1
|
Aharoni R, Milo R, Arnon R. Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair. Pharmacol Rev 2024; 76:1133-1158. [PMID: 39406508 DOI: 10.1124/pharmrev.124.000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA. SIGNIFICANCE STATEMENT: Understanding the complex MS immune pathogenesis provided multiple targets for therapeutic intervention, resulting in a plethora of agents, with various mechanisms of action, efficacy, and safety profiles. However, promoting repair beyond the body's limited spontaneous extent is still a major challenge. GA, one of the first approved disease-modifying therapies, induces diverse immunomodulatory effects. Furthermore, GA treatment results in elevated neurotrophic factors secretion, remyelination and neurogenesis, supporting the notion that immunomodulatory treatment can support in situ a growth-promoting and repair environment.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ron Milo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ruth Arnon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| |
Collapse
|
2
|
Aviel G, Elkahal J, Umansky KB, Bueno-Levy H, Petrover Z, Kotlovski Y, Lendengolts D, Kain D, Shalit T, Zhang L, Miyara S, Kramer MP, Merbl Y, Kozlovski S, Alon R, Aharoni R, Arnon R, Mishali D, Katz U, Nachman D, Asleh R, Amir O, Tzahor E, Sarig R. Repurposing of glatiramer acetate to treat cardiac ischemia in rodent models. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1049-1066. [PMID: 39215106 DOI: 10.1038/s44161-024-00524-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Myocardial injury may ultimately lead to adverse ventricular remodeling and development of heart failure (HF), which is a major cause of morbidity and mortality worldwide. Given the slow pace and substantial costs of developing new therapeutics, drug repurposing is an attractive alternative. Studies of many organs, including the heart, highlight the importance of the immune system in modulating injury and repair outcomes. Glatiramer acetate (GA) is an immunomodulatory drug prescribed for patients with multiple sclerosis. Here, we report that short-term GA treatment improves cardiac function and reduces scar area in a mouse model of acute myocardial infarction and a rat model of ischemic HF. We provide mechanistic evidence indicating that, in addition to its immunomodulatory functions, GA exerts beneficial pleiotropic effects, including cardiomyocyte protection and enhanced angiogenesis. Overall, these findings highlight the potential repurposing of GA as a future therapy for a myriad of heart diseases.
Collapse
Affiliation(s)
- Gal Aviel
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Elkahal
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kfir Baruch Umansky
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hanna Bueno-Levy
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zachary Petrover
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yulia Kotlovski
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Lendengolts
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Kain
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Shalit
- Bioinformatics Unit, G-INCPM, Weizmann Institute of Science, Rehovot, Israel
| | - Lingling Zhang
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shoval Miyara
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias P Kramer
- The Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yifat Merbl
- The Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stav Kozlovski
- The Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Alon
- The Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Aharoni
- The Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Arnon
- The Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Mishali
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Uriel Katz
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dean Nachman
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Rabea Asleh
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Offer Amir
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Eldad Tzahor
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Rachel Sarig
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Prod'homme T, Zamvil SS. The Evolving Mechanisms of Action of Glatiramer Acetate. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a029249. [PMID: 29440323 DOI: 10.1101/cshperspect.a029249] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glatiramer acetate (GA) is a synthetic amino acid copolymer that is approved for treatment of relapsing remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS). GA reduces multiple sclerosis (MS) disease activity and has shown comparable efficacy with high-dose interferon-β. The mechanism of action (MOA) of GA has long been an enigma. Originally, it was recognized that GA treatment promoted expansion of GA-reactive T-helper 2 and regulatory T cells, and induced the release of neurotrophic factors. However, GA treatment influences both innate and adaptive immune compartments, and it is now recognized that antigen-presenting cells (APCs) are the initial cellular targets for GA. The anti-inflammatory (M2) APCs induced following treatment with GA are responsible for the induction of anti-inflammatory T cells that contribute to its therapeutic benefit. Here, we review studies that have shaped our current understanding of the MOA of GA.
