1
|
Guarín-González YA, Cabello-Guzmán G, Reyes-Gasga J, Moreno-Navarro Y, Vergara-González L, Martin-Martín A, López-Muñoz R, Cárdenas-Triviño G, Barraza LF. Dual-Action Gemcitabine Delivery: Chitosan-Magnetite-Zeolite Capsules for Targeted Cancer Therapy and Antibacterial Defense. Gels 2024; 10:672. [PMID: 39451325 PMCID: PMC11507657 DOI: 10.3390/gels10100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer and infectious diseases are two of the world's major public health problems. Gemcitabine (GEM) is an effective chemotherapeutic agent against several types of cancer. In this study, we developed macrocapsules incorporating GEM into a chitosan matrix blended with magnetite and zeolite by ionic gelation. Physicochemical characterization was performed using HRTEM-ED, XRD, FESEM-EDS, FT-IR, TGA, encapsulation efficiency (%E.E.), and release profiles at pHs 7.4 and 5.0. Cell viability tests against A549 and H1299 cell lines, and microbiological properties against staphylococcal strains were performed. Our results revealed the successful production of hemispherical capsules with an average diameter of 1.22 mm, a rough surface, and characteristic FT-IR material interaction bands. The macrocapsules showed a high GEM encapsulation efficiency of over 86% and controlled release over 24 h. Cell viability assays revealed that similar cytotoxic effects to free GEM were achieved with a 45-fold lower GEM concentration, suggesting reduced dosing requirements and potentially fewer side effects. Additionally, the macrocapsules demonstrated potent antimicrobial activity, reducing Staphylococcus epidermidis growth by over 90%. These results highlight the macrocapsules dual role as a chemotherapeutic and antimicrobial agent, offering a promising strategy for treating lung cancer in patients at risk of infectious diseases or who are immunosuppressed.
Collapse
Affiliation(s)
- Yuly Andrea Guarín-González
- Laboratorio Térmico de Nano y Macromateriales, Edificio de Procesos Sustentables, Departamento de Ingeniería en Maderas, Universidad del Bío-Bío, Concepción 4081112, Chile;
| | - Gerardo Cabello-Guzmán
- Facultad de Ciencias, Departamento de Biología y Química, Universidad del Bío-Bío, Chillán 3780000, Chile;
| | - José Reyes-Gasga
- Instituto de Física, Departamento de Materia Condensada, Universidad Autónoma de México, Coyoacán 04510, Mexico;
| | - Yanko Moreno-Navarro
- Facultad de Ciencias, Departamento de Química, Universidad de la Serena, La Serena 1720170, Chile;
| | - Luis Vergara-González
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4060000, Chile;
| | - Antonia Martin-Martín
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (A.M.-M.); (R.L.-M.)
| | - Rodrigo López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (A.M.-M.); (R.L.-M.)
| | - Galo Cárdenas-Triviño
- Laboratorio Térmico de Nano y Macromateriales, Edificio de Procesos Sustentables, Departamento de Ingeniería en Maderas, Universidad del Bío-Bío, Concepción 4081112, Chile;
| | - Luis F. Barraza
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, General Lagos 1163, Valdivia 5090000, Chile
| |
Collapse
|
2
|
Ulusal H, Ulusal F, Özdemir N. Development of mesoporous magnetic nanoparticles supported idarubicin and investigation of apoptotic and cytotoxic effects on cancer cell lines. Mol Biol Rep 2024; 51:975. [PMID: 39259442 DOI: 10.1007/s11033-024-09914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Many methods are used for cancer treatment, especially chemotherapy. In addition to the their therapeutic effects, chemotherapeutic drugs also have serious disadvantages, such as not being cell and tissue-specific, causing toxicity in many tissues, and developing drug resistance. Many methods, especially nanocarriers, have been designed to overcome these disadvantages. METHODS AND RESULTS In this study, we synthesized mesoporous silica iron oxide nanoparticles with different pore diameters and loaded idarubicin (6MFe3O4-NH2-IDA and 35MFe3O4-NH2-IDA). The synthesized molecules were characterized using FT-IR, XRD, and SEM methods. The cytotoxic effects of unbound idarubicin and idarubicin-loaded nanoparticles on MCF7 and HL-60 cell lines were examined by MTT test. Additionally, the expression of anti-apoptotic (Survivin and BCL-2) and apoptotic (BAX, PUMA, and NOXA) genes of the nanoparticles were measured by PCR method. As a result of the analyses, it was seen that nanoparticles with the desired properties and sizes were synthesized. In MTT analysis, it was observed that both nanoparticles dramatically decreased the IC50 value in cell lines. However, the 35MFe3O4-NH2-IDA molecule was found to have lower IC50 values. IC50 values for pristine IDA, 6MFe3O4-NH2, and 35MFe3O4-NH2 at 24 h were found to be 3.56, 1.24 and 0.25 µM in the MCF7 cell line and 4.15, 1.16 and 0.34 µM in the HL-60 cell line, respectively. Additionally, apoptotic gene expression increased, and anti-apoptotic gene expression decreased. CONCLUSIONS Our study demonstrates that the effectiveness of idarubicin can be significantly enhanced by its application with mesoporous nanocarriers. This enhancement is attributed to the controlled release of idarubicin from the nanocarrier, which circumvents drug resistance mechanisms, improves drug solubility, and increases the drug-carrying capacity per unit volume due to the porous structure of the carrier. These findings underscore the potential of the synthesized nanocarrier in cancer treatment and provide a clear direction for future research in this field.
Collapse
Affiliation(s)
- Hasan Ulusal
- Department of Medical Biochemistry, Gaziantep University, Gaziantep, 27310, Türkiye.
| | - Fatma Ulusal
- Department of Chemistry and Chemical Process Technologies, Mersin Tarsus Organized Industrial Zone Technical Sciences Vocational School, Tarsus University, Mersin, 33100, Türkiye
| | - Nalan Özdemir
- Department of Chemistry, Erciyes University, Kayseri, 38039, Türkiye
| |
Collapse
|
3
|
Motorzhina AV, Pshenichnikov SE, Anikin AA, Belyaev VK, Yakunin AN, Zarkov SV, Tuchin VV, Jovanović S, Sangregorio C, Rodionova VV, Panina LV, Levada KV. Gold/cobalt ferrite nanocomposite as a potential agent for photothermal therapy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300475. [PMID: 38866730 DOI: 10.1002/jbio.202300475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/14/2024]
Abstract
The study encompasses an investigation of optical, photothermal and biocompatibility properties of a composite consisting of golden cores surrounded by superparamagnetic CoFe2O4 nanoparticles. Accompanied with the experiment, the computational modeling reveals that each adjusted magnetic nanoparticle redshifts the plasmon resonance frequency in gold and nonlinearly increases the extinction cross-section at ~800 nm. The concentration dependent photothermal study demonstrates a temperature increase of 8.2 K and the photothermal conversion efficiency of 51% for the 100 μg/mL aqueous solution of the composite nanoparticles, when subjected to a laser power of 0.5 W at 815 nm. During an in vitro photothermal therapy, a portion of the composite nanoparticles, initially seeded at this concentration, remained associated with the cells after washing. These retained nanoparticles effectively heated the cell culture medium, resulting in a 22% reduction in cell viability after 15 min of the treatment. The composite features a potential in multimodal magneto-plasmonic therapies.
Collapse
Affiliation(s)
- Anna V Motorzhina
- Institute of High Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | | | - Anton A Anikin
- Institute of High Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Victor K Belyaev
- Institute of High Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alexander N Yakunin
- Institute of Precision Mechanics and Control, Federal Research Centre "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia
| | - Sergey V Zarkov
- Institute of Precision Mechanics and Control, Federal Research Centre "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia
| | - Valery V Tuchin
- Institute of Precision Mechanics and Control, Federal Research Centre "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Sonja Jovanović
- Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Advanced Materials Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Claudio Sangregorio
- Istituto di Chimica dei Composti OrganoMetallici, CNR Sesto Fiorentino, Florence, Italy
| | - Valeria V Rodionova
- Institute of High Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Larissa V Panina
- Institute of High Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Institute of Novel Materials and Nanotechnology, National University of Science and Technology MISiS, Moscow, Russia
| | - Kateryna V Levada
- Institute of High Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
4
|
Shahbazi R, Behbahani FK. Synthesis, modifications, and applications of iron-based nanoparticles. Mol Divers 2024:10.1007/s11030-023-10801-9. [PMID: 38740610 DOI: 10.1007/s11030-023-10801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/22/2023] [Indexed: 05/16/2024]
Abstract
Magnetic nanoparticles (MNPs) are appealing materials as assistant to resolve environmental pollution issues and as recyclable catalysts for the oxidative degradation of resistant contaminants. Moreover, they can significantly influence the advancement of medical applications for imaging, diagnostics, medication administration, and biosensing. On the other hand, due to unique features, excellent biocompatibility, high curie temperatures and low cytotoxicity of the Iron-based nanoparticles, they have received increasing attention in recent years. Using an external magnetic field, in which the ferrite magnetic nanoparticles (FMNPs) in the reaction mixtures can be easily removed, make them more efficient approach than the conventional method for separating the catalyst particles by centrifugation or filtration. Ferrite magnetic nanoparticles (FMNPs) provide various advantages in food processing, environmental issues, pharmaceutical industry, sample preparation, wastewater management, water purification, illness therapy, identification of disease, tissue engineering, and biosensor creation for healthcare monitoring. Modification of FMNPs with the proper functional groups and surface modification techniques play a significant role in boosting their capability. Due to flexibility of FMNPs in functionalization and synthesis, it is possible to make customized FMNPs that can be utilized in variety of applications. This review focuses on synthesis, modifications, and applications of Iron-based nanoparticles.
Collapse
Affiliation(s)
- Raheleh Shahbazi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
5
|
Nasaj M, Farmany A, Shokoohizadeh L, Jalilian FA, Mahjoub R, Roshanaei G, Nourian A, Shayesteh OH, Arabestani M. Vancomycin and nisin-modified magnetic Fe 3O 4@SiO 2 nanostructures coated with chitosan to enhance antibacterial efficiency against methicillin resistant Staphylococcus aureus (MRSA) infection in a murine superficial wound model. BMC Chem 2024; 18:43. [PMID: 38395982 PMCID: PMC10893753 DOI: 10.1186/s13065-024-01129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The objective of this research was to prepare some Fe3O4@SiO2@Chitosan (CS) magnetic nanocomposites coupled with nisin, and vancomycin to evaluate their antibacterial efficacy under both in vitro and in vivo against the methicillin-resistant Staphylococcus. aureus (MRSA). METHODS In this survey, the Fe3O4@SiO2 magnetic nanoparticles (MNPs) were constructed as a core and covered the surface of MNPs via crosslinking CS by glutaraldehyde as a shell, then functionalized with vancomycin and nisin to enhance the inhibitory effects of nanoparticles (NPs). X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS) techniques were then used to describe the nanostructures. RESULTS Based on the XRD, and FE-SEM findings, the average size of the modified magnetic nanomaterials were estimated to be around 22-35 nm, and 34-47 nm, respectively. The vancomycin was conjugated in three polymer-drug ratios; 1:1, 2:1 and 3:1, with the percentages of 45.52%, 35.68%, and 24.4%, respectively. The polymer/drug ratio of 1:1 exhibited the slowest release rate of vancomycin from the Fe3O4@SiO2@CS-VANCO nanocomposites during 24 h, which was selected to examine their antimicrobial effects under in vivo conditions. The nisin was grafted onto the nanocomposites at around 73.2-87.2%. All the compounds resulted in a marked reduction in the bacterial burden (P-value < 0.05). CONCLUSION The vancomycin-functionalized nanocomposites exhibited to be more efficient in eradicating the bacterial cells both in vitro and in vivo. These findings introduce a novel bacteriocin-metallic nanocomposite that can suppress the normal bacterial function on demand for the treatment of MRSA skin infections.
Collapse
Affiliation(s)
- Mona Nasaj
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Leili Shokoohizadeh
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Farid Aziz Jalilian
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Park Mardome, Hamadan, Islamic Republic of Iran
| | - Reza Mahjoub
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Ghodratollah Roshanaei
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Park Mardome, Hamadan, Islamic Republic of Iran
| | - Alireza Nourian
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Islamic Republic of Iran
| | - Omid Heydari Shayesteh
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Mohammadreza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran.
| |
Collapse
|
6
|
Xiang X, Xing G, Liu Y, Wen Q, Wei Y, Lu J, Chen Y, Ji Y, Chen S, Liu T, Shang Y. Immunomagnetic Separation Combined with RCA-CRISPR/Cas12a for the Detection of Salmonella typhimurium on a Figure-Actuated Microfluidic Biosensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13518-13526. [PMID: 37658470 DOI: 10.1021/acs.jafc.3c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
A figure-actuated microfluidic biosensor was developed for the rapid and sensitive detection of Salmonella typhimurium using immunomagnetic separation to separate target bacteria and rolling circle amplification (RCA) combined with CRISPR/Cas12a to amplify the detection signal. The magnetic nanoparticles (MNPs) modified with the capture antibodies (MNPs@Ab1) and RCA primer linked with recognized antibodies (primer@Ab2) were first used to react with S. typhimurium, resulting in the formation of MNPs@Ab1-S. typhimurium-primer@Ab2 complexes. Then, the RCA and CRISPR/Cas12a reagents were successively pumped into the chamber and incubated at the appropriate conditions. With the help of a 3D-printed signal detector, the fluorescence signal was collected and analyzed using the smartphone APP for the determination of bacterial concentration. This biosensor exhibited a wide linear range for the detection of S. typhimurium with a low limit of detection of 1.93 × 102 CFU/mL and a mean recovery of about 106% in the spiked milk sample.
Collapse
Affiliation(s)
- Xinran Xiang
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Gaowa Xing
- Xining Urban Vocational & Technical College, Xining 810000, China
| | - Yuting Liu
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Qianyu Wen
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuhuan Wei
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Jiaran Lu
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuanyuan Chen
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuhan Ji
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Shuhan Chen
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tingting Liu
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuting Shang
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
7
|
Al Abdullah S, Najm L, Ladouceur L, Ebrahimi F, Shakeri A, Al-Jabouri N, Didar TF, Dellinger K. Functional Nanomaterials for the Diagnosis of Alzheimer's Disease: Recent Progress and Future Perspectives. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2302673. [PMID: 39309539 PMCID: PMC11415277 DOI: 10.1002/adfm.202302673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 09/25/2024]
Abstract
Alzheimer's disease (AD) is one of the main causes of dementia worldwide, whereby neuronal death or malfunction leads to cognitive impairment in the elderly population. AD is highly prevalent, with increased projections over the next few decades. Yet current diagnostic methods for AD occur only after the presentation of clinical symptoms. Evidence in the literature points to potential mechanisms of AD induction beginning before clinical symptoms start to present, such as the formation of amyloid beta (Aβ) extracellular plaques and neurofibrillary tangles (NFTs). Biomarkers of AD, including Aβ 40, Aβ 42, and tau protein, amongst others, show promise for early AD diagnosis. Additional progress is made in the application of biosensing modalities to measure and detect significant changes in these AD biomarkers within patient samples, such as cerebral spinal fluid (CSF) and blood, serum, or plasma. Herein, a comprehensive review of the emerging nano-biomaterial approaches to develop biosensors for AD biomarkers' detection is provided. Advances, challenges, and potential of electrochemical, optical, and colorimetric biosensors, focusing on nanoparticle-based (metallic, magnetic, quantum dots) and nanostructure-based biomaterials are discussed. Finally, the criteria for incorporating these emerging nano-biomaterials in clinical settings are presented and assessed, as they hold great potential for enhancing early-onset AD diagnostics.
Collapse
Affiliation(s)
- Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Lubna Najm
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Liane Ladouceur
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Nadine Al-Jabouri
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- Institute for Infectious Disease Research (IIDR), 1280 Main St W, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| |
Collapse
|
8
|
Gyulasaryan H, Kuzanyan A, Manukyan A, Mukasyan AS. Combustion Synthesis of Magnetic Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1902. [PMID: 37446418 DOI: 10.3390/nano13131902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Combustion synthesis is a green, energy-saving approach that permits an easy scale-up and continuous technologies. This process allows for synthesizing various nanoscale materials, including oxides, nitrides, sulfides, metals, and alloys. In this work, we critically review the reported results on the combustion synthesis of magnetic nanoparticles, focusing on their properties related to different bio-applications. We also analyze challenges and suggest specific directions of research, which lead to the improvement of the properties and stability of fabricated materials.
Collapse
Affiliation(s)
- Harutyun Gyulasaryan
- Institute for Physical Research, National Academy of Sciences of Armenia, Ashtarak-2, Ashtarak 0204, Armenia
| | - Astghik Kuzanyan
- Institute for Physical Research, National Academy of Sciences of Armenia, Ashtarak-2, Ashtarak 0204, Armenia
| | - Aram Manukyan
- Institute for Physical Research, National Academy of Sciences of Armenia, Ashtarak-2, Ashtarak 0204, Armenia
| | - Alexander S Mukasyan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
9
|
Sarani M, Hamidian K, Barani M, Adeli‐Sardou M, Khonakdar HA. α-Fe 2 O 3 @Ag and Fe 3 O 4 @Ag Core-Shell Nanoparticles: Green Synthesis, Magnetic Properties and Cytotoxic Performance. ChemistryOpen 2023; 12:e202200250. [PMID: 37260410 PMCID: PMC10235882 DOI: 10.1002/open.202200250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/22/2023] [Indexed: 06/02/2023] Open
Abstract
This work provides the synthetic route for the arrangement of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell nanoparticles (NPs) with cytotoxic capabilities. The production of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell NPs was facilitated utilizing S. persica bark extracts. The results of Powder X-ray Diffraction (PXRD), Ultraviolet-visible (UV-Vis) spectroscopy, Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray (EDX) analysis, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM) supported the green synthesis and characterization of Fe3 O4 @Ag and α-Fe2 O3 @Ag NPs. The particle size was measured by the TEM analysis to be about 30 and 50 nm, respectively; while the results of FESEM showed that α-Fe2 O3 @Ag and Fe3 O4 @Ag particles contained multifaceted particles with a size of 50-60 nm and 20-25 nm, respectively. The outcomes of VSM were indicative of a saturation magnetization of 37 and 0.18 emu/g at room temperature, respectively. The potential cytotoxicity of the synthesized core-shell nanoparticles towards breast cancer (MCF-7) and human umbilical vein endothelial (HUVEC) cells was evaluated by an MTT assay. α-Fe2 O3 @Ag NPs were able to destroy 100 % of MCF-7 cell at doses above 80 μg/mL, and it was confirmed that Fe3 O4 @Ag NPs at a volume of 160 μg/mL can destroy 90 % of MCF-7 cells. Thus, the applicability of the prepared nanoparticles of these nanoparticles in biological and medical fields has been demonstrated.
Collapse
Affiliation(s)
- Mina Sarani
- Zabol Medicinal Plants Research CenterZabol University of Medical SciencesShahid Rajaei StreetZabolIran
| | - Khadijeh Hamidian
- Department of PharmaceuticsFaculty of PharmacyZabol University of Medical SciencesShahid Rajaei StreetZabolIran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesHaft-Bagh HighwayKermanIran
| | - Mahboubeh Adeli‐Sardou
- Herbal and Traditional Medicines Research CenterKerman University of Medical SciencesHaft-Bagh HighwayKermanIran
- Department of BiotechnologyInstitute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyThe end of Haft Bagh Alavi HighwayKermanIran
| | - Hossein Ali Khonakdar
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteKaraj HighwayTehranIran
| |
Collapse
|
10
|
Study of the Possibility of Using Sol–Gel Technology to Obtain Magnetic Nanoparticles Based on Transition Metal Ferrites. Gels 2023; 9:gels9030217. [PMID: 36975666 PMCID: PMC10048471 DOI: 10.3390/gels9030217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The article presents results for the magnetic nanoparticles sol–gel method synthesis of cobalt (II) ferrite and organic–inorganic composite materials based on it. The obtained materials were characterized using X-ray phase analysis, scanning and transmission electron microscopy, Scherrer, Brunauer–Emmett–Teller (BET) methods. A composite materials formation mechanism is proposed, which includes a gelation stage where transition element cation chelate complexes react with citric acid and subsequently decompose under heating. The fundamental possibility of obtaining an organo–inorganic composite material based on cobalt (II) ferrite and an organic carrier using the presented method has been proved. Composite materials formation is established to lead to a significant (5–9 times) increase in the sample surface area. Materials with a developed surface are formed: the surface area measured by the BET method is 83–143 m2/g. The resulting composite materials have sufficient magnetic properties to be mobile in a magnetic field. Consequently, wide possibilities for polyfunctional materials synthesis open up for various applications in medicine.
Collapse
|
11
|
Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B. Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 2023; 157:114062. [PMID: 36469969 DOI: 10.1016/j.biopha.2022.114062] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, however there are several shortcomings in current diagnostic and therapeutic measures. In terms of diagnosis, the diagnostic tools currently available are not sufficiently sensitive and specific, and imaging is poor, leading to misdiagnosis and missed diagnoses, which can delay treatment. In terms of treatment, current treatment options include surgery, chemotherapy, immunotherapy, gene therapy, and other emerging treatments, as well as combination therapies. However, the main reasons for poor efficacy and side effects during treatment are the lack of specificity and targeting, improper dose control of drugs and photosensitizers, damage to normal cells while attacking cancer cells, and difficulty in delivering siRNA to cancer cells. Nanomedicine is an emerging approach. Among the many nanotechnologies applied in the medical field, nanocarrier-assisted drug delivery systems have attracted extensive research interest due to their great translational value. Well-designed nanoparticles can deliver agents or drugs to specific cell types within target organs through active targeting or passive targeting (enhanced permeability and retention), which allows for imaging, diagnosis, as well as treatment of cancer. This paper reviews advances in the application of various nanocarriers and their advantages and drawbacks, with a focus on their use in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Huanhuan Geng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinzhe Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
12
|
Ruíz-Baltazar ÁDJ, Reyes-López SY, Zamora Antuñano MA, Pérez R. Application of modified silicates with gold nanoparticles on environmental remediation: Study of non-linear kinetic adsorption models focused on heavy metals. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|