1
|
Hassan S, Bilal N, Khan TJ, Ali MN, Ghafoor B, Saif KU. Bioinspired chitosan based functionalization of biomedical implant surfaces for enhanced hemocompatibility, antioxidation and anticoagulation potential: an in silico and in vitro study. RSC Adv 2024; 14:20691-20713. [PMID: 38952927 PMCID: PMC11215499 DOI: 10.1039/d4ra00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Endowing implanted biomaterials with better hemocompatibility, anticoagulation, antioxidant and antiplatelet adhesion is necessary because of their potential to trigger activation of multiple reactive mechanisms including coagulation cascade and potentially causing serious adverse clinical events like late thrombosis. Active ingredients from natural sources including Foeniculum vulgare, Angelica sinensis, and Cinnamomum verum have the ability to inhibit the coagulation cascade and thrombus formation around biomedical implants. These properties are of interest for the development of a novel drug for biomedical implants to potentially solve the current blood clotting and coagulation problems which lead to stent thrombosis. The objective of this study was to incorporate different anticoagulants from natural sources into a degradable matrix of chitosan with varying concentrations ranging from 5% to 15% and a composite containing all three drugs. The presence of anticoagulant constituents was identified using GC-MS. Subsequently, all the compositions were characterized principally by using Fourier transform infrared spectroscopy and scanning electron microscopy while the drug release profile was determined using UV-spectrometry for a 30 days immersion period. The results indicated an initial burst release which was subsequently followed by the sustained release pattern. Compared to heparin loaded chitosan, DPPH and hemolysis tests revealed better blood compatibility of natural drug loaded films. Moreover, the anticoagulation activity of natural drugs was equivalent to the heparin loaded film; however, through docking, the mechanism of inhibition of the coagulation cascade of the novel drug was found to be through blocking the extrinsic pathway. The study suggested that the proposed drug composite expresses an optimum composition which may be a practicable and appropriate candidate for biomedical implant coatings.
Collapse
Affiliation(s)
- Sadia Hassan
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | - Namra Bilal
- Nencki Institute of Experimental Biology Poland
| | - Tooba Javaid Khan
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | - Murtaza Najabat Ali
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | - Bakhtawar Ghafoor
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | | |
Collapse
|
2
|
Farooq M, Shujah S, Tahir K, Hussain ST, Khan AU, Almarhoon ZM, Alabbosh KF, Alanazi AA, Althagafi TM, Zaki MEA. Phytoassisted synthesis of CuO and Ag-CuO nanocomposite, characterization, chemical sensing of ammonia, degradation of methylene blue. Sci Rep 2024; 14:1618. [PMID: 38238395 PMCID: PMC10796404 DOI: 10.1038/s41598-024-51391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
The elimination of hazardous industrial pollutants from aqueous solutions is an emerging area of scientific research and a worldwide problem. An efficient catalyst, Ag-CuO was synthesized for the degradation of methylene blue, the chemical sensing of ammonia. A simple novel synthetic method was reported in which new plant material Capparis decidua was used for the reduction and stabilization of the synthesized nanocatalyst. A Varying amount of Ag was doped into CuO to optimize the best catalyst that met the required objectives. Through this, the Ag-CuO nanocomposite was characterized by XRD, SEM, HR-TEM, EDX, and FTIR techniques. The mechanism of increased catalytic activity with Ag doping involves the formation of charge sink and suppression of drop back probability of charge from conduction to valance band. Herein, 2.7 mol % Ag-CuO exhibited better catalytic activities and it was used through subsequent catalytic experiments. The experimental conditions such as pH, catalyst dose, analyte initial concentration, and contact time were optimized. The as-synthesized nanocomposite demonstrates an excellent degradation efficacy of MB which is 97% at pH 9. More interestingly, the as-synthesized catalyst was successfully applied for the chemical sensing of ammonia even at very low concentrations. The lower limit of detection (LLOD) also called analytic sensitivity was calculated for ammonia sensing and found to be 1.37 ppm.
Collapse
Affiliation(s)
- Muhammad Farooq
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Pakistan
| | - Shaukat Shujah
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Pakistan.
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan
| | - Syed Tasleem Hussain
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Pakistan
| | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Zainab M Almarhoon
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Abdulaziz A Alanazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Talal M Althagafi
- Department of Physics, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia.
