; (S.R.); (H.W.S.)
| | - Dong Min Kim
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Republic of Korea; (S.R.); (H.W.S.)
| |
Collapse
|
4
|
Munkaila S, Dahal R, Kokayi M, Jackson T, Bastakoti BP. Hollow Structured Transition Metal Phosphates and Their Applications. CHEM REC 2022; 22:e202200084. [PMID: 35815949 DOI: 10.1002/tcr.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/03/2022] [Indexed: 11/08/2022]
Abstract
Hollow nanostructures of transition metal phosphate are of immense interest in the existing and evolving areas of technology, due to their high surface area, presence of hollow void, and easy tuning of compositions and dimensions. Emerging synthesis methods such as template-free methods, hard-templating, and soft-templating are discussed in this review. Applications of these hollow metal phosphates dominate in energy storage and conversions, with specific advantages as supercapacitor materials. Other applications, including drug delivery, water splitting, catalysis, and adsorption, are reviewed. Finally, additional perspectives on the progress of these nanostructures, and their existing challenges related to the current synthesis routes are covered. Therefore, with the strategic modifications of the unique properties of these hollow metal phosphates, broader application requirements are fulfilled.
Collapse
Affiliation(s)
- Samira Munkaila
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St, Greensboro, NC 27411
| | - Rabin Dahal
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St, Greensboro, NC 27411
| | - Manzili Kokayi
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St, Greensboro, NC 27411
| | - Tatyana Jackson
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St, Greensboro, NC 27411
| | - Bishnu Prasad Bastakoti
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St, Greensboro, NC 27411
| |
Collapse
|
6
|
Cui M, Zhao H, Wen X, Li N, Ren J, Zhang C. Facile synthesis of nickel phosphate nanorods as biomimetic enzyme with excellent electrocatalytic activity for highly sensitive detection of superoxide anion released from living cells. J Pharm Biomed Anal 2022; 212:114653. [DOI: 10.1016/j.jpba.2022.114653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 01/01/2023]
|