1
|
Dien ND, Thu Ha PT, Vu XH, Trang TT, Thanh Giang TD, Dung NT. Developing efficient CuO nanoplate/ZnO nanoparticle hybrid photocatalysts for methylene blue degradation under visible light. RSC Adv 2023; 13:24505-24518. [PMID: 37593668 PMCID: PMC10427893 DOI: 10.1039/d3ra03791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
CuO/ZnO nanocomposites with different components can overcome the drawbacks of previously used photocatalysts owing to their promotion in charge separation and transportation, light absorption, and the photo-oxidation of dyes. In this study, CuO nanoplates were synthesized by the hydrothermal method, while ZnO nanoparticles were fabricated by the precipitation method. A series of CuO/ZnO nanocomposites with different ZnO-to-CuO weight ratios, namely, 2 : 8, 4 : 6, 5 : 5, 6 : 4, and 8 : 2 were obtained via a mixing process. X-ray diffraction patterns confirmed the presence of hexagonal wurtzite ZnO and monoclinic CuO in the synthesized CuO/ZnO nanocomposites. Scanning electron microscopy showed the dispersion of ZnO nanoparticles on the surface of CuO nanoplates. Ultraviolet-visible absorption spectra exhibited a slight red-shift in the absorption edge of binary oxides relative to pure ZnO or CuO. All samples were employed for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The composite samples exhibited enhanced photocatalytic performance compared with pristine CuO or ZnO. This study aimed to examine the effect of the ZnO-to-CuO weight ratio on their photocatalytic performance. The results indicated that among all the synthesized nanocomposites and pristine oxides, the nanocomposite with ZnO and CuO in a proportion of 4 : 6 shows the highest photodegradation activity for the removal of MB with 93% MB photodegraded within 60 min at an initial MB concentration of 5 ppm. The photocatalytic kinetic data were described well by the pseudo-first-order model with a high correlation coefficient of 0.95. The photocatalytic mechanism of the mixed metal oxide was proposed and discussed in detail. The photodegradation characteristic of CuO/ZnO nanostructures is valuable for methylene blue degradation from aqueous solutions as well as environmental purification in various fields.
Collapse
Affiliation(s)
- Nguyen Dac Dien
- Faculty of Occupational Safety and Health, Vietnam Trade Union University 169 Tay Son Street, Dong Da district Ha Noi city 100000 Vietnam
| | - Pham Thi Thu Ha
- Faculty of Chemistry, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| | - Xuan Hoa Vu
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| | - Tran Thu Trang
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| | - Trinh Duc Thanh Giang
- Dao Duy Tu High School Chu Van An road, Hoang Van Thu ward Thai Nguyen city 24000 Vietnam
| | - Nguyen Thi Dung
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| |
Collapse
|
2
|
Liu Q, Xu M, Meng Y, Chen S, Yang S. Magnetic CoFe 1.95Y 0.05O 4-Decorated Ag 3PO 4 as Superior and Recyclable Photocatalyst for Dye Degradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4659. [PMID: 37444973 DOI: 10.3390/ma16134659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
The Ag3PO4/CoFe1.95Y0.05O4 nanocomposite with magnetic properties was simply synthesized by the hydrothermal method. The structure and morphology of the prepared material were characterized, and its photocatalytic activity for degradation of the methylene blue and rhodamine B dyes was also tested. It was revealed that the Ag3PO4 in the nanocomposite exhibited a smaller size and higher efficiency in degrading dyes than the individually synthesized Ag3PO4 when exposed to light. Furthermore, the magnetic properties of CoFe1.95Y0.05O4 enabled the nanocomposite to possess magnetic separation capabilities. The stable crystal structure and effective degradation ability of the nanocomposite were demonstrated through cyclic degradation experiments. It was shown that Ag3PO4/CoFe1.95Y0.05O4-0.2 could deliver the highest activity and stability in degrading the dyes, and 98% of the dyes could be reduced within 30 min. Additionally, the photocatalytic enhancement mechanism and cyclic degradation stability of the magnetic nanocomposites were also proposed.
