1
|
Doğaroğlu ZG, Uysal Y, Çaylalı Z, Karakoç G. Antibacterial and phytotoxicological properties assessment of Momordica charantia extract-based ZnO nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2851-2861. [PMID: 38012056 DOI: 10.1002/jsfa.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Utilizing the fruit extract of bitter melon (Momordica charantia), zinc nanoparticles (ZnO-NPs) were synthesized through a green approach, a novel endeavor in current literature. The primary objective was to evaluate the phytotoxic and growth-promoting effects of these ZnO-NPs on wheat, chosen as a test plant. Structural characterization using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy revealed the hexagonal wurtzite crystal structure of ZnO-NPs and identified spherical M. charantia-produced (MC)-ZnO-NPs ranging in size from 48 to 150 nm. RESULTS At a concentration of 2000 mg L-1 , both MC- and raw-ZnO-NPs augmented wheat germination percentages. Furthermore, raw-ZnO-NPs at 4000 mg L-1 demonstrated the highest chlorophyll content. Despite the plant's increased accumulation of MC-ZnO-NPs, no statistically significant toxic effects were observed. The antibacterial efficacy of ZnO-NPs was assessed against Gram-positive and Gram-negative microorganisms. MC-ZnO-NPs exhibited a 67.9% inhibition zone against Escherichia coli at 0.04 mg L-1 , while raw-ZnO-NPs exhibited 75.6% inhibition at the same concentration. CONCLUSION The study suggests that ZnO-NPs synthesized from M. charantia exhibit both growth-promoting effects on wheat without significant phytotoxicity and potent antibacterial properties, particularly against Escherichia coli. However, further investigations are warranted to comprehensively understand the interactions between ZnO-NPs and plants. Future research should focus on M. charantia, exploring its enhanced effects on plant growth, development and antibacterial attributes. These findings hold promise for potential agricultural applications, emphasizing the need for detailed phytotoxicological assessments of ZnO-NPs. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Zeynep Görkem Doğaroğlu
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| | - Yağmur Uysal
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| | - Zehranur Çaylalı
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| | - Gökçen Karakoç
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| |
Collapse
|
2
|
Fauzia, Khan MA, Chaman M, Azam A. Antibacterial and sunlight-driven photocatalytic activity of graphene oxide conjugated CeO 2 nanoparticles. Sci Rep 2024; 14:6606. [PMID: 38503811 PMCID: PMC10951321 DOI: 10.1038/s41598-024-54905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
This work focuses on the structural, morphological, optical, photocatalytic, antibacterial properties of pure CeO2 nanoparticles (NPs) and graphene oxide (GO) based CeO2 nanocomposites (GO-1/CeO2, GO-5/CeO2, GO-10/CeO2, GO-15/CeO2), synthesized using the sol-gel auto-combustion and subsequent sonication method, respectively. The single-phase cubic structure of CeO2 NPs was confirmed by Rietveld refined XRD, HRTEM, FTIR and Raman spectroscopy. The average crystallite size was calculated using Debye Scherrer formula and found to increase from 20 to 25 nm for CeO2 to GO-15/CeO2 samples, respectively. The related functional groups were observed from Fourier transform infrared (FTIR) spectroscopy, consistent with the outcomes of Raman spectroscopy. The optical band gap of each sample was calculated by using a Tauc plot, which was observed to decrease from 2.8 to 1.68 eV. The valence state of Ce (Ce3+ and Ce4+) was verified using X-ray photoelectron spectroscopy (XPS) for CeO2 and GO-10/CeO2. The poisonous methylene blue (MB) dye was used to evaluate the photocatalytic activity of each sample in direct sunlight. The GO-15/CeO2 nanocomposite showed the highest photocatalytic activity with rate constant (0.01633 min-1), and it degraded the MB dye molecules by 100% within 120 min. The high photocatalytic activity of this material for degrading MB dye establishes it as an outstanding candidate for wastewater treatment. Further, these nanocomposites also demonstrated excellent antimicrobial activity against Pseudomonas aeruginosa PAO1.
Collapse
Affiliation(s)
- Fauzia
- Department of Applied Physics, Z.H. College of Engineering & Technology, Aligarh Muslim University, Aligarh, 202002, India
| | - Mo Ahamad Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Mohd Chaman
- Mewat Engineering College, Nuh, Mewat, Haryana, 122107, India
| | - Ameer Azam
- Department of Applied Physics, Z.H. College of Engineering & Technology, Aligarh Muslim University, Aligarh, 202002, India.