| |
Collapse
|
3
|
Al-Hammadi AH, Alnehia A, Al-Sharabi A, Alnahari H, Al-Odayni AB. Synthesis of trimetallic oxide (Fe 2O 3-MgO-CuO) nanocomposites and evaluation of their structural and optical properties. Sci Rep 2023; 13:12927. [PMID: 37558688 PMCID: PMC10412638 DOI: 10.1038/s41598-023-39845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
In this paper, tri-phase Fe2O3-MgO-CuO nanocomposites (NCs) and pure CuO, Fe2O3 and MgO nanoparticles (NPs) were prepared using sol-gel technique. The physical properties of the prepared products were examined using SEM, XRD, and UV-visible. The XRD data indicated the formation of pure CuO, Fe2O3 and MgO NPs, as well as nanocomposite formation with Fe2O3 (cubic), MgO (cubic), and CuO (monoclinic). The crystallite size of all the prepared samples was calculated via Scherrer's formula. The energy bandgap of CuO, Fe2O3 and MgO and Fe2O3-MgO-CuO NCs were computed from UV-visible spectroscopy as following 2.13, 2.29, 5.43 and 2.96 eV, respectively. The results showed that Fe2O3-MgO-CuO NCs is an alternative material for a wide range of applications as optoelectronics devices due to their outstanding properties.
Collapse
Affiliation(s)
- A H Al-Hammadi
- Department of Physics, Faculty of Sciences, Sana'a University, Sana'a, 12081, Yemen
| | - Adnan Alnehia
- Department of Physics, Faculty of Sciences, Sana'a University, Sana'a, 12081, Yemen
- Department of Physics, Faculty of Applied Sciences, Thamar University, Dhamar, 87246, Yemen
| | - Annas Al-Sharabi
- Department of Physics, Faculty of Applied Sciences, Thamar University, Dhamar, 87246, Yemen
| | - Hisham Alnahari
- Department of Physics, Faculty of Sciences, Sana'a University, Sana'a, 12081, Yemen.
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, 11545, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Removal of the Pigment Congo Red from Synthetic Wastewater with a Novel and Inexpensive Adsorbent Generated from Powdered Foeniculum Vulgare Seeds. Processes (Basel) 2023. [DOI: 10.3390/pr11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this research, powdered Foeniculum vulgare seed (FVSP) was treated separately with H2C2O4, ZnCl2, and a mixture of ZnCl2-CuS. The characteristics of the treated and untreated FVSP samples, as well as their abilities to eliminate Congo red (CR) from solutions, were investigated. The influences of the empirical circumstances on CR adsorption by the ideal adsorbent were studied. The thermodynamic, isothermal, and dynamic constants of this adsorption were also inspected. The ideal adsorbent was found to be the FVSP sample treated with a ZnCl2-CuS mixture, which eliminated 96.80% of the CR dye. The empirical outcomes proved that this adsorption was significantly affected by the empirical circumstances, and the second-order dynamic model as well as the Langmuir isotherm model fit the empirical data better than the first-order model and the Freundlich model. The values of Ea (15.3 kJ/mol) and ∆Ho (32.767 kJ/mol ≤ ∆Ho ≤ 35.495 kJ/mol) evidence that CR anions were endothermally adsorbed on Zn/Cu-FVSP via the ionic exchange mechanism. The superior Qmax values (434.78, 625.00, 833.33 mg/g), along with the cheapness and stability of the adsorbent used in this work, are evidence to confirm that this adsorbent will receive special interest in the field of contaminated water purification.
Collapse
|
5
|
Sanap D, Avhad L, Ghotekar S, Gaikwad ND. Green synthesis and characterization of mixed-phase Fe2O3 nanorods as a novel magnetically recoverable heterogeneous catalyst for Biginelli synthesis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
6
|
Nguyen DTC, Tran TV, Nguyen TTT, Nguyen DH, Alhassan M, Lee T. New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159278. [PMID: 36216068 DOI: 10.1016/j.scitotenv.2022.159278] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Above 1000 invasive species have been growing and developing ubiquitously on Earth. With extremely vigorous adaptability, strong reproduction, and spreading powers, invasive species have posed an alarming threat to indigenous plants, water quality, soil, as well as biodiversity. It was estimated that an economic loss of billions of dollars or equivalent to 1 % of gross domestic product as a consequence of lost crops, control efforts, and damage costs caused by invasive plants in the United States. While eradicating invasive plants from the ecosystems is practically infeasible, taking advantage of invasive plants as a sustainable, locally available, and zero-cost source to provide valuable phytochemicals for bionanoparticles fabrication is worth considering. Here, we review the harms, benefits, and role of invasive species as important botanical sources to extract natural compounds such as piceatannol, resveratrol, and quadrangularin-A, flavonoids, and triterpenoids, which are linked tightly to the formation and application of bionanoparticles. As expected, the invasive plant-mediated bionanoparticles have exhibited outstanding antibacterial, antifungal, anticancer, and antioxidant activities. The mechanism of biomedical activities of the invasive plant-mediated bionanoparticles was insightfully addressed and discussed. We also expect that this review not only contributes to efforts to combat invasive plant species but also opens new frontiers of bionanoparticles in the biomedical applications, therapeutic treatment, and smart agriculture.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Mansur Alhassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB 2134, Airport Road, Sokoto, Nigeria
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
7
|
Riaz T, Munnwar A, Shahzadi T, Zaib M, Shahid S, Javed M, Iqbal S, Rizwan K, Waqas M, Khalid B, Awwad NS, Ibrahium HA, Bajaber MA. Phyto-mediated synthesis of nickel oxide (NiO) nanoparticles using leaves’ extract of Syzygium cumini for antioxidant and dyes removal studies from wastewater. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Alnehia A, Al-Hammadi A, Al-Sharabi A, Alnahari H. Optical, structural and morphological properties of ZnO and Fe+3 doped ZnO-NPs prepared by Foeniculum vulgare extract as capping agent for optoelectronic applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Potassium permanganate dye removal from synthetic wastewater using a novel, low-cost adsorbent, modified from the powder of Foeniculum vulgare seeds. Sci Rep 2022; 12:4547. [PMID: 35296772 PMCID: PMC8927404 DOI: 10.1038/s41598-022-08543-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/08/2022] Open
Abstract
In this study, Seeds powder of Foeniculum vulgare was used to prepare a novel adsorbent, the modification of the prepared adsorbent was done by each of ZnCl2, oxalic acid, and CuS, all samples have been characterized by different techniques and examined for Potassium permanganate (KMnO4) adsorption. Among the four modified and unmodified adsorbents, the sample modified by oxalic acid has the highest percentage removal for KMnO4 adsorption (%R = 89.36). The impact of KMnO4 concentration, adsorbent dose, contact temperature, contact time, and solution pH on the adsorption performance was also investigated. The experimental data of this adsorption was analyzed by different kinetic and isotherm models. As Constants of thermodynamic ΔG°, ΔH°, and ΔS° have been also evaluated. Surface area, pore volume, and pore size of the modified oxalic acid F. vulgare seeds powder adsorbent were determined as 0.6806 m2 g-1, 0.00215 cm3 g-1, and 522.063 Å, as pHZPC also was stated to be 7.2. The R2 values obtained from applying different isotherm and kinetic models (0.999 and 0.996) showed that the adsorption performance of KMnO4 follows the Langmuir and Pseudo 2nd order models. Furthermore, high adsorption capacities of 1111.11, 1250.00, and 1428.57 mg g-1 were achieved at three temperatures that were used in this study. Constants of thermodynamic ΔG°, ΔH°, and ΔS° values indicate chemical and spontaneous adsorption at the adsorbent surface. Therefore, the modified adsorbent can be used to remove KMnO4 dye from pollutant water samples.
Collapse
|
10
|
Polyvinylpyrrolidone and graphene-modified hematite nanoparticles for efficient electrocatalytic oxidation of p-nitrophenol. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05146-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Arumugam V, Moodley KG, Dass A, Gengan RM, Ali D, Alarifi S, Chandrasekaran M, Gao Y. Ionic liquid covered iron-oxide magnetic nanoparticles decorated zeolite nanocomposite for excellent catalytic reduction and degradation of environmental toxic organic pollutants and dyes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Lin Z, Weng X, Khan NI, Owens G, Chen Z. Removal mechanism of Sb(III) by a hybrid rGO-Fe/Ni composite prepared by green synthesis via a one-step method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147844. [PMID: 34134369 DOI: 10.1016/j.scitotenv.2021.147844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The annual influx of antimony (Sb) into the environment due to the widespread use of Sb compounds in industry and agriculture has become of global concern. Herein, a functional nanomaterial composite based on loading bimetallic iron/nickel nanoparticles on reduced graphene oxide (rGO-Fe/Ni) was initially prepared in a one-step phytogenic synthesis using a green tea extract. Subsequently, when applied for Sb(III) removal, the removal efficiency of rGO-Fe/Ni reached 69.7% within 3 h at an initial Sb concentration of 1.0 mg·L-1. Advanced materials characterization via scanning electron microscopy-energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy revealed that Sb(III) was initially adsorbed onto the surface of rGO and then oxidized to Sb(V). This result was also supported by adsorption isotherm, kinetics, and thermodynamic analysis. These studies revealed that the adsorption was spontaneous and endothermic, following a Langmuir adsorption model with pseudo-second-order kinetics and allowed a Sb(III) removal mechanism based on adsorption and catalytic oxidation to be proposed. Furthermore, when rGO-Fe/Ni was practically used to remove Sb(III) in groundwater a 95.7% removal efficiency was obtained at 1 mg·L-1 Sb(III), thus successfully demonstrating that rGO-Fe/Ni has significant potential for the practical remediation of Sb contaminated groundwater.
Collapse
Affiliation(s)
- Ze Lin
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Xiulan Weng
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Nasreen Islam Khan
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Zuliang Chen
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| |
Collapse
|
13
|
Alrowaili ZA, Taha TA, El-Nasser KS, Donya H. Significant Enhanced Optical Parameters of PVA-Y2O3 Polymer Nanocomposite Films. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01995-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|