Collapse
Affiliation(s)
| | - Scott S Zamvil
- Department of Neurology and Program in Immunology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
4
|
Muir LA, Murry CE, Chamberlain JS. Prosurvival Factors Improve Functional Engraftment of Myogenically Converted Dermal Cells into Dystrophic Skeletal Muscle. Stem Cells Dev 2016; 25:1559-1569. [PMID: 27503462 DOI: 10.1089/scd.2016.0136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD) and other muscle wasting disorders, cell therapies are a promising route for promoting muscle regeneration by supplying a functional copy of the missing dystrophin gene and contributing new muscle fibers. The clinical application of cell-based therapies is resource intensive, and it will therefore be necessary to address key limitations that reduce cell engraftment into muscle tissue. A pressing issue is poor donor cell survival following transplantation, which in preclinical studies limits the ability to effectively test the impact of cell-based therapy on whole muscle function. We, therefore, sought to improve engraftment and the functional impact of in vivo myogenically converted dermal fibroblasts (dFbs) using a prosurvival cocktail (PSC) that includes heat shock followed by treatment with insulin-like growth factor-1, a caspase inhibitor, a Bcl-XL peptide, a KATP channel opener, basic fibroblast growth factor, Matrigel, and cyclosporine A. Advantages of dFbs include compatibility with the autologous setting, ease of isolation, and greater proliferative potential than DMD satellite cells. dFbs expressed tamoxifen-inducible MyoD and carried a mini-dystrophin gene driven by a muscle-specific promoter. After transplantation into muscles of mdx mice, a 70% reduction in donor cells was observed by day 5, and a 94% reduction by day 28. However, treatment with PSC gave a nearly three-fold increase in donor cells in early engraftment, and greatly increased the number of donor-contributed muscle fibers and total engrafted area in transplanted muscles. Furthermore, dystrophic muscles that received dFbs with PSC displayed reduced injury with eccentric contractions and an increase in maximum isometric force. Thus, enhancing survival of myogenic cells increases engraftment and improves structure and function of dystrophic muscle.
Collapse
Affiliation(s)
- Lindsey A Muir
- 1 Department of Neurology, University of Washington , Seattle, Washington
- 2 Molecular and Cellular Biology Program, University of Washington , Seattle, Washington
| | - Charles E Murry
- 3 Center for Cardiovascular Biology, University of Washington , Seattle, Washington
- 4 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington
- 5 Department of Pathology, University of Washington , Seattle, Washington
- 6 Department of Bioengineering, University of Washington , Seattle, Washington
- 7 Department of Medicine/Cardiology, University of Washington , Seattle, Washington
| | - Jeffrey S Chamberlain
- 1 Department of Neurology, University of Washington , Seattle, Washington
- 8 Department of Biochemistry, University of Washington , Seattle, Washington
- 9 Department of Medicine/Medical Genetics, University of Washington , Seattle, Washington
| |
Collapse
|
5
|
Yokoyama K, Hattori N. Immunomodulatory effects of glatiramer acetate as they relate to stage-specific immune dysregulation in multiple sclerosis. Nihon Yakurigaku Zasshi 2016; 148:105-20. [PMID: 27478050 DOI: 10.1254/fpj.148.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Aharoni R. Immunomodulation neuroprotection and remyelination - the fundamental therapeutic effects of glatiramer acetate: a critical review. J Autoimmun 2014; 54:81-92. [PMID: 24934599 DOI: 10.1016/j.jaut.2014.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a multifaceted heterogeneous disease with various patterns of tissue damage. In addition to inflammation and demyelination, widespread axonal and neuronal pathologies are central components of this disease. MS therapies aim to restrain the pathological processes, enhance protective mechanisms, and prevent disease progression. The amino acid copolymer, glatiramer acetate (GA, Copaxone), an approved treatment for MS, has a unique mode of action. Evidence from the animal model experimental autoimmune encephalomyelitis (EAE) and from MS patients indicates that GA affects various levels of the innate and the adaptive immune response, inducing deviation from the pro-inflammatory to the anti-inflammatory pathways. This includes competition for the binding of antigen presenting cells, driving dendritic cells, monocytes, and B-cells towards anti-inflammatory responses, induction of Th2/3 and T-regulatory cells, and downregulating of both Th1 and Th-17 cells. The immune cells induced by GA reach the inflamed disease organ and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings have revealed that in addition to its immunomodulatory activities GA promotes neuroprotective repair processes such as neurotrophic factors secretion and remyelination. This review aims to provide a comprehensive overview on the diverse mechanism of action of GA in EAE/MS, in particular on the in situ effect of GA and its ability to generate neuroprotection and repair in the CNS. In view of its immunomodulatory activity, the beneficial effects of GA in various models of additional autoimmune related pathologies, such as immune rejection and inflammatory bowel disease (IBD), are also presented.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