- Department of Physics, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
| |
Collapse
|
3
|
Ibarra-Cervantes NF, Vázquez-Núñez E, Gómez-Solis C, Fernández-Luqueño F, Basurto-Islas G, Álvarez-Martínez J, Castro-Beltrán R. Green synthesis of ZnO nanoparticles from ball moss (Tillandsia recurvata) extracts: characterization and evaluation of their photocatalytic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13046-13062. [PMID: 38240974 DOI: 10.1007/s11356-024-31929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Green synthesis (GS), referred to the synthesis using bioactive agents such as plant materials, microorganisms, and various biowastes, prioritizing environmental sustainability, has become increasingly relevant in international scientific practice. The availability of plant resources expands the scope of new exploration opportunities, including the evaluation of new sources of organic extracts, for instance, to the best of our knowledge, no scientific articles have reported the synthesis of zinc oxide nanoparticles (ZnO NPs) from organic extracts of T. recurvata, a parasitic plant very common in semiarid regions of Mexico.This paper presents a greener and more efficient method for synthesizing ZnO NPs using T. recurvata extract as a reducing agent. The nanoparticles were examined by different techniques such as UV-vis spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and BET surface analysis. The photocatalytic and adsorptive effect of ZnO NPs was investigated against methylene blue (MB) dye in aqueous media under sunlight irradiation considering an equilibrium time under dark conditions. ZnO nanoparticles were highly effective in removing MB under sunlight irradiation conditions, showing low toxicity towards human epithelial cells, making them promising candidates for a variety of applications. This attribute fosters the use of green synthesis techniques for addressing environmental issues.This study also includes the estimation of the supported electric field distributions of ZnO NPs in their individual spherical or rounded shapes and their randomly oriented organization, considering different diameters, by simulating their behavior in the visible wavelength range, observing resonant enhancements due to the strong light-matter interaction around the ZnO NPs boundaries.
Collapse
Affiliation(s)
- Nayeli Fabiola Ibarra-Cervantes
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias E Ingenierías, Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas Para La Sostenibilidad (NanoBioTS), Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, C.P. 37150, León, Guanajuato, Mexico
| | - Edgar Vázquez-Núñez
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias E Ingenierías, Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas Para La Sostenibilidad (NanoBioTS), Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, C.P. 37150, León, Guanajuato, Mexico.
| | | | - Fabian Fernández-Luqueño
- Sustainability of Natural Resources and Energy Program, C.P. 25900, Cinvestav-Saltillo, Coahuila, Mexico
| | | | | | | |
Collapse
|
4
|
Huq MA, Apu MAI, Ashrafudoulla M, Rahman MM, Parvez MAK, Balusamy SR, Akter S, Rahman MS. Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics 2023; 15:2634. [PMID: 38004613 PMCID: PMC10675506 DOI: 10.3390/pharmaceutics15112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnONPs) have gained tremendous attention because of their safe and non-toxic nature and distinctive biomedical applications. A diverse range of microbes (bacteria, fungi and yeast) and various parts (leaf, root, fruit, flower, peel, stem, etc.) of plants have been exploited for the facile, rapid, cost-effective and non-toxic synthesis of ZnONPs. Plant extracts, microbial biomass or culture supernatant contain various biomolecules including enzymes, amino acids, proteins, vitamins, alkaloids, flavonoids, etc., which serve as reducing, capping and stabilizing agents during the biosynthesis of ZnONPs. The biosynthesized ZnONPs are generally characterized using UV-VIS spectroscopy, TEM, SEM, EDX, XRD, FTIR, etc. Antibiotic resistance is a serious problem for global public health. Due to mutation, shifting environmental circumstances and excessive drug use, the number of multidrug-resistant pathogenic microbes is continuously rising. To solve this issue, novel, safe and effective antimicrobial agents are needed urgently. Biosynthesized ZnONPs could be novel and effective antimicrobial agents because of their safe and non-toxic nature and powerful antimicrobial characteristics. It is proven that biosynthesized ZnONPs have strong antimicrobial activity against various pathogenic microorganisms including multidrug-resistant bacteria. The possible antimicrobial mechanisms of ZnONPs are the generation of reactive oxygen species, physical interactions, disruption of the cell walls and cell membranes, damage to DNA, enzyme inactivation, protein denaturation, ribosomal destabilization and mitochondrial dysfunction. In this review, the biosynthesis of ZnONPs using microbes and plants and their characterization have been reviewed comprehensively. Also, the antimicrobial applications and mechanisms of biosynthesized ZnONPs against various pathogenic microorganisms have been highlighted.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Md. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | | | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 05006, Republic of Korea;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