Collapse
Affiliation(s)
- Qingwang Liu
- School of Chemistry and Materials Engineering, New Energy Materials and Technology Research Center, Huainan Research Center of New Carbon Energy Materials, Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| | - Mai Xu
- School of Chemistry and Materials Engineering, New Energy Materials and Technology Research Center, Huainan Research Center of New Carbon Energy Materials, Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| | - Ying Meng
- School of Chemistry and Materials Engineering, New Energy Materials and Technology Research Center, Huainan Research Center of New Carbon Energy Materials, Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| | - Shikun Chen
- School of Chemistry and Materials Engineering, New Energy Materials and Technology Research Center, Huainan Research Center of New Carbon Energy Materials, Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| | - Shiliu Yang
- School of Chemistry and Materials Engineering, New Energy Materials and Technology Research Center, Huainan Research Center of New Carbon Energy Materials, Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
3
|
Zhang Y, Zhou B, Chen H, Yuan R. Heterogeneous photocatalytic oxidation for the removal of organophosphorus pollutants from aqueous solutions: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159048. [PMID: 36162567 DOI: 10.1016/j.scitotenv.2022.159048] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Organophosphorus pollutants (OPs), which are compounds containing carbon‑phosphorus bonds or phosphate derivatives containing organic groups, have received much attention from researchers because of their persistence in the aqueous environment for long periods of time and the threat they pose to human health. Heterogeneous photocatalysis has been widely applied to the removal of OPs from aqueous solutions due to its better removal effect and environmental friendliness. In this review, the removal of OPs from aqueous matrices by heterogeneous photocatalysis was presented. Herein, the application and the heterogeneous photocatalysis mechanism of OPs were described in detail, and the effects of catalyst types on degradation effect are discussed categorically. In particular, the heterojunction type photocatalyst has the most excellent effect. After that, the photocatalytic degradation pathways of several OPs were summarized, focusing on the organophosphorus pesticides and organophosphorus flame retardants, such as methyl parathion, dichlorvos, dimethoate and chlorpyrifos. The toxicity changes during degradation were evaluated, indicating that the photocatalytic process could effectively reduce the toxicity of OPs. Additionally, the effects of common water matrices on heterogeneous photocatalytic degradation of OPs were also presented. Finally, the challenges and perspectives of heterogeneous photocatalysis removal of OPs are summarized and presented.
Collapse
Affiliation(s)
- Yujie Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Oladipo SD, Omondi B. Photodegradation of crystal violet dye in water using octadecylamine-capped CdS nanoparticles synthesized from Cd(II) N,N′-diarylformamidine dithiocarbamates and their 2,2-bipyridine adducts. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Segun D. Oladipo
- School of Chemistry and Physics, Westville Campus, University of Kwazulu-Natal, Durban, South Africa
- Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Bernard Omondi
- School of Chemistry and Physics, Westville Campus, University of Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Simple synthesis of Ag nanoparticles /Cu2O cube photocatalyst at room temperature: Efficient electron transfer improves photocatalytic performance. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Chen Q, Hao Y, Song Z, Liu M, Chen D, Zhu B, Chen J, Chen Z. Optimization of photocatalytic degradation conditions and toxicity assessment of norfloxacin under visible light by new lamellar structure magnetic ZnO/g-C 3N 4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112742. [PMID: 34500386 DOI: 10.1016/j.ecoenv.2021.112742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Degradation of norfloxacin (NFX) by zinc oxide (ZnO)/g-C3N4, a magnetic sheet ZnO with g-C3N4 on its surface was studied. Through a new preparation system method, hydrothermal reaction provides a solid-layered magnetic ZnO material basis, and the simple thermal condensation method was used to transform the urea into g-C3N4 on the magnetic sheet ZnO in a uniform and orderly manner to increase the stability and photocatalytic performance of the material. Compared with previous studies, the pore volume and photocatalytic performance of the material are improved, and became more stable. By studying the degradation effect of basic and photocatalytic materials prepared in different proportions, the kinetic constant of ZGF is 0.01446 (min-1). The response surface methodology (RSM) was used to study the optimization and effect of solution pH (4-12), photocatalyst concentration (0.2-1.8 g/L), and NFX concentration (3-15 mg/L) on the degradation rate of NFX during photocatalytic degradation. The R2 value of the RSM model was 0.9656. The NFX removal rate is higher than 90% when the amount of catalyst is 1.43 g/L, the solution pH is 7.12, and the NFX concentration is less than 8.61 mg/L. After 5 cycles, the degradation rate of magnetic materials decreased to 92.8% of the first time. The capture experiment showed that the photocatalytic machine Toxicities was mainly hole action. The TOC removal rate within 2 h was 30%, a special intermediate toxicity analysis method was adopted according to the characteristics of NFX's inhibitory effect on Escherichia coli community. The toxicity of degraded NFX solution disappeared, and the possibility of non-toxic harm of by-products was verified. LC-Q-TOF method was used to detect and analyze various intermediate products converted from NFX after photocatalytic degradation, and the photocatalytic degradation pathway of NFX was proposed.
Collapse
Affiliation(s)
- Qingguo Chen
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China; School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yan Hao
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhao Song
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mei Liu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China; School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Dongzhi Chen
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China; School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Baikang Zhu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China; School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jianmeng Chen
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China; School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering & Computer Sciences, Concordia University, Montreal, Quebec H3G1M8, Canada
| |
Collapse
|