7
|
Johnson KP. Glatiramer acetate for treatment of relapsing–remitting multiple sclerosis. Expert Rev Neurother 2014; 12:371-84. [DOI: 10.1586/ern.12.25] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Glatiramer acetate ameliorates experimental autoimmune neuritis. Immunol Cell Biol 2013; 92:164-9. [DOI: 10.1038/icb.2013.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 12/12/2022]
|
9
|
Messina S, Patti F. The pharmacokinetics of glatiramer acetate for multiple sclerosis treatment. Expert Opin Drug Metab Toxicol 2013; 9:1349-59. [PMID: 23795716 DOI: 10.1517/17425255.2013.811489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a T-cell-mediated disease affecting the central nervous system (CNS), characterized by demyelination and axonal degeneration. INF-β1b was the first drug approved for MS patients in 1993. In 1996, glatiramer acetate (GA), a synthetic copolymer, was approved in the USA for the treatment of relapsing-remitting MS (RRMS) and clinically isolated syndrome (CIS). Although the immunological action of GA has been fully investigated, the exact mechanisms of action of GA are still not completely elucidated. Several in vitro studies on mice and human antigen-presenting cells (APCs) have shown that GA is able to bind to the major histocompatibility complex (MHC), on the surface of APCs, recognizing myelin basic protein (MBP). AREAS COVERED This review explores the pharmacological characteristics of GA, its mechanism of action and its pharmacokinetics properties. The article also provides information on the efficacy, tolerability and an overview of the most important clinical data on GA. EXPERT OPINION Despite the development of novel compounds, it is not surprising that GA is, to date, one of the most prescribed drugs for RRMS patients and CIS patients. The proven efficacy and the mild adverse events, makes GA a good therapeutic option in the early stage of the disease. This is particularly useful for patients who suffer flu-like symptoms from other RRMS therapies as an alternative.
Collapse
Affiliation(s)
- Silvia Messina
- Department G.F. Ingrassia, Section of Neurosciences, Università degli studi di Catania , Via S. Sofia, 78, Catania , Italy +0953782642 ; +0953782626 ;
| | | |
Collapse
|
10
|
Tyler AF, Mendoza JP, Firan M, Karandikar NJ. CD8(+) T Cells Are Required For Glatiramer Acetate Therapy in Autoimmune Demyelinating Disease. PLoS One 2013; 8:e66772. [PMID: 23805274 PMCID: PMC3689655 DOI: 10.1371/journal.pone.0066772] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/10/2013] [Indexed: 12/19/2022] Open
Abstract
The exact mechanism of glatiramer acetate (GA, Copaxone®), an FDA-approved immunomodulatory therapy for multiple sclerosis (MS), remains unclear after decades of research. Previously, we have shown that GA therapy of MS induces CD8+ T cell responses that can potentially suppress pathogenic CD4+ T cell responses. Using a murine model of MS, experimental autoimmune encephalomyelitis (EAE), we now demonstrate that CD8+ T cells are necessary in mediating the therapeutic effects of GA. Further, adoptive transfer of GA-induced CD8+ T cells resulted in amelioration of EAE, establishing a role as a viable immunotherapy in demyelinating disease. Generation of these cells required indoleamine-2,3-dioxygenase (IDO), while suppressive function depended on non-classical MHC class I, IFN-γ, and perforin expression. GA-induced regulatory myeloid cells, previously shown to activate CD4+ regulatory T cells in an antigen-independent manner, required CD8+ T cells for disease suppression in vivo. These studies demonstrate an essential role for CD8+ T cells in GA therapy and identify their potential as an adoptive immunotherapeutic agent.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cytotoxicity, Immunologic/drug effects
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Forkhead Transcription Factors/metabolism
- Glatiramer Acetate/pharmacology
- Histocompatibility Antigens Class I/metabolism
- Immunotherapy
- Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Peptide Fragments/toxicity
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Andrew F. Tyler
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jason P. Mendoza
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mihail Firan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nitin J. Karandikar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Aharoni R. The mechanism of action of glatiramer acetate in multiple sclerosis and beyond. Autoimmun Rev 2012; 12:543-53. [PMID: 23051633 DOI: 10.1016/j.autrev.2012.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/19/2012] [Indexed: 12/24/2022]
Abstract