5
|
Orshiso TA, Zereffa EA, Murthy HCA, Demissie TB, Pardeshi O, Avhad LS, Ghotekar S. Biosynthesis of Artemisia abyssinica Leaf Extract-Mediated Bimetallic ZnO-CuO Nanoparticles: Antioxidant, Anticancer, and Molecular Docking Studies. ACS OMEGA 2023; 8:41039-41053. [PMID: 37969984 PMCID: PMC10633890 DOI: 10.1021/acsomega.3c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Currently, plant extract-mediated synthesized metal oxide nanoparticles (MO NPs) have played a substantial role in biological applications. Hence, this study focused on the eco-benign one-pot synthesis of bimetallic ZnO-CuO nanoparticles (ZC NPs) using the leaf extract of Artemisia abyssinica (LEAA) and evaluations of their anticancer, antioxidant, and molecular binding efficacy. The optical absorption peak at 380 nm from UV-visible (UV-vis) analysis revealed the formation of ZC NPs. X-ray diffraction (XRD) results revealed the fabrication of mixed-phase crystals with hexagonal and monoclinic structures of ZC NPs with an average crystallite size of 14 nm. Moreover, the biosynthesis of ZC NPs with a spherical morphology and an average particle size of 13.09 nm was confirmed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy (TEM) results. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA/DTA) spectroscopy confirmed the involvement of functional groups from LEAA during the synthesis of ZC NPs. ZC NPs have exhibited the ferric ion reducing power (FRAP) with an absorbance of 1.826 ± 0.00 at 200 μg/mL and DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) radical scavenging activity of 95.71 ± 0.02% at 200 μg/mL with an IC50 value of 3.28 μg/mL. Moreover, ZC NPs had shown a promising in vitro anticancer activity of 89.20 ± 0.038 at 500 μg/mL with an IC50 value of 33.12 μg/mL against breast cancer (MCF-7) cell lines. Likewise, ZC NPs have shown strong binding affinity (-8.50 kcal/mol) against estrogen receptor α (ERα) in molecular docking simulations. These findings suggested that the biosynthesized ZC NPs could be used as promising antioxidant and anticancer drug candidates, particularly for breast cancer ailments. However, the in vivo cytotoxicity test will be recommended to ensure further use of ZC NPs.
Collapse
Affiliation(s)
- Temesgen Achamo Orshiso
- Department
of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box 1888, Adama 1888, Ethiopia
| | - Enyew Amare Zereffa
- Department
of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box 1888, Adama 1888, Ethiopia
| | - H. C. Ananda Murthy
- Department
of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box 1888, Adama 1888, Ethiopia
- Department
of Prosthodontics, Saveetha Dental College & Hospital, Saveetha
Institute of Medical and Technical Science (SIMAT), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, Gaborone 0022, Botswana
| | - Onkar Pardeshi
- Department
of Electronics, KKHA Arts, SMGL Commerce and SPHJ Science College, Savitribai Phule Pune University, Chandwad 423 101, Maharashtra, India
| | - Lata S. Avhad
- Department
of Chemistry, Karmaveer Shantarambapu Kondaji Wavare Arts, Science
& Commerce College, Savitribai Phule
Pune University, CIDCO, Nashik 422008, Maharashtra, India
| | - Suresh Ghotekar
- Faculty of
Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
6
|
Zelekew OA, Haitosa HH, Chen X, Wu YN. Recent progress on plant extract-mediated biosynthesis of ZnO-based nanocatalysts for environmental remediation: Challenges and future outlooks. Adv Colloid Interface Sci 2023; 317:102931. [PMID: 37267679 DOI: 10.1016/j.cis.2023.102931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
The plant extract mediated green synthesis of nanomaterials has attracts enormous interest due to its cost-effectiveness, greener, and environmentally friendly. It is also considered as an alternative and facile method in which the phytochemicals can be used as a natural capping and reducing agents and helped to produce nanomaterials with high surface area, different sizes, and shapes. One of the materials fabricated using green methods is zinc oxide (ZnO) semiconductor due to its enormous applications in different field areas. In this review, an overview of recent progress on green synthesized ZnO-based catalysts and various modification methods for the purpose of enhancing the catalytic activity of ZnO and the corresponding structural-activity and interactions towards the removal of pollutants are highlighted. Particularly, the plant extract mediated ZnO-based photocatalysts application for the removal of pollutants via photocatalytic degradation, reduction reaction, and adsorption mechanism are demonstrated. Besides, the opportunities, challenges, and future outlooks of ZnO-based materials for environmental remediation with green and sustainable methods are also included. We believe that this review is a timely and comprehensive review on the recent progress related to plant extract mediated ZnO-based nanocatalysts synthesis and applications for environmental remediation.
