1
|
Stogniy MY, Anufriev SA, Bogdanova EV, Gorodetskaya NA, Anisimov AA, Suponitsky KY, Grishin ID, Sivaev IB. Charge-compensated nido-carborane derivatives in the synthesis of iron(II) bis(dicarbollide) complexes. Dalton Trans 2024. [PMID: 38264799 DOI: 10.1039/d3dt03549b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A series of stable iron(II) bis(dicarbollide) derivatives [8,8'-(RNHC(Et)HN)2-3,3'-Fe(1,2-C2B9H10)2] (R = Pr, R = Ph, (CH2)2OH, (CH2)3OH, (CH2)2NMe2) was prepared starting from FeCl2 or [FeCl2(dppe)] and the corresponding nido-carboranyl amidines [10-RNHC(Et)HN-7,8-C2B9H11]. In a similar way, the reactions of the oxonium derivatives of nido-carborane with FeCl2 in tetrahydrofuran in the presence of t-BuOK lead to the corresponding stable oxonium derivatives iron(II) bis(dicarbollide) [8,8'-(RR'O)2-3,3'-Fe(1,2-C2B9H10)2] (RR' = (CH2)4, (CH2)2O(CH2)2, (CH2)5; R = R' = Et), which can be alternatively prepared by the reaction of the parent iron(II) bis(dicarbollide) with tetrahydrofuran or 1,4-dioxane in the presence of Me2SO4. The cyclic voltammetry studies of the synthesized iron(II) bis(dicarbollide) derivatives revealed that the introduction of amidinium and oxonium substituents leads to a significant increase in the Fe2+/Fe3+ redox potential relative to the parent iron(II) bis(dicarbollide). The redox potentials of the oxonium derivatives are close to the redox potential of ferrocene and somewhat lower than redox potentials of sulfonium and phosphonium derivatives of iron(II) bis(dicarbollide).
Collapse
Affiliation(s)
- Marina Yu Stogniy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA - Russian Technological University, Moscow, Russia
| | - Sergey A Anufriev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
| | - Ekaterina V Bogdanova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA - Russian Technological University, Moscow, Russia
| | - Nadezhda A Gorodetskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA - Russian Technological University, Moscow, Russia
| | - Alexei A Anisimov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
| | - Kyrill Yu Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- G.V. Plekhanov Russian University of Economics, Moscow, Russia
| | - Ivan D Grishin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Igor B Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- Faculty of Chemistry, National Research University Higher School of Economics (HSE University), Moscow, Russia
| |
Collapse
|
2
|
Favaron C, Gabano E, Zanellato I, Gaiaschi L, Casali C, Bottone MG, Ravera M. Effects of Ferrocene and Ferrocenium on MCF-7 Breast Cancer Cells and Interconnection with Regulated Cell Death Pathways. Molecules 2023; 28:6469. [PMID: 37764244 PMCID: PMC10537025 DOI: 10.3390/molecules28186469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The effects of ferrocene (Fc) and ferrocenium (Fc+) induced in triple negative human breast cancer MCF-7 cells were explored by immunofluorescence, flow cytometry, and transmission electron microscopy analysis. The different abilities of Fc and Fc+ to produce reactive oxygen species and induce oxidative stress were clearly observed by activating apoptosis and morphological changes after treatment, but also after tests performed on the model organism D. discoideum, particularly in the case of Fc+. The induction of ferroptosis, an iron-dependent form of regulated cell death driven by an overload of lipid peroxides in cellular membranes, occurred after 2 h of treatment with Fc+ but not Fc. However, the more stable Fc showed its effects by activating necroptosis after a longer-lasting treatment. The differences observed in terms of cell death mechanisms and timing may be due to rapid interconversion between the two oxidative forms of internalized iron species (from Fe2+ to Fe3+ and vice versa). Potential limitations include the fact that iron metabolism and mitophagy have not been investigated. However, the ability of both Fc and Fc+ to trigger different and interregulated types of cell death makes them suitable to potentially overcome the shortcomings of traditional apoptosis-mediated anticancer therapies.
Collapse
Affiliation(s)
- Cristina Favaron
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (C.F.); (L.G.); (C.C.)
| | - Elisabetta Gabano
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Piazza S. Eusebio 5, 13100 Vercelli, Italy;
| | - Ilaria Zanellato
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Ludovica Gaiaschi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (C.F.); (L.G.); (C.C.)
| | - Claudio Casali
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (C.F.); (L.G.); (C.C.)
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (C.F.); (L.G.); (C.C.)
| | - Mauro Ravera
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
3
|
Ornelas C, Astruc D. Ferrocene-Based Drugs, Delivery Nanomaterials and Fenton Mechanism: State of the Art, Recent Developments and Prospects. Pharmaceutics 2023; 15:2044. [PMID: 37631259 PMCID: PMC10458437 DOI: 10.3390/pharmaceutics15082044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Ferrocene has been the most used organometallic moiety introduced in organic and bioinorganic drugs to cure cancers and various other diseases. Following several pioneering studies, two real breakthroughs occurred in 1996 and 1997. In 1996, Jaouen et al. reported ferrocifens, ferrocene analogs of tamoxifen, the chemotherapeutic for hormone-dependent breast cancer. Several ferrocifens are now in preclinical evaluation. Independently, in 1997, ferroquine, an analog of the antimalarial drug chloroquine upon the introduction of a ferrocenyl substituent in the carbon chain, was reported by the Biot-Brocard group and found to be active against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Ferroquine, in combination with artefenomel, completed phase IIb clinical evaluation in 2019. More than 1000 studies have been published on ferrocenyl-containing pharmacophores against infectious diseases, including parasitic, bacterial, fungal, and viral infections, but the relationship between structure and biological activity has been scarcely demonstrated, unlike for ferrocifens and ferroquines. In a majority of ferrocene-containing drugs, however, the production of reactive oxygen species (ROS), in particular the OH. radical, produced by Fenton catalysis, plays a key role and is scrutinized in this mini-review, together with the supramolecular approach utilizing drug delivery nanosystems, such as micelles, metal-organic frameworks (MOFs), polymers, and dendrimers.
Collapse
Affiliation(s)
- Catia Ornelas
- ChemistryX, R&D Department, R&D and Consulting Company, 9000-160 Funchal, Portugal
| | - Didier Astruc
- University of Bordeaux, ISM, UMR CNRS, No. 5255, 351 Cours de la Libération, CEDEX, 33405 Talence, France
| |
Collapse
|
4
|
Philipova I, Mihaylova R, Momekov G, Angelova R, Stavrakov G. Ferrocene modified analogues of imatinib and nilotinib as potent anti-cancer agents. RSC Med Chem 2023; 14:880-889. [PMID: 37252096 PMCID: PMC10211329 DOI: 10.1039/d3md00030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2024] Open
Abstract
The unique features of ferrocene and the need for development of targeted anticancer drugs inspired the design, synthesis and biological evaluation of ferrocenyl modified tyrosine kinase inhibitors by replacing the pyridyl moiety in imatinib and nilotinib generalized structures with a ferrocenyl group. A series of seven new ferrocene analogues were synthesized and evaluated for their anticancer activity in a panel of bcr-abl positive human malignant cell lines using imatinib as a reference drug. The metallocenes exhibited a dose-dependent inhibition on malignant cell growth with varying antileukemic activity. The most potent analogues were compounds 9 and 15a showing comparable or even superior efficacy to the reference. Their cancer selectivity indices suggest a favorable selectivity profile, indicating a 250 times higher preferential activity of 15a towards malignantly transformed K-562 cells and an even twice greater one (500) of 9 in the LAMA-84 leukemic model as compared to the normal murine fibroblast cell line.
Collapse
Affiliation(s)
- Irena Philipova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Acad. G. Bontchev str. Bl. 9 1113 Sofia Bulgaria
| | - Rositsa Mihaylova
- Faculty of Pharmacy, Medical University - Sofia Dunav str. 2 Sofia 1000 Bulgaria
| | - Georgi Momekov
- Faculty of Pharmacy, Medical University - Sofia Dunav str. 2 Sofia 1000 Bulgaria
| | - Rostislava Angelova
- Faculty of Pharmacy, Medical University - Sofia Dunav str. 2 Sofia 1000 Bulgaria
| | - Georgi Stavrakov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Acad. G. Bontchev str. Bl. 9 1113 Sofia Bulgaria
- Faculty of Pharmacy, Medical University - Sofia Dunav str. 2 Sofia 1000 Bulgaria
| |
Collapse
|
5
|
Molecular docking and biological studies of the Cu(II) and Ni(II) macroacyclic complexes with 1,4-bis(o-aminobenzyl)-1,4-diazacycloheptane, a ligand containing the homopiperazine moiety. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Silva LP, Santos IP, Silva DKC, dos Reis BPZC, Meira CS, Castro MVBDS, dos Santos Filho JM, de Araujo-Neto JH, Ellena JA, da Silveira RG, Soares MBP. Molecular Hybridization Strategy on the Design, Synthesis, and Structural Characterization of Ferrocene- N-acyl Hydrazones as Immunomodulatory Agents. Molecules 2022; 27:molecules27238343. [PMID: 36500436 PMCID: PMC9737981 DOI: 10.3390/molecules27238343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Immunomodulatory agents are widely used for the treatment of immune-mediated diseases, but the range of side effects of the available drugs makes necessary the search for new immunomodulatory drugs. Here, we investigated the immunomodulatory activity of new ferrocenyl-N-acyl hydrazones derivatives (SintMed(141−156). The evaluated N-acyl hydrazones did not show cytotoxicity at the tested concentrations, presenting CC50 values greater than 50 µM. In addition, all ferrocenyl-N-acyl hydrazones modulated nitrite production in immortalized macrophages, showing inhibition values between 14.4% and 74.2%. By presenting a better activity profile, the ferrocenyl-N-acyl hydrazones SintMed149 and SintMed150 also had their cytotoxicity and anti-inflammatory effect evaluated in cultures of peritoneal macrophages. The molecules were not cytotoxic at any of the concentrations tested in peritoneal macrophages and were able to significantly reduce (p < 0.05) the production of nitrite, TNF-α, and IL-1β. Interestingly, both molecules significantly reduced the production of IL-2 and IFN-γ in cultured splenocytes activated with concanavalin A. Moreover, SintMed150 did not show signs of acute toxicity in animals treated with 50 or 100 mg/kg. Finally, we observed that ferrocenyl-N-acyl hydrazone SintMed150 at 100 mg/kg reduced the migration of neutrophils (44.6%) in an acute peritonitis model and increased animal survival by 20% in an LPS-induced endotoxic shock model. These findings suggest that such compounds have therapeutic potential to be used to treat diseases of inflammatory origin.
Collapse
Affiliation(s)
- Laís Peres Silva
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil
| | - Ivanilson Pimenta Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | | | | | - Cássio Santana Meira
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS—University Center SENAI/CIMATEC), Salvador 41650-010, BA, Brazil
| | - Marcos Venícius Batista de Souza Castro
- Laboratory of Design and Synthesis Applied to Medicinal Chemistry-SintMed®, Center for Technology and Geosciences, Federal University of Pernambuco, Recife 50740-521, PE, Brazil
| | - José Maurício dos Santos Filho
- Laboratory of Design and Synthesis Applied to Medicinal Chemistry-SintMed®, Center for Technology and Geosciences, Federal University of Pernambuco, Recife 50740-521, PE, Brazil
| | - João Honorato de Araujo-Neto
- Multiuser Laboratory of Structural Crystallography, Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil
| | - Javier Alcides Ellena
- Multiuser Laboratory of Structural Crystallography, Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil
| | - Rafael Gomes da Silveira
- Multiuser Laboratory of Structural Crystallography, Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil
- Department of Chemistry, Federal Institute of Goiás, Campus Ceres, Ceres 76300-000, GO, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS—University Center SENAI/CIMATEC), Salvador 41650-010, BA, Brazil
- Correspondence:
| |
Collapse
|
7
|
Modern Trends in Bio-Organometallic Ferrocene Chemistry. INORGANICS 2022. [DOI: 10.3390/inorganics10120226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Organometallic sandwich compounds, especially ferrocenes, possess a wide variety of pharmacological activities and therefore are attracting more and more attention from chemists, biologists, biochemists, etc. Excellent reviews concerning biological aspects and design of ferrocene-modified compounds appear regularly in scientific journals. This brief overview highlights recent achievements in the field of bio-organometallic ferrocene chemistry from 2017 to 2022. During this period, new ferrocene-modified analogues of various bio-structures were synthesized, namely, betulin, artemisinin, steroids, and alkaloids. In addition, studies of the biological potential of ferrocenes have been expanded. Since ferrocene is 70 years old this year, a brief historical background is also given. It seemed to me useful to sketch the ‘ferrocene picture’ in broad strokes.
Collapse
|
8
|
dos Santos Filho JM, de Souza Castro MVB. Synthesis, structural characterization, and antimicrobial activity of novel ferrocene-N-acyl hydrazones designed by means of molecular simplification strategy Celebrating the 100th anniversary of the birth of Professor Paulo Freire. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Advanced Application of Planar Chiral Heterocyclic Ferrocenes. INORGANICS 2022. [DOI: 10.3390/inorganics10100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This manuscript is reviewing the superior catalytic activity and selectivity of ferrocene ligands in a wide range of reactions: reduction of ketones, hydrogenation of olefins, hydroboration, cycloaddition, enantioselective synthesis of biaryls, Tsuji–Trost allylation. Moreover, the correlation between a ligand structure and its catalytic activity is discussed in this review.
Collapse
|
10
|
Rawat V, Vigalok A, Sinha AK, Sachdeva G, Srivastava CM, Rao GK, Kumar A, Singh M, Rathi K, Verma VP, Yadav B, Pandey AK, Vats M. Synthesis of a Zirconium Complex of an N, O-type p- tert-Butylcalix[4]arene and Its Application in Some Multicomponent Reactions. ACS OMEGA 2022; 7:28471-28480. [PMID: 35990458 PMCID: PMC9386809 DOI: 10.1021/acsomega.2c03187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The synthesis and characterization of a new octahedral Zr(IV) complex of oxygen-depleted N,O-type calixarene ligand comprising two distal-functionalized pyrazole rings have been reported. The cone shape and structure of the prepared complex were confirmed univocally by single-crystal X-ray diffraction and NMR studies. The Zr metal lies at 2.091 Å from the plane of the calixarene ring. This complex has been utilized as an efficient catalyst for the synthesis of Biginelli adducts, bis(indolyl)methanes, and coumarins. This complex (Cl2Zr-calixarene) showed superior activity for these multicomponent reactions in comparison to the corresponding Ti(IV) and Zn(II) analogues. Ferrocene-appended bis(indolyl)methane, prepared using this catalyst, was also evaluated for its anticancer activity against the A-172 cell line.
Collapse
Affiliation(s)
- Varun Rawat
- Amity
School of Applied Sciences, Amity University
Haryana, Gurugram 122413, India
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Arkadi Vigalok
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anshu Kumar Sinha
- Amity
School of Applied Sciences, Amity University
Haryana, Gurugram 122413, India
| | - Garima Sachdeva
- Amity
School of Applied Sciences, Amity University
Haryana, Gurugram 122413, India
| | | | - Gyandshwar K. Rao
- Amity
School of Applied Sciences, Amity University
Haryana, Gurugram 122413, India
| | - Arun Kumar
- Department
of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, Uttarakhand, India
| | - Mandeep Singh
- Nuchem
Sciences, Saint-Laurent, Quebec H4R2N6, Canada
| | - Komal Rathi
- Department
of Chemistry, Banasthali University, Banasthali Newai 304002, Rajasthan, India
| | - Ved Prakash Verma
- Department
of Chemistry, Banasthali University, Banasthali Newai 304002, Rajasthan, India
| | - Bhupender Yadav
- Amity Institute
of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Amit Kumar Pandey
- Amity Institute
of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Monika Vats
- Amity
School of Applied Sciences, Amity University
Haryana, Gurugram 122413, India
| |
Collapse
|
11
|
Jadhav J, Das R, Kamble S, Chowdhury MG, Kapoor S, Gupta A, Vyas H, Shard A. Ferrocene-Based Modulators of Cancer-Associated Tumor Pyruvate Kinase M2. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Zhang J, Gao F, Qi L, Yin X. The crystal structure of ( E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C 23H 18FeO. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C23H18FeO, orthorhombic, Pna21 (no. 33), a = 28.3217(11) Å, b = 5.7477(2) Å, c = 10.3071(3) Å, β = 90°, V = 1677.84(10) Å3, Z = 4, R
gt
(F) = 0.0372, wR
ref
(F
2) = 0.0713, T = 150 K.
Collapse
Affiliation(s)
- Jingxiao Zhang
- College of Food and Medicine, Luoyang Normal University , Luoyang , China
| | - Fengge Gao
- College of Food and Medicine, Luoyang Normal University , Luoyang , China
| | - Linyue Qi
- College of Food and Medicine, Luoyang Normal University , Luoyang , China
| | - Xia Yin
- School of Chemical Engineering and Pharmacy , Wuhan Institute of Technology , Wuhan , China
| |
Collapse
|