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), the immune system reacts again self myelin constitutes in the central nervous system (CNS), initiating a detrimental inflammatory cascade that leads to demyelination as well as axonal and neuronal pathology. The amino acid copolymer glatiramer acetate (GA, Copaxone) is an approved first-line treatment for MS that has a unique mode of action. Accumulated evidence from EAE-induced animals and from MS patients indicates that GA affects various levels of the innate and the adaptive immune response, generating deviation from the pro-inflammatory to the anti-inflammatory pathway. This review aims to provide a comprehensive perspective on the diverse mechanism of action of GA in EAE/MS, in particular on the in situ immunomodulatory effect of GA and its ability to generate neuroprotective repair consequences in the CNS. In view of its immunomodulatory activity, the beneficial effect of GA in various models of other autoimmune related pathologies, such as immune rejection and inflammatory bowel disease (IBD) is noteworthy.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
12
|
Lee CL, Jiang P, Sit WH, Yang X, Wan JMF. Regulatory properties of polysaccharopeptide derived from Coriolus versicolor and its combined effect with ciclosporin on the homeostasis of human lymphocytes. THE JOURNAL OF PHARMACY AND PHARMACOLOGY 2010; 62:1028-36. [PMID: 20663037 DOI: 10.1211/jpp.62.08.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Lymphocyte homoeostasis is essential in inflammatory and autoimmune diseases. In search of natural fungal metabolites with effects on lymphocyte homoeostasis, we recently reported that polysaccharopeptide (PSP) from Coriolus versicolor exhibited ciclosporin-like activity in controlling aberrant lymphocyte activation. This object of this study was to investigate its effect on lymphocyte homoeostasis. This was done by investigating the mechanistic actions of PSP in relation to ciclosporin by performing cell cycle and cell death analysis of human lymphocytes in vitro. METHODS We investigated the effect of PSP in the presence and absence of ciclosporin on cell proliferation, cell cycle, cell death, immunophenotype and cell cycle regulatory proteins in human lymphocytes. KEY FINDINGS The data showed that PSP exhibited homoeostatic activity by promoting and inhibiting the proliferation of resting and phytohaemagglutinin (PHA)-stimulated lymphocytes, respectively. PHA-stimulated lymphocytes exhibited G0/G1 cell cycle arrest that was accompanied by a reduction of cyclin E expression with PSP treatment. Both PSP and ciclosporin blocked the reduction of the CD4/CD8 ratio in stimulated lymphocytes. PSP did not induce cell death in human lymphocytes, but the suppression of the Fasreceptor suggested a protective role of PSP against extrinsic cell death signals. These homoeostatic effects were more potent with combined PSP and ciclosporin treatment than with either fungal metabolite alone. CONCLUSIONS Collectively, the results reveal certain novel effects of PSP in lymphocyte homoeostasis and suggest potential as a specific immunomodulatory adjuvant for clinical applications in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Cheuk-Lun Lee
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | | | | | | | | |
Collapse
|
13
|
Boros P, Ochando JC, Chen SH, Bromberg JS. Myeloid-derived suppressor cells: natural regulators for transplant tolerance. Hum Immunol 2010; 71:1061-6. [PMID: 20705113 PMCID: PMC3713408 DOI: 10.1016/j.humimm.2010.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/27/2010] [Accepted: 08/04/2010] [Indexed: 12/18/2022]
Abstract
Myeloid derived suppressor cells (MDSC) contribute to the negative regulation of immune response in cancer patients. This review summarizes results on important issues related to MDSC biology, including expansion and activation of MDSC, phenotype, and subsets as well pathways and different mechanisms by which these cells exert their suppressive effect. Recent observations suggesting that MDSC may have roles in transplant tolerance are presented. Although therapeutic targeting and destruction of MDCS is of primary interest in cancer patients, in transplantation it will instead be necessary to induce, expand, and activate these cells; thus current possibilities for in vitro generation of MDSC are also discussed.
Collapse
Affiliation(s)
- Peter Boros
- Recanati/Miller Transplantation Institute, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | |
Collapse
|
14
|
Improved muscle strength and mobility in the dy(2J)/dy(2J) mouse with merosin deficient congenital muscular dystrophy treated with Glatiramer acetate. Neuromuscul Disord 2010; 20:267-72. [PMID: 20304648 DOI: 10.1016/j.nmd.2010.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 01/01/2023]
Abstract
The therapeutic effect of Glatiramer acetate, an immune modulating agent, was evaluated in the dy(2J)/dy(2J) mouse with merosin deficient congenital muscular dystrophy, which is a milder variant of the dy/dy mouse. The treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter and in motor performance quantified by video detection software. Glatiramer acetate treatment was associated with significantly increased expression of regeneration transcription factors MyoD and myogenin, and attenuation of the fibrosis markers vimentin and fibronectin. No effective treatment is currently available in congenital muscular dystrophy and Glatiramer acetate may present a new potential treatment for this disorder.