Collapse
Affiliation(s)
- Osman Ahmed Zelekew
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai 200092, China; Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Haileyesus Hatano Haitosa
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai 200092, China.
| |
Collapse
|
7
|
Doğaroğlu ZG, Uysal Y, Çaylalı Z, Karakulak DS. Green nanotechnology advances: green manufacturing of zinc nanoparticles, characterization, and foliar application on wheat and antibacterial characteristics using Mentha spicata (mint) and Ocimum basilicum (basil) leaf extracts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60820-60837. [PMID: 37039921 DOI: 10.1007/s11356-023-26827-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023]
Abstract
Due to their distinctive characteristics and widespread application across all scientific disciplines, nanoparticles have attracted a lot of attention in the current millennium. Green synthesis of ZnO-NPs is gaining a lot of interest at the moment due to a number of its advantages over traditional methods, including being quicker, less expensive, and more environmentally friendly. In the current study, two distinct plant extracts are used to quickly, cheaply, and environmentally friendly synthesize zinc oxide nanoparticles (ZnO-NPs). Mint (Mentha spicata) and basil (Ocimum basilicum) were the plants employed in this study as stabilizing agents to synthesize ZnO-NPs with a green chemistry approach. The innovative aspect of the study is the use of mint and basil extracts in the conversion of zinc chloride to zinc oxide and then determining the effect of these two types of nanoparticles produced by green synthesis on the growth parameters of the plant when they reach the plants by foliar spraying and their uptake by plants and evaluating the antibacterial properties of these nanoparticles. The physical properties of the produced nanoparticles were investigated using XRD, SEM, and FTIR. Moreover, Escherichia coli and Staphylococcus aureus were used to demonstrate the antibacterial properties of ZnO-NPs against both gram-positive and gram-negative bacteria, respectively. Synthesized ZnO-NPs were also given as foliar treatment in order to determine Zn+2 uptake by plants and potential toxic effects on the growth of wheat. The shape of ZnO-NPs was triangular, as revealed by SEM analysis. In the X-ray diffraction study, strong and clearly discernible sharp peaks were seen, with an average size of 24.5 nm for M-ZnO-NPs and 26.7 nm for B-ZnO-NPs determined using Scherrer's formula. The phytoconstituents of the plant extract served as capping/stabilizing agents during the synthesis of ZnO-NPs, as demonstrated by Fourier transform-infrared spectroscopy. The produced nanoparticles were applied to the green parts of wheat plants by spraying, and the development of the plants and the change of zinc uptake were investigated. At the same time, the effect of these three types of nanoparticles on the germination of wheat seeds in the soil medium containing these nanoparticles was investigated. According to experimental results, M-ZnO-NPs (produced from mint) and B-ZnO-NPs (produced from basil) improved the germination percentage of wheat at 400 mg/L concentration (100%), while raw ZnO-NPs showed 90% germination at the same concentration. When the Zn+2 uptake of the plant by the leaves depending on the Zn+2 concentration in the environment after spraying was examined, it was determined that the Zn+2 uptake of the plants increased due to the increase in the applied Zn+2 concentration. The highest Zn+2 uptake of the plant was determined as 50, 25, and 50 mg/L for M-ZnO-NP, B-ZnO-NPs, and raw ZnO-NPs, respectively. Therefore, it has been determined that plant growth varies depending on the type and concentration of ZnO-NPs, and therefore, if foliar nanoparticle applications are made to wheat, the threshold concentrations, sizes, and types of ZnO-NPs should be carefully evaluated. In addition, antibacterial properties results showed that S. aureus was more sensitive to all three types of ZnO-NPs than E. coli.
Collapse
Affiliation(s)
- Zeynep Görkem Doğaroğlu
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| | - Yağmur Uysal
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey.
| | - Zehranur Çaylalı
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| | - Delil Sefkan Karakulak
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| |
Collapse
|
8
|
Characterization and Investigation of Antioxidant and Antimicrobial activity of zinc oxide nanoparticles prepared using leaves extract of Nyctanthes arbor-tristis. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Kumar M, Ambika S, Hassani A, Nidheesh PV. Waste to catalyst: Role of agricultural waste in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159762. [PMID: 36306836 DOI: 10.1016/j.scitotenv.2022.159762] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Presently, owing to the rapid development of industrialization and urbanization activities, a huge quantity of wastewater is generated that contain toxic chemical and heavy metals, imposing higher environmental jeopardies and affecting the life of living well-being and the economy of the counties, if not treated appropriately. Subsequently, the advancement in sustainable cost-effective wastewater treatment technology has attracted more attention from policymakers, legislators, and scientific communities. Therefore, the current review intends to highlight the recent development and applications of biochars and/or green nanoparticles (NPs) produced from agricultural waste via green routes in removing the refractory pollutants from water and wastewater. This review also highlights the contemporary application and mechanism of biochar-supported advanced oxidation processes (AOPs) for the removal of organic pollutants in water and wastewater. Although, the fabrication and application of agriculture waste-derived biochar and NPs are considered a greener approach, nevertheless, before scaling up production and application, its toxicological and life-cycle challenges must be taken into account. Furthermore, future efforts should be carried out towards process engineering to enhance the performance of green catalysts to improve the economy of the process.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Selvaraj Ambika
- Faculty, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Adjunct Faculty, Department of Climate Change, Indian Institute of Technology Hyderabad, Telangana, India; Faculty and Program Coordinator, E-Waste Resources Engineering and Management, Indian Institute of Technology Hyderabad, Telangana, India
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
10
|
Sol-Gel Synthesis of ZnO Nanoparticles Using Different Chitosan Sources: Effects on Antibacterial Activity and Photocatalytic Degradation of AZO Dye. Catalysts 2022. [DOI: 10.3390/catal12121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chitosan was used in the sol-gel synthesis of zinc oxide nanoparticles (ZnO NPs) as a capping agent in order to control the size, morphology, optical bandgap, photocatalytic efficiency, and antimicrobial activity. Different chitosan sources were used for the sol-gel synthesis of ZnO NPs, namely chitosan of shrimp shells, crab shells, and Streptomyces griseus bacteria. The photocatalytic efficiency was studied by using the methylene blue (MB) photodegradation test, and the antibacterial activity of the different types of ZnO NPs was investigated by the agar well diffusion technique. The particle size of ZnO NPs varied between 20 and 80 nm, and the band gap energy ranged between 2.7 and 3.2 eV. Due to the different chitosan sources, the ZnO NPs showed different antibacterial activity against Listeria innocua, Bacillus Subtiliis, Staphylococcus Aureus, Salmonella Typhimurium and Pseudomonas Aeruginosa. The ZnO NPs with lower band gap values showed better antibacterial results compared to ZnO NPs with higher band gap values. The MB dye removal of ZnO (shrimp shells), ZnO (crab shells), and ZnO (Streptomyces griseus) reached 60%, 56%, and 44%, respectively, at a contact time of 60 min, a low initial MB dye concentration of 6 × 10−5 M, a solution temperature of 25 °C, and a pH = 7.
Collapse
|
11
|
Rubus ellipticus fruits extract-mediated cuprous oxide nanoparticles: in vitro antioxidant, antimicrobial, and toxicity study. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview. REACTIONS 2022. [DOI: 10.3390/reactions3030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Zinc oxide is a safe material for humans, with high biocompatibility and negligible cytotoxicity. Interestingly, it shows exceptional antimicrobial activity against bacteria, viruses, fungi, etc., especially when reduced to the nanometer size. As it is easily understandable, thanks to its properties, it is at the forefront of safe antimicrobials in this pandemic era. Besides, in the view of the 2022 European Green Deal announced by the European Commission, even science and nanotechnology are moving towards “greener” approaches to the synthesis of nanoparticles. Among them, biogenic ZnO nanoparticles have been extensively studied for their biological applications and environmental remediation. Plants, algae, fungi, yeast, etc., (which are composed of naturally occurring biomolecules) play, in biogenic processes, an active role in the formation of nanoparticles with distinct shapes and sizes. The present review targets the biogenic synthesis of ZnO nanoparticles, with a specific focus on their bioactive properties and antimicrobial application.
Collapse
|