1
|
Yang K, Li HQ, Hu MQ, Ma MX, Gu YQ, Yang QY, Iqbal Choudhary M, Liang H, Chen ZF. Sm(Ⅲ), Gd(Ⅲ), and Eu(Ⅲ) complexes with 8-hydroxyquinoline derivatives as potential anticancer agents via inhibiting cell proliferation, blocking cell cycle, and inducing apoptosis in NCI-H460 cells. Drug Dev Res 2024; 85:e22265. [PMID: 39358925 DOI: 10.1002/ddr.22265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/04/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Four lanthanide complexes with 8-hydroxyquinoline-2-aldehyde-2-hydrazinopyridine (H-L1), 8-hydroxyquinoline-2-aldehyde-2-hydrazimidazole (H-L2): [Sm(L1)2][Sm(L1)(NO3)3]·CHCl3·2CH3OH (1), [Gd(L1)2][Gd(L1)(NO3)3]·CHCl3·2CH3OH (2), [Sm(L2)(NO3)2]2·CH3OH (3), and [Eu(L2)(NO3)2]2·CH3OH (4) were synthesized and characterized. In vitro cytotoxicity evaluation showed that the ligands and four lanthanide complexes exhibited cytotoxicity to the five tested tumor cell lines. Among them, complex 1 showed the best antiproliferative activity against NCI-H460 tumor cells. Mechanistic studies demonstrated that complex 1 arrested the cell cycle of NCI-H460 cells in G1 phase and induced mitochondria-mediated apoptosis, which resulted in the loss of mitochondrial membrane potential, enhanced intracellular Ca2+ levels and reactive oxygen species generation. In addition, complex 1 affected the expression levels of intracellular apoptosis-related proteins and activated the caspase-3/9 in NCI-H460 cells. Therefore, complex 1 is a potential anticancer agent.
Collapse
Affiliation(s)
- Kun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Huan-Qing Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Mei-Qi Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Meng-Xue Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yun-Qiong Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Qi-Yuan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Muhammad Iqbal Choudhary
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| |
Collapse
|
2
|
Todorov LT, Kostova IP. Coumarin-transition metal complexes with biological activity: current trends and perspectives. Front Chem 2024; 12:1342772. [PMID: 38410816 PMCID: PMC10895002 DOI: 10.3389/fchem.2024.1342772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024] Open
Abstract
Coumarin (2H-1-benzopyran-2-one) presents the fundamental structure of an enormous class of biologically active compounds of natural, semi-synthetic, and synthetic origin. Extensive efforts are continually being put into the research and development of coumarin derivatives with medicinal properties by the broad scientific community. Transition metal coordination compounds with potential biological activity are a "hot topic" in the modern search for novel drugs. Complexation with transition metals can enhance the physiological effect of a molecule, modify its safety profile, and even imbue it with novel attributes of interest in the fields of medicine and pharmacy. The present review aims to inform the reader of the latest developments in the search for coumarin transition metal complexes with biological activity, their potential applications, and structure-activity relationships, where such can be elucidated. Each section of the present review addresses a certain kind of biological activity (antiproliferative, antioxidant, antimicrobial, etc.), explores the most recent discoveries in the field, and, at the same time, tries to offer useful perspectives for potential future investigations.
Collapse
Affiliation(s)
- Lozan T. Todorov
- Department of Chemistry, Faculty of Pharmacy, Medical University–Sofia, Sofia, Bulgaria
| | | |
Collapse
|
3
|
Abuelela AM, Kaur J, Saxena A, Bedair MA, Verma DK, Berdimurodov E. Electrochemical and DFT studies of Terminalia bellerica fruit extract as an eco-friendly inhibitor for the corrosion of steel. Sci Rep 2023; 13:19367. [PMID: 37938591 PMCID: PMC10632492 DOI: 10.1038/s41598-023-45283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
It is well known that metal corrosion causes serious economy losses worldwide. One of the most effective ways to prevent corrosion is the continuous development of high-efficient and environment-friendly corrosion inhibitors. Among the widely used organic and inorganic corrosion inhibitors, plant extracts are top candidates due to their nontoxic nature. The present study reports a novel application of the methanolic extract of Terminalia bellerica fruits as an environment friendly corrosion inhibitor for steel in sulphuric acid medium. The phytochemicals of the extract, namely Ellagic, Gallic, and Malic acids, play a key role of the anti-corrosive behavior of the extract. The corrosion prevention activity was studied on the steel in 1 M H2SO4 using a variety of approaches including weight loss analysis (WL), scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), density functional theory (DFT), natural bond orbital analysis (NBO), Fukui function and Monte Carlo simulations (MC). In 1 M H2SO4 solution, the maximum electrochemical inhibition efficiency of 91.79% was observed at 4000 mg/L concentration of the extract. The NBO analysis showed that the charge density of the double bonds and the oxygen atoms of carbonyl and hydroxyl groups of the phytochemicals lies on the top of the natural bond orbitals which promotes the anticorrosive properties of the investigated inhibitors. The surface coverage of steel was validated by SEM measurements. According to DFT studies, numerous nucleophilic regions were present in the active phytochemical constituents of the inhibitor, demonstrating their favorable nucleophilicity. The computed electronic structure of the phytochemicals revealed band gaps of 4.813, 5.444, and 7.562 eV for Ellagic, Gallic, and Malic acids respectively suggesting effective metal-inhibitor interactions. A good correlation between experimental and theoretical findings was addressed.
Collapse
Affiliation(s)
- Ahmed M Abuelela
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Jasdeep Kaur
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Akhil Saxena
- Department of Chemistry, Chandigarh University, Mohali, India.
| | - Mahmoud A Bedair
- Department of Chemistry, College of Science, University of Bisha, P.O. Box 511, 61922, Bisha, Saudi Arabia.
| | - Dakeshwar Kumar Verma
- Department of Chemistry, Government Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh, 491441, India
| | - Elyor Berdimurodov
- Chemical & Materials Engineering, New Uzbekistan University, 100007, Tashkent, Uzbekistan
- Medical School, Central Asian University, 111221, Tashkent, Uzbekistan
| |
Collapse
|
4
|
Mansi, Khanna P, Gupta D, Yadav S, Khanna L. Hydrotrope assisted green synthesis of dicoumarols and in silico and in vitro antibacterial, antioxidant and xanthine oxidase inhibition studies. J Biomol Struct Dyn 2023; 41:9651-9665. [PMID: 36373290 DOI: 10.1080/07391102.2022.2145368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Aqueous hydrotrope has been employed for the first time to synthesize heteroaryl dicoumarols by condensation of 4-hydroxycoumarin and different heterocyclic aldehydes. This method is highly efficient and green, and the same aqueous hydrotropic solution can be used up to five times without any considerable loss of yield in the product. The synthesized compounds showed good antibacterial potential against Gram-positive (Staphylococcus aureus/NTCC 0997 and B. oceanisediminis) and Gram-negative (Escherichia coli/D0157:H7 and E. coli rosetta) bacterial strains using the Resazurin microtiter plate visual method. The MIC value of 312 µg/ml for compounds 3b, 3k and 3l for S. aureus while 39 µg/ml for compounds 3a, 3b and 3k for E. coli and 625 µg/ml for 3a and 3b for B. oceanisediminis was observed. The compounds were screened via computational methods like molecular docking studies and molecular dynamic simulations with PDB Id's 2W9S and 2EX6. Antioxidant activity was assessed using DPPH and H2O2 assays. Five compounds with the best binding score in molecular docking with XO (PDB ID: 1FIQ) have been tested in an in-vitro study using an enzyme inhibition assay. Novel compound 3b gave the IC50 value of 0.28 µg/ml, comparable to the standard drug Allopurinol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mansi
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, India
| | - Shilpa Yadav
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Leena Khanna
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
5
|
Todorov L, Saso L, Kostova I. Antioxidant Activity of Coumarins and Their Metal Complexes. Pharmaceuticals (Basel) 2023; 16:ph16050651. [PMID: 37242434 DOI: 10.3390/ph16050651] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Ubiquitously present in plant life, coumarins, as a class of phenolic compounds, have multiple applications-in everyday life, in organic synthesis, in medicine and many others. Coumarins are well known for their broad spectrum of physiological effects. The specific structure of the coumarin scaffold involves a conjugated system with excellent charge and electron transport properties. The antioxidant activity of natural coumarins has been a subject of intense study for at least two decades. Significant research into the antioxidant behavior of natural/semi-synthetic coumarins and their complexes has been carried out and published in scientific literature. The authors of this review have noted that, during the past five years, research efforts seem to have been focused on the synthesis and examination of synthetic coumarin derivatives with the aim to produce potential drugs with enhanced, modified or entirely novel effects. As many pathologies are associated with oxidative stress, coumarin-based compounds could be excellent candidates for novel medicinal molecules. The present review aims to inform the reader on some prominent results from investigations into the antioxidant properties of novel coumarin compounds over the past five years.
Collapse
Affiliation(s)
- Lozan Todorov
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
6
|
Yousif QA, Fadel Z, Abuelela AM, Alosaimi EH, Melhi S, Bedair MA. Insight into the corrosion mitigation performance of three novel benzimidazole derivatives of amino acids for carbon steel (X56) in 1 M HCl solution. RSC Adv 2023; 13:13094-13119. [PMID: 37124012 PMCID: PMC10133963 DOI: 10.1039/d3ra01837g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Three new organic molecules having a benzimidazole base were synthesized and used for the protection of carbon steel (X56) against corrosion in 1.00 M HCl solution. The protection against corrosion was assessed by electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP). In addition, the electronic and molecular structure of the synthesized molecules were computationally investigated and correlated to corrosion inhibition. Global reactivity descriptors, molecular orbitals (FMO and NBO) and local reactivity descriptors (molecular electrostatic potential map and Fukui functions) were discussed. The results showed a maximum protective efficiency range between 95% and 98% indicating high corrosion inhibition. Moreover, all molecules were able to combat the cathodic as well as anodic reaction simultaneously, revealing a mixed-type resistance. SEM and EDX verified effective adhering film formation to the metal surface. In accordance, the theoretical calculations showed effective electron reallocation from the organic film to the X56 c-steel surface. Furthermore, the adsorption annealing calculations revealed that structural layers of these molecules hold parallel and close to the metal surface with adsorption energy from 249.383 to 380.794 kcal mol-1, showing strong inhibitor-metal contact.
Collapse
Affiliation(s)
- Qahtan A Yousif
- University of Al-Qadisiyah, College of Engineering, Department of Materials Engineering Iraq
| | - Zainb Fadel
- General Directorate of Education Al-Qadisiyah, Ministry of Education Iraq
| | - Ahmed M Abuelela
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Eid H Alosaimi
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
| | - Saad Melhi
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
| | - Mahmoud A Bedair
- Department of Chemistry College of Science and Arts, University of Bisha P.O. Box 101 Al-Namas 61977 Saudi Arabia
| |
Collapse
|
7
|
Computational and optoelectronic quantification of semi-conducting, warm ruby red color emanating Eu 3+ complexes with hetro-cyclic ligands. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00386-5. [PMID: 36797506 DOI: 10.1007/s43630-023-00386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
Six Eu3+ complexes were synthesised with β-keto acid as main ligand and secondary ligands through liquid assisted grinding method. These complexes were characterised by various techniques such as spectroscopic technique, XRD, EDAX, SEM analysis, thermal technique, Urbach energy and optical band gap investigation. The luminous photophysical properties were studied by PL spectroscopy in solid as well as solution phase and some theoretical calculation was done to investigate the radiative (Arad) & non-radiative (Anrad) transition rate, quantum efficiency (ɸ), Judd Ofelt parameters for 5D0 → 7F2,4 transitions in both states. Judd Ofelt parameters were also calculated by the JOES software and the outcomes are well harmonised with theoretical values. The complexes have CIE color coordinate value in ruby red region and above 88.65% color purity in both phases, which made them attractive candidates for red light-emitting displays. 5D0 → 7F2 transition was proposed as a laser emission transition owing to their high branching ratio (67.18-74.24%) in solid and (60.09-74.40%) in solution phase. Computational methods were employed to determine the structure and energy of various molecular orbitals. Antimicrobial assay of complexes was also rationalised and found that the complexes are pertinent as good bactericidal and fungicidal agents in pharmaceutical industry.
Collapse
|
8
|
Elsenety MM, Mohamed MBI, Sultan ME, Elsayed BA. Facile and highly precise pH-value estimation using common pH paper based on machine learning techniques and supported mobile devices. Sci Rep 2022; 12:22584. [PMID: 36585481 PMCID: PMC9803664 DOI: 10.1038/s41598-022-27054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Numerous scientific, health care, and industrial applications are showing increasing interest in developing optical pH sensors with low-cost, high precision that cover a wide pH range. Although serious efforts, the development of high accuracy and cost-effectiveness, remains challenging. In this perspective, we present the implementation of the machine learning technique on the common pH paper for precise pH-value estimation. Further, we develop a simple, flexible, and free precise mobile application based on a machine learning algorithm to predict the accurate pH value of a solution using an available commercial pH paper. The common light conditions were studied under different light intensities of 350, 200, and 20 Lux. The models were trained using 2689 experimental values without a special instrument control. The pH range of 1: 14 is covered by an interval of ~ 0.1 pH value. The results show a significant relationship between pH values and both the red color and green color, in contrast to the poor correlation by the blue color. The K Neighbors Regressor model improves linearity and shows a significant coefficient of determination of 0.995 combined with the lowest errors. The free, publicly accessible online and mobile application was developed and enables the highly precise estimation of the pH value as a function of the RGB color code of typical pH paper. Our findings could replace higher expensive pH instruments using handheld pH detection, and an intelligent smartphone system for everyone, even the chef in the kitchen, without the need for additional costly and time-consuming experimental work.
Collapse
Affiliation(s)
- Mohamed M. Elsenety
- grid.411303.40000 0001 2155 6022Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884 Egypt
| | - Mahmoud Basseem I. Mohamed
- grid.411303.40000 0001 2155 6022Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884 Egypt
| | - Mohamed E. Sultan
- grid.411303.40000 0001 2155 6022Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884 Egypt
| | - Badr A. Elsayed
- grid.411303.40000 0001 2155 6022Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884 Egypt
| |
Collapse
|
9
|
Bedair MA, Abuelela AM, Alshareef M, Owda M, Eliwa EM. Ethyl ester/acyl hydrazide-based aromatic sulfonamides: facile synthesis, structural characterization, electrochemical measurements and theoretical studies as effective corrosion inhibitors for mild steel in 1.0 M HCl. RSC Adv 2022; 13:186-211. [PMID: 36605653 PMCID: PMC9764999 DOI: 10.1039/d2ra05939h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
In this research paper, aromatic sulfonamide-derived ethyl ester (p-TSAE) and its acyl hydrazide (p-TSAH) were directly synthesized, characterized, and employed for the first time as prospective anticorrosive agents to protect mild steel in 1.0 M HCl conditions. The corrosion efficiency was probed by electrochemical methods including polarization, impedance, and frequency modulation measurements. Optimal efficiencies of 94% and 92% were detected for the hydrazide and ester, respectively, revealing excellent corrosion inhibition. Moreover, both the hydrazide and ester molecules combat the cathodic and anodic reactions correspondingly in a mixed-type manner. The electron transfer (ET) at the inhibitor/metal interface was evaluated using DFT at the B3LYP/6-31g(d,p) level. Natural bond orbital analysis (NBO) and frontier molecular orbital analysis (FMO) calculations showed superior capabilities of the synthesized inhibitors to easily reallocate charge into the metal surface. However, the hydrazide molecules showed slightly better inhibition efficiency than the ester due to the strong interaction between the lone pairs of the nitrogen atoms and the d-orbitals of the metal. The chemical hardness of the hydrazide and ester are 2.507 and 2.511 eV, respectively, in good accordance with the recorded electrochemical inhibition efficiencies for both molecules. Good and straightforward correlations between the experiments and calculations are obtained.
Collapse
Affiliation(s)
- Mahmoud A. Bedair
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt,College of Science and Arts, University of BishaP.O. Box 101Al-Namas 61977Saudi Arabia
| | - Ahmed M. Abuelela
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt
| | - Mubark Alshareef
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura UniversityMakkah 24230Saudi Arabia
| | - Medhat Owda
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt
| | - Essam M. Eliwa
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt
| |
Collapse
|
10
|
Bedair MA, Elaryian HM, Gad ES, Alshareef M, Bedair AH, Aboushahba RM, Fouda AEAS. Insights into the adsorption and corrosion inhibition properties of newly synthesized diazinyl derivatives for mild steel in hydrochloric acid: synthesis, electrochemical, SRB biological resistivity and quantum chemical calculations. RSC Adv 2022; 13:478-498. [PMID: 36605641 PMCID: PMC9772863 DOI: 10.1039/d2ra06574f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Two azo derivatives, 4-((4-hydroxy-3-((4-oxo-2-thioxothiazolidin-5-ylidene)methyl)phenyl) diazinyl) benzenesulfonic acid (TODB) and 4-((3-((4,4-dimethyl-2,6-dioxocyclohexylidene) methyl)-4-hydroxyphenyl)diazinyl) benzenesulfonic acid (DODB) were synthesized and characterized using Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H-NMR) and mass spectral studies. Gravimetric methods, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), electrochemical frequency modulation (EFM) techniques and inductive coupled plasma-optical emission spectroscopy were used to verify the above two compounds' ability to operate as mild steel (MS) corrosion inhibitors in 1 M HCl. Tafel data suggest that TODB and DODB have mixed-type characteristics, and EIS findings demonstrate that increasing their concentration not only alters the charge transfer (R ct) of mild steel from 6.88 Ω cm2 to 112.9 Ω cm2 but also changes the capacitance of the adsorbed double layer (C dl) from 225.36 to 348.36 μF cm-2. At 7.5 × 10-4 M concentration, the azo derivatives showed the highest corrosion inhibition of 94.9% and 93.6%. The inhibitory molecule adsorption on the metal substrate followed the Langmuir isotherm. The thermodynamic activation functions of the dissolution process were also calculated as a function of inhibitor concentration. UV-vis, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) techniques were used to confirm the adsorption phenomenon. The quantum chemical parameters, inductively coupled plasma atomic emission spectroscopy (ICPE) measurements, and the anti-bacterial effect of these new derivatives against sulfate-reducing bacteria (SRB) were also investigated. Taken together, the acquired results demonstrate that these compounds can create an appropriate preventing surface and regulate the corrosion rate.
Collapse
Affiliation(s)
- Mahmoud A Bedair
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
- College of Science and Arts, University of Bisha P.O. Box 101 Al-Namas 61977 Saudi Arabia
| | - Hani M Elaryian
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
- Zohr Gas Field, Belayim Petroleum Company Nasr City 7074 Cairo Egypt
| | - Ehab S Gad
- Chemistry Department, College of Science and Arts, Jouf University Saudi Arabia
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mubark Alshareef
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University Makkah 24230 Saudi Arabia
| | - Ahmed H Bedair
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Rabab M Aboushahba
- Department of Chemistry, Faculty of Science (Girl's Branch), Al-Azhar University Nasr City 11574 Cairo Egypt
| | - Abd El-Aziz S Fouda
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| |
Collapse
|
11
|
Kumari P, Lather V, Khatri S, Ahlawat P, Sehrawat H, Khatkar SP, Taxak VB, Kumar R. Computational analysis, Urbach energy and Judd-Ofelt parameter of warm Sm 3+ complexes having applications in photovoltaic and display devices. RSC Adv 2022; 12:35827-35848. [PMID: 36545065 PMCID: PMC9753104 DOI: 10.1039/d2ra05796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, six reddish orange Sm3+ complexes were synthesized using organic ligand (L) and secondary ligands having hetero atoms by a one-step significant liquid-assisted grinding method and were characterized by spectroscopic techniques. The Urbach energy and band gap energy of the complexes were inspected by a linear fit. Using a least square fitting method, the Judd-Ofelt parameter and radiative properties were also determined. Thermal analysis, colorimetric analysis, luminescence decay time and anti-microbial properties of complexes were studied. The luminescence emission spectra of binary and ternary complexes displayed three characteristic peaks at 565, 603 and 650 nm in the powder form and four peaks at 563, 605, 646 and 703 nm in a solution phase due to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 transitions respectively. The most intense transition in the solid phase (4G5/2 → 6H7/2) is accountable for orange color, and in the solution form, the highly luminescent peak (4G5/2 → 6H9/2) is responsible for reddish orange color of Sm3+ complexes. PXRD and SEM analyses suggested that the complexes possess a nanoparticle grain size with crystalline nature. The decent optoelectrical properties of title complexes in the orangish-red visible domain indicated possible applications in the manufacturing of display and optoelectronic devices.
Collapse
Affiliation(s)
- Poonam Kumari
- University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak 124001 India +91 9034070027
| | - Vaishnavi Lather
- Shri Guru Ram Rai Institute of Medical and Health Sciences Dehradun 248001 India
| | - Savita Khatri
- University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak 124001 India +91 9034070027
| | - Pratibha Ahlawat
- University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak 124001 India +91 9034070027
| | - Harkesh Sehrawat
- University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak 124001 India +91 9034070027
| | - S P Khatkar
- Department of Chemistry, Maharshi Dayanand University Rohtak 124001 India
| | - V B Taxak
- Department of Chemistry, Maharshi Dayanand University Rohtak 124001 India
| | - Rajesh Kumar
- University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak 124001 India +91 9034070027
| |
Collapse
|
12
|
Novel coumarin-buta-1,3-diene conjugated donor-acceptor systems as corrosion inhibitors for mild steel in 1.0 M HCl: Synthesis, electrochemical, computational and SRB biological resistivity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Melhi S, Bedair MA, Alosaimi EH, Younes AAO, El-Shwiniy WH, Abuelela AM. Effective corrosion inhibition of mild steel in hydrochloric acid by newly synthesized Schiff base nano Co(ii) and Cr(iii) complexes: spectral, thermal, electrochemical and DFT (FMO, NBO) studies. RSC Adv 2022; 12:32488-32507. [PMID: 36425733 PMCID: PMC9661184 DOI: 10.1039/d2ra06571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Two new cobalt(ii) and chromium(iii) complexes were synthesized and characterized by FT-IR, 1HNMR, UV, elemental analysis, TGA, conductivity, XRD, SEM, and magnetic susceptibility measurements. Structural analysis revealed a bi-dentate chelation and octahedral geometry for the synthesized complexes. The optical band gap of the Co(ii)-L and Cr(iii)-L complexes was found to be 3.00 and 3.25 eV, respectively revealing semiconducting properties. The X-ray diffraction patterns showed nano-crystalline particles for the obtained complexes. In addition, the synthesized metal complexes were examined as corrosion inhibitors for mild steel in HCl solution. The electrochemical investigations showed a maximum inhibition efficiency of 96.60% for Co(ii)-L and 95.45% for Cr(iii)-L where both complexes acted as mixed-type inhibitors. Frontier Molecular orbital (FMO) and Natural bond orbital (NBO) computations showed good tendency of the ligand to donate electrons to the metal through nitrogen atoms while the resultant complexes tended to donate electrons to mild steel more effectively through oxygen atoms and phenyl groups. A comparison between experimental and theoretical findings was considered through the discussion.
Collapse
Affiliation(s)
- Saad Melhi
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
| | - Mahmoud A Bedair
- College of Science and Arts, University of Bisha P.O. Box 101 Al-Namas 61977 Saudi Arabia
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Eid H Alosaimi
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
| | - Ayman A O Younes
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
| | - Walaa H El-Shwiniy
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Ahmed M Abuelela
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
14
|
Song YF, Wu WN, Wang Y, Zhao XL, Fan YC, Xu ZH. Europium (III) complex-based fluorescent probe for instantaneous, selective, and sensitive detection of phosgene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121553. [PMID: 35792481 DOI: 10.1016/j.saa.2022.121553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Phosgene (carbonyl chloride, COCl2) is a widely used colorless gas in organic synthesis. However, its high toxicity sets a severe potential damage of public safety. As the fluorescence method has the advantages of simple operation and real-time detection of phosgene, it is extremely important to develop a fluorescent phosgene probe for public health and safety. This study aimed to present a simple Eu3+ complex (1) with 2-hydroxyl-1H-benzimidazole moiety as a novel phosgene probe. Probe 1 exhibited characteristic emission of Eu3+ in CH3CN solution, which was specifically quenched after encountering phosgene. The change in the solution color from light red to dark could be easily distinguished with the naked eye under a 365 nm ultraviolet lamp. Finally, the test paper with probe 1 was fabricated for effortless, selective, and visual detection of phosgene gas.
Collapse
Affiliation(s)
- Yu-Fei Song
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China; The College of Chemistry, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
15
|
Elaryian HM, Bedair MA, Bedair AH, Aboushahba RM, Fouda AEAS. Corrosion mitigation for steel in acid environment using novel p-phenylenediamine and benzidine coumarin derivatives: synthesis, electrochemical, computational and SRB biological resistivity. RSC Adv 2022; 12:29350-29374. [PMID: 36320746 PMCID: PMC9558558 DOI: 10.1039/d2ra05803k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Three novel p-phenylenediamine and benzidine coumarin derivatives were synthetized, namely: 4,4'-((((1,4-phenylenebis(azaneylylidene))bis(ethan-1-yl-1-ylidene))bis(2-oxo-2H-chromene-3,6-diyl))bis(diazene-2,1-diyl))dibenzenesulfonic acid (PhODB), 4,4'-(((-([1,1'-biphenyl]-4,4'-diylbis(azaneylylidene))bis(ethan-1-yl-1-ylidene))bis(2-oxo-2H-chromene-3,6-diyl))bis(diazene-2,1-diyl))dibenzenesulfonic acid (BODB) and 4,4'-(((-((3,3'-dimethoxy-[1,1'-biphenyl]-4,4'-diyl)bis(azaneylylidene))bis(ethan-1-yl-1-ylidene))bis(2-oxo-2H-chromene-3,6-iyl))bis(diazene-2,1-diyl))dibenzenesulfonic acid (DODB). Their chemical structures were proved by performing Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance and mass spectrometry analysis. The synthesized p-phenylenediamine and benzidine coumarin derivatives were tested as corrosion inhibitors for mild steel (MS) in 1 M HCl solution using weight loss, electrochemical, morphological, and theoretical studies. The compound 3,3'-dimethoxy benzidine coumarin derivative (DODB) was proved to give the highest efficiency with 94.98% obtained from weight loss measurements. These compounds are mixed inhibitors, as seen by the polarization curves. Impedance diagrams showed that when the concentration of these derivatives rose, the double-layer capacitance fell and the charge transfer resistance increased. Calculated thermodynamic parameters were computed and the mechanism of adsorption was also studied for the synthesized p-phenylenediamine and benzidine coumarin derivatives. The ability of the synthesized derivatives to protect the surface against corrosion was investigated by scanning electron microscope (SEM), UV-visible spectroscopy and energy dispersive X-ray spectroscopy (EDX). Theoretical chemical calculations (DFT) and biological resistivity (SRB) were investigated.
Collapse
Affiliation(s)
- Hani M Elaryian
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
- Zohr Gas Field, Belayim Petroleum Company Nasr City 7074 Cairo Egypt
| | - Mahmoud A Bedair
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
- College of Science and Arts, University of Bisha P.O. Box 101 Al-Namas 61977 Saudi Arabia
| | - Ahmed H Bedair
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Rabab M Aboushahba
- Department of Chemistry, Faculty of Science (Girls' Branch), Al-Azhar University, Nasr City 11574 Cairo Egypt
| | - Abd El-Aziz S Fouda
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| |
Collapse
|
16
|
Experimental and computational studies of the influence of non-ionic surfactants with coumarin moiety as corrosion inhibitors for carbon steel in 1.0 M HCl. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118445] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Hamad H, Elsenety MM, Sadik W, El-Demerdash AG, Nashed A, Mostafa A, Elyamny S. The superior photocatalytic performance and DFT insights of S-scheme CuO@TiO 2 heterojunction composites for simultaneous degradation of organics. Sci Rep 2022; 12:2217. [PMID: 35140284 PMCID: PMC8828870 DOI: 10.1038/s41598-022-05981-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
The necessity to resolve the issue of rapid charge carrier recombination for boosting photocatalytic performance is a vigorous and challenging research field. To address this, the construction of a binary system of step-scheme (S-scheme) CuO@TiO2 heterostructure composite has been demonstrated through a facile solid-state route. The remarkably enhanced photocatalytic performance of CuO@TiO2, compared with single TiO2, which can consequence in the more efficient separation of photoinduced charge carriers, reduced the band gap of TiO2, improved the electrical transport performance, and improved the lifetimes, thus donating it with the much more powerful oxidation and reduction capability. A photocatalytic mechanism was proposed to explain the boosted photocatalytic performance of CuO@TiO2 on a complete analysis of physicochemical, DFT calculations, and electrochemical properties. In addition, this work focused on the investigation of the stability and recyclability of CuO@TiO2 in terms of efficiency and its physical origin using XRD, BET, and XPS. It is found that the removal efficiency diminishes 4.5% upon five recycling runs. The current study not only promoted our knowledge of the binary system of S-scheme CuO@TiO2 heterojunction composite photocatalyst but also shed new light on the design of heterostructure photocatalysts with high-performance and high stability.
Collapse
Affiliation(s)
- Hesham Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Mohamed M Elsenety
- Department of Chemistry, Faculty of Science, Al-Azhar University, P.O. 11823, Nasr City, Cairo, Egypt
| | - Wagih Sadik
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Abdel-Ghaffar El-Demerdash
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Adel Nashed
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Amr Mostafa
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Shaimaa Elyamny
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
18
|
Santi S, Wahab AW, Raya I, Ahmad A, Maming M. Synthesis, spectroscopic (FT-IR, UV–visible) study, and HOMO-LUMO analysis of adenosine triphosphate (ATP) doped trivalent terbium. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Badran AS, Ibrahim MA, Ahmed A. Nucleophilic reactions with the novel condensation product derived from 3-formylchromone and 4-hydroxycoumarin. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1910961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Al-Shimaa Badran
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Magdy A. Ibrahim
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Aya Ahmed
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|