Collapse
|
15
|
Bonatti H, Gillis J, Berger N, Mark W, Kofler HJ, Margreiter R, Pfausler B. Remission of multiple sclerosis in a patient with insulin dependent diabetes mellitus following combined kidney-pancreas transplantation. Transpl Int 2008; 21:916-8. [DOI: 10.1111/j.1432-2277.2008.00704.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Sarchielli P, Zaffaroni M, Floridi A, Greco L, Candeliere A, Mattioni A, Tenaglia S, Di Filippo M, Calabresi P. Production of brain-derived neurotrophic factor by mononuclear cells of patients with multiple sclerosis treated with glatiramer acetate, interferon-beta 1a, and high doses of immunoglobulins. Mult Scler 2007; 13:313-31. [PMID: 17439900 DOI: 10.1177/1352458506070146] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sixty, relapsing remitting (RR) multiple sclerosis (MS) patients, who underwent treatment with glatiramer acetate (GA), interferon (IFN)-beta 1a, and immunoglobulins (Igs) (20 per treatment group), were assessed for levels of brain-derived neurotrophic factor (BDNF) in the supernatants of unstimulated and stimulated peripheral blood mononuclear cells (PBMCs) in the first year of treatment. Phytohemagglutinin (PHA), anti-OKT3 antibody, myelin basic protein (MPB) and GA were used as stimuli. Cytokine responses by ELISPOT and lymphoproliferative responses were also assessed. The GA-treated MS patient group showed a progressive increase in BDNF levels, from baseline to month three; thereafter, the levels remained stable and significantly greater compared with baseline and controls (ANOVA=P<0.001). IFN-beta 1a had no effect on BDNF production, whereas Igs induced a slight decrease (ANOVA=P<0.04). ELISPOT analysis revealed a significant decrease of IFN-gamma, an increase of interleukin (IL)-4 and IL-5 in GA-treated MS patients, and an increase of IL-10 in patients treated with IFN-beta 1a and GA. No significant correlation was found between BDNF secretion in the supernatants of PBMCs and cytokine response, lesional load, and measures of atrophy. Increased BDNF production related to GA treatment can have implications for understanding the mechanism of action of this immunomodulatory agent, in light of evidence suggesting its effects in promoting neuroprotective immunity in MS patients; however, a clinically measurable effect, especially in terms of an impact on actual disease progression, remains to be established.
Collapse
Affiliation(s)
- P Sarchielli
- Neurologic Clinic, Department of Medical and Surgical Specialties and Public Health, University of Perugia, Perugia 06158, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Aharoni R, Eilam R, Domev H, Labunskay G, Sela M, Arnon R. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 2005; 102:19045-50. [PMID: 16365293 PMCID: PMC1323190 DOI: 10.1073/pnas.0509438102] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neurotrophins (NTs) such as BDNF, NT-3, and NT-4 are important modulators of neuronal function and survival. Their expression in the CNS after various insults is thus of major therapeutic consequence. Glatiramer acetate [(GA) Copaxone], an approved drug for the treatment of multiple sclerosis, has been shown to induce Th2/3 cells that accumulate in the CNS, expressing in situ antiinflammatory cytokines and BDNF. In the present study, we investigated whether s.c. injections of GA, applied at various stages of experimental autoimmune encephalomyelitis, affect the expression of NTs, particularly BDNF, in the brain. In untreated experimental autoimmune encephalomyelitis mice, the expression of NTs was elevated shortly after disease appearance but subsequently declined below that of naive mice. In contrast, GA treatment led to sustained augmentation in the expression of BDNF, NT-3, and NT-4 in various brain regions as demonstrated by histological analysis of immunostained brain sections. GA treatment, even when started 45 days after disease induction, restored the impaired level of NTs to that of healthy mice. BDNF elevation after GA treatment was demonstrated on both protein and mRNA levels. Prominent staining was manifested not only by infiltrating GA-induced T cells, but also by CNS resident cells (neurons and astrocytes), indicative of a bystander therapeutic effect. Of importance, in GA-treated mice, intense BDNF expression was manifested by neuronal progenitors that migrated into lesions in injured regions. These results indicate that the immunomodulator GA exerts not only an antiinflammatory effect, but also enhances neuroprotection and regeneration of neural elements in the diseased brain.
Collapse
Affiliation(s)
- Rina Aharoni
- Departments of Immunology